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Abstract
Monte Carlo rendering systems can produce important visualeffects such as depth of �eld, motion blur, and area lighting, but
the rendered images suffer from objectionable noise at low sampling rates. Although years of research in image processing has
produced powerful denoising algorithms, most of them assume that the noise is spatially-invariant over the entire image and
cannot be directly applied to denoise Monte Carlo rendering. In this paper, we propose a new approach that enables the useof
any spatially-invariant image denoising technique to remove the noise in Monte Carlo renderings. Our key insight is to use a
noise estimation metric to locally identify the amount of noise in different parts of the image, coupled with a multilevel algorithm
that denoises the image in a spatially-varying manner usinga standard denoising technique. We also propose a new way to
perform adaptive sampling that uses the noise estimation metric to identify the noisy regions in which to place more samples.
We show that our framework runs in a few seconds with modern denoising algorithms and produces results that outperform
state-of-the-art techniques in Monte Carlo rendering.

Categories and Subject Descriptors (according to ACM CCS):Computing Methodologies [I.3.7]: Computer Graphics—Three-
Dimensional Graphics and Realism

1. Introduction

Monte Carlo (MC) rendering systems produce photorealistic
images by evaluating multidimensional integrals that model
the physical process of light transport in a complex scene.
They estimate these integrals through random point-sample
calculations that converge to the exact value of the integral
with a variance that is reduced asO(1=N) with the number
of samples. This means that when the number of samples
is small, we get error in the approximation of the integral
which appears in the �nal image as noise. However, many
samples need to be computed in order to reduce the vari-
ance to acceptable levels, which affects the applicability of
Monte Carlo rendering systems for modern production envi-
ronments.

The problem of reducing noise in Monte Carlo ren-
dering has been the subject of extensive research since
Cook et al. [CPC84] introduced the method to the ren-
dering community. Recently, there has been renewed in-
terest in tackling the problem with denoising/�ltering ap-
proaches [ODR09,DSHL10,BEM11,RKZ11,SD12]. Curi-
ously, most of these techniques use fairly simple �lters (e.g.,
Gaussian kernels, cross-bilateral �lters) for denoising. Per-
haps the most sophisticated denoising algorithm is that of
adaptive wavelet rendering (AWR) [ODR09] which modi-
�es a simple, wavelet-based denoising method called soft-
thresholding [Don95] to make it spatially-varying for the
rendering application. However, this has several shortcom-

ings, such as still requiring a sizable number of samples to
produce reasonable results (at least 32 samples/pixel).

In the image processing community, on the other hand,
there have been many powerful denoising algorithms pro-
posed over the past few years, many of them inspired by soft
thresholding. However, most of these algorithms assume that
the noise is spatially-invariant and does not change globally
across the image. This is not true in our application since
the noise due to the random parameters in the MC rendering
system is often local and spatially-varying [SD12]. There-
fore, conventional wisdom in the rendering community is
that these powerful methods cannot be applied to the prob-
lem of denoising MC rendering.

The goal of this work is to develop a framework to har-
ness the power of standard, spatially-invariant denoising al-
gorithms to address the problem of noise in Monte Carlo
rendering. Rather than modifying a speci�c denoising algo-
rithm for our rendering application as in the AWR method,
we want to be able to useanyspatially-invariant method for
noise reduction. Our key insight is that we can do this by �rst
applying a metric that accurately estimates the noise level's
standard deviation at every local region in the image. Once
this is known, we can then use a multilevel algorithm to ef-
�ciently apply a spatially-invariant denoising method to the
entire image with a small set of different noise parameters,
and combine the results to produce the �nal noise-free im-
age. Our algorithm is mostly intended to be used as a post-
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process �ltering step (i.e., we �rst render our samples with
standard Monte Carlo techniques and then denoise the re-
sult [ODR09,DSHL10,SD12]). However, the noise estima-
tion metric can also be used to guide an adaptive sampling
step. Our �nal algorithm is simple and fast, taking on the or-
der of seconds to denoise a rendered image. Our results are
also visibly better than those produced with state-of-the-art
Monte Carlo approaches.

2. Previous Work in Monte Carlo Rendering

The use of Monte Carlo algorithms for rendering was intro-
duced by Cook et al. [CPC84,Coo86] in their seminal work
that extended standard Whitted ray-tracing [Whi80] to pro-
duce a variety of interesting effects, such as depth of �eld
and motion blur. Since then, researchers have been exploring
a variety of algorithms to reduce the MC noise and produce
high-quality images in less time.

