A data structure for family relations

F. Mavaddat and B. Parhami

Department of Mathematics and Computer Science, Arya-Mehr University of Technology,

Tehran, Iran

A data structure is proposed which enables efficient determination of family relations of common
interest with the minimum amount of information on each individual. The problem of updating infor-
mation due to births, deaths, marriages and divorces is considered. Algorithms for determining the
immediate relatives of each individual are given and a framework is established for writing pro-

cedures to determine other relatives.
(Received June 1977)

Due to the rich structure of pointers and universal familiarity
of subject, representation of family relations has always pro-
vided the students of data structures with an unfailing source
of examples and drills. It has also supplied educators with
materials for demonstration of points and clarification of
concepts in the theory of linked structures (Knuth, 1968;
Elson, 1975; Hoare, 1968; Stone, 1972). Its influence on the
subject of data structures has been so strong that some kin-
ship terms, such as ‘offspring’ and ‘sibling’, are universally
used for naming relationships in trees, a very important class
of data structures (Knuth, 1968 page 307).

Unfortunately, most treatments of such data structures are
simplistic, in the sense that they onmly partially ‘contain’
common family relations. We say that a data structure contains
a relation if a non-exhaustive procedure can be devised for
finding all items having that relation to a given item. Relations
such as ‘current wives’ and ‘ex-sisters-in-law’ are difficult to
compute without a heavily linked structure. Our aim is to
propose a sufficiently rich structure which contains all family
relations of common interest. Examples of such relations are
those of ‘mother,” ‘brother’, ‘spouse’, ‘daughter’, ‘grand-
parent’, ‘uncle’, ‘nephew’, ‘cousin’, and ‘sister-in-law’, with
qualifications of age, sex, existence, order and halfness, where
applicable.

In addition to its academic value, such a study can be used by
private and government organisations for tracing family
relations. Such relations, and the associated terminology, are
also of interest to social anthropologists and linguists (Wallace
and Atkins, 1960; Baateni, 1973). Therefore, a better under-
standing of the structure needed to represent such relations
can be of value in their work. In fact, our original interest in
this work was triggered by a linguistic study of kinship terms
in Farsi (Baateni, 1973).

Functional specifications
Actual family relations are dynamic in nature. The processes
of birth, death, marriage and divorce continually create new
relations and alter existing ones. Therefore a structure for
representing these relations must be designed in view not only
of the ability to respond to queries but also of the execution of
updating procedures. For this reason, the total system may be
viewed as a kinship data base.

Updating information is required as a result of the following
events: Birth, death, marriage and divorce.* These four types
of events are represented by directives of the type

‘An s named r is born to p and g on 4.’ 1)
‘x dies on d.’)
‘p and g get married on d.’ 3)
‘p and g get divorced on d.’)

respectively, where p and ¢ uniquely identify a male and a
female, s ¢ {male, female}, n is the child’s name, x uniquely
identifies an individual, and d is the date of event. In the
following pages, we will demonstrate that the above men-
tioned directives can be handled by efficient algorithms for the
proposed structure.

Queries put to the system are of greater variety because of the
large number of possible relations. All such queries can,
nevertheless, be expressed in one of the following three forms

‘Who are the r’s of p?’ (%)
‘Isganrof p? (6)
‘Whatisq to p? @)

where p and ¢ uniquely identify two individuals and r is a
member of the set of all possible relations. Queries of type (6)
can be handled by answering (5) and searching for ¢ in the
resulting set. Queries of type (7) can be handled by searching
for positive answers to (6) for different r’s of interest. We will,
therefore, only consider queries of type (5) in our subsequent
discussion.

Since the set of possible values for r in (5) is infinite, it is not
possible to prove by exhaustive enumeration that any given
structure will enable us to answer all queries. Therefore, the
following inductive scheme based on intrinsic properties of
family relations will be used.

We define an ‘immediate relative’ to be a parent, spouse,
sibling, or offspring. Any other relative of an individual is
obtainable as a ‘closer’ relative of an immediate relative.
Therefore, in the section on retrieval algorithms, we need only
give procedures for determining the immediate relatives of an
individual. Other relatives can be traced by composite pro-
cedures, as will be demonstrated through a number of examples.
Special routines can be built into the system for answering

A RECORD

LINKS TO
OTHER RECORDS
INFORMATION
FIELDS

DAD J MOM—I PDF I PDM IMRD

TVPE[NAME IEIRTHlDEATH

DAD—Link to father’s record
MOM—Link to mother’s record
PDF—Link to previous descendant of father

PDM—Link to previous descendant of mother

MRD—Link to most recent descendant

TYPE—Record type (male, female, or marriage)
NAME—Name of record’s owner (string)
BIRTH—Date of birth (numeric)

DEATH—Date of death (numeric)

Fig. 1 Format of record for each individual

*It is also possible to consider adoption and abandonment of children as events. However, this would make the algorithms considerably

more complex.

110

The Computer Journal Volume 22 Number 2