2.1. Adaptive and Reprojection Techniques

Several approaches use adaptive sampling to place more
samples in the noisy regions and reduce noise. These tech-
niques usually use a local measure of color variance to deter-
mine where to place more samples [Whi80,Mit87,RFS03].
However, it can often be dif�cult to tell if the high vari-
ance comes from the Monte Carlo noise or from scene
detail [SD12]. Other adaptive algorithms place samples at
the vertices of a grid or use a hierarchical data structure
that increases resolution in areas that require more samples
(e.g., [Kaj86]). These approaches interpolate between sam-
ples and have been extended to observe edge boundaries
(e.g., [Guo98,BWG03]) to improve the rendered results.

More recently, the multidimensional adaptive sampling
algorithm (MDAS) of Hachisuka et al. [HJW� 08], adap-
tively samples the space by looking for rapidly changing
sample values in all dimensions of integration. Although
it can handle general Monte Carlo effects, it suffers from
the curse of dimensionality as the number of dimensions in-
creases, so the algorithm performs best when the number of
parameters is low.

Soler et al. [SSD� 09] proposed to leverage sparsity in the
Fourier domain to place samples ef�ciently for scenes with
depth of �eld, while Egan et al. [ETH� 09,EDR11,EHDR11]
addressed the noise of a single Monte Carlo effect with a
specialized adaptive sampling scheme in conjunction with a
sheared reconstruction �lter. All of these approaches focus
on speci�c Monte Carlo effects and are not general.

Finally, Lehtinen et al. [LAC� 11] exploited the anisotropy
of the integrand in MC algorithms by ef�ciently reusing (or
reprojecting) an initial sparse set of samples to get a denser
sampling. Their method can handle depth of �eld, motion
blur and soft shadow effects. More recently, Lehtinen et
al. [LALD12] extended the idea of reprojection to handle
global illumination.

2.2. Filtering Approaches to Noise Removal

There have been a variety of MC noise �ltering methods pro-
posed in the past (e.g., [LR90,RW94,JC95]). In order to pre-
serve edges and detail in the scene, some previous �ltering
methods have used anisotropic diffusion [McC99], bilateral
�lters [ XP05, DSHL10], or guided image �lters [BEM11].
Parametric methods for noise reduction have also been ex-
plored, such as the work of Meyer and Anderson [MA06]
that removes indirect illumination noise from animated se-
quences by projecting the noisy images into a compressed
PCA basis. Chen et al. [CWW� 11] combined depth map
with pixel variance map to guide sampling and proposed a
multiscale reconstruction method for depth of �eld effect.
These approaches often focus on speci�c effects and cannot
handle general Monte Carlo effects.

Recently, Rousselle et al. [RKZ11] proposed an iterative,
adaptive �ltering method with two steps. In the �rst step,
they select a Gaussian �lter scale for each pixel after com-
puting some samples that minimizes its reconstruction error.
In the second step, they adaptively place new samples based
on the �lter scale selected and go back to the �rst step. Be-
cause of using a simple Gaussian �lter in the reconstruction
stage, they need enough samples/pixel to produce relatively
noise-free results (32 samples/pixel in their cases).

In their paper, Rouselle et al. mention that they did not use
more advanced image denoising techniques because of the
commonly-held belief that these would not work for render-
ing since they assume a global noise model. Our framework,
on the other hand, estimates the noise level at every pixel
of the rendered image and therefore can leverage more ad-
vanced image denoising techniques. Thus, we can get better
results for images with a high amount of noise.

Finally, Sen and Darabi [SD12] recently proposed a new
�ltering approach called random parameter �ltering (RPF)
where the functional dependency between the scene features
and the random parameters are used to guide a cross-bilateral
�lter to remove noise but preserve detail. This algorithm
can also handle general Monte Carlo effects, but the simple
cross-bilateral �lter used in RPF can often overblur scene
detail or leave noise behind. Our method works better, as we
will show in the results section.

2.3. Wavelet-based Rendering Methods

Our algorithm uses wavelets to estimate the noise level at
every pixel, which have also been used in the past to address
problems in Monte Carlo rendering. For example, Bolin
and Meyer [BM98] proposed to use a wavelet hierarchy to
model the visual system and adaptively place samples. Clar-
berg et al. [CJAMJ05] proposed to use a Haar wavelet ba-
sis to represent the environment map and surface BRDF,
and demonstrated how to evaluate their product ef�ciently
in the wavelet domain in order to perform ef�cient impor-
tance sampling. More recently, Sen and Darabi [SD11] used
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compressed sensing to reconstruct the �nal image assuming
that it was sparse in the wavelet basis.

Perhaps the most integrated use of wavelets in Monte
Carlo rendering is the adaptive wavelet rendering (AWR) al-
gorithm of Overbeck et al. [ODR09]. AWR uses a new adap-
tive sampling metric computed by subtracting the wavelet
transform of sample variances from the wavelet magnitudes.
For reconstruction (denoising), it uses a modi�cation of a
standard soft-thresholding denoising method [Don95] de-
scribed in the next section. However, as pointed out by the
authors, this creates a tradeoff between noise and wavelet ar-
tifacts, so images produced with less than 32 samples/pixel
have visible wavelet ringing. Our algorithm, on the other
hand, can use any modern denoising method and therefore
does not have the artifacts of a simple soft-thresholding.

3. Background in Image Denoising

Image denoising is an important problem in the image pro-
cessing community and many powerful methods have been
developed to remove noise but preserve detail. These ap-
proaches typically formulate the problem by assuming the
noise is Additive White Gaussian Noise (AWGN) added to
the ground truth imagex:

yp = xp + n; (1)

where subscriptp is the pixel coordinate andn is zero-mean
Gaussian noise, with standard deviations constant for all
pixels in the image. The goal of denoising is therefore to
estimatex given the noisy input imagey and s. This for-
mulation inherently assumes stationary noise (constant over
the entire frame), which is a reasonable assumption in im-
age processing (where the noise typically comes from the
sensor), but not in Monte Carlo rendering where the noise
comes from the MC process itself.

One powerful tool for image denoising is the wavelet
transform. The basic idea behind wavelet image denoising
is to transform the noisy input image to the wavelet domain,
apply a denoising step, and then transform it back to the spa-
tial domain:

x̃ = W � 1(D(W (y);s)) ;

wherex̃ is the estimate of the noise-free image andD is the
denoising step that takes the noisy wavelet coef�cients and
the noise standard deviations as input. Two of the oldest
wavelet denoising methods are hard/soft thresholding [DJ94,
Don95]. In hard thresholding, the detail wavelet coef�cients
below a certain threshold are simply set to zero, i.e.,

ˆ̃xk =
�

ŷk if ŷk > t
0 otherwise

(2)

whereŷk is the detail wavelet coef�cient of the noisy image
andt = s

p
2log(N), whereN is the number of pixels. In

soft thresholding, also known as wavelet shrinkage, the de-
tail coef�cients are all subtracted (or “shrunk”) by this �xed
threshold valuet:

ˆ̃xk = sign(ŷk) � max(0; jŷkj � t):

Note that both hard/soft thresholding sett using the stan-
dard deviation of the noises, which is constant for the
entire image. In adaptive wavelet rendering, Overbeck et
al. [ODR09] modify soft thresholding to use a spatially-
varying threshold:

ˆ̃xk = sign(ŷk) � max(0; jŷkj � csDk);

whereDk is the standard deviation of coef�cientk and cs
is a user-de�ned constant that trades off between smooth-
ness and wavelet artifacts. Effectively, theDk term tries to
account for the fact thats is spatially-varying in MC ren-
dered images. Although hard/soft thresholding methods try
to minimize the Mean Squared Error (MSE) betweenx and
x̃, the denoised imagẽx can have objectionable wavelet ar-
tifacts because this minimization is done in the spatial do-
main. Furthermore, AWR uses the orthonormal wavelet ba-
sis Cohen-Daubechies-Feauveau (CDF) 9/7 which is not
overcomplete. Previous work has shown that denoising with
bases that are not overcomplete can exacerbate ringing arti-
facts [PSWS03]. The combination of soft thresholding and
an orthonormal basis is why AWR typically needs at least
32 samples/pixel to produce reasonable images.

To avoid these problems we need to leverage more ad-
vanced image denoising techniques. In this paper, we exam-
ine two such algorithms, brie�y described below. Readers
interested in seeking a complete explanation of these tech-
niques are referred to the original papers.

Bayes Least Squares-Gaussian Scale Mixtures (BLS-GSM)
[PSWS03] – In this method, the noisy image is decomposed
into pyramid subbands at different scales using an overcom-
plete basis. The noise-free coef�cients are then estimated
from the noisy ones using a Bayes least-square estimator.
There are two major differences between this method and
soft-thresholding in AWR which make it more robust: (1)
an overcomplete basis is used to decompose the input im-
age, and (2) the noise-free wavelet coef�cients are estimated
using information from neighbors, instead of simple subtrac-
tion of a value from the noisy coef�cient.

Block-matching and 3D Filtering (BM3D)[DFKE06] - In
this method, the noisy input image is �rst divided into over-
lapping blocks of �xed size. For each block, the most similar
blocks in the image are found and stacked into a 3D array.
The wavelet transform of this 3D array is taken and the noise
is attenuated by hard thresholding (Eq.2). Finally, all the de-
noised blocks are returned to their original positions and av-
eraged together to produce the denoised image. This process
is repeated to further suppress the noise.

As mentioned earlier, these powerful methods assume a
�xed noise levels and cannot be used directly for denoising
MC rendering. Fig.1 shows what happens when one tries to
naïvely apply BM3D to this problem.

4. Our Multilevel Denoising Algorithm

In order to leverage powerful image denoising methods such
as BLS-GSM and BM3D to denoise MC rendering, the noise
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Input adaptive sampling 
(4 samples/pixel)

Denoising with BM3D
(standard deviation = 17)

Our method using BM3DDenoising with BM3D
(standard deviation = 10)

Figure 1: We used BM3D, a state-of-the-art denoising
method, to denoise thePOOLBALL scene, an inset which is
shown here. In this case, we used two different noise stan-
dard deviations (10 and 17). When the noise standard devia-
tion is set to 17, the details on the green surface are removed
but there is still noise on the balls. The result with a noise
standard deviation of 10 keeps the detail on the green sur-
face, but the balls are also noisy. Our complete approach
can keep the details on the surface but removes much of the
noise from the balls.

standard deviations locally around every pixel in the im-
age must be �rst accurately estimated. We must then �nd a
way to use these spatially-invariant algorithms in a spatially-
varying manner. In the sections that follow, we describe the
core of our multilevel denoising algorithm.

4.1. Noise Estimation Metric

The goal of this section is to �nd a noise mapN that esti-
mates the noise standard deviation for every pixels̃ p. To do
this, we leverage the median absolute deviation (MAD) in-
troduced by Donoho and Johnstone [DJ94], which assumes
that the noise is stationary inside a small window of pixelsw
around the pixel in question:

s̃w(p) =
median(jD 1

0j)
0:6745

; (3)

whereD1
0 represents the diagonal detail coef�cients of the

�nest level of the wavelet transform, 0.6745 is a scaling con-
stant which Donoho and Johnstone found to work best in
practice, and̃sw(p) is the estimated standard deviation of the
noise for the window around pixelp. This metric works rea-
sonably well when the noise is locally stationary (see Fig.2),
because in practice these wavelet coef�cients represent pure
noise [DJ94]. The upward bias due to the presence of a sig-
nal at this �nest level seen byD1

0 is addressed by taking the
median, instead of taking the standard deviation of the coef-
�cients directly.

However, the MAD metric is not enough to accurately es-
timate the per-pixel noise level because its assumption of
local noise stationarity in a small window is violated when
there are overlapping regions with different Monte Carlo ef-
fects. For example, there might be an in-focus object that
overlaps the noisy blur of an out of focus object. This mix-
ing of statistics [SD12] causes problems, as shown in Fig.3
where artifacts occur around the edges of out of focus chess
pieces if we only usẽsw(p) as our noise map. To avoid
this problem, the noise level for each pixel should be local-
ized by also taking into account the standard deviation of
the samples at each pixels̃s(p) . As in previous approaches
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Figure 2: To show the effectiveness of the MAD metric
for locally stationary noise, we created the test image on
the left with half the pixels set to 25 and the others set to
225. We then added Gaussian noise with differents values
(from 5 to 50) to the entire image, an example of which is
shown in the middle withs = 10. The metric in Eq.3 is
computed for the pixels in the box shown in red and used
to estimates̃w(p) . The plot shown on the right shows that
s̃w(p) accurately tracks the actuals after averaging over
100 runs. On the other hand, other metrics such as vari-
ance and contrast used in the graphics community to esti-
mate noise [Mit87,HJW� 08] would fail in this case because
the step edge here affects the results.

(a) Reference (b)̃s p = s̃w(p) (c) Ours, w/o dilation (d) Our metric

Figure 3: TheCHESSscene rendered with 8 samples/pixel is
denoised when (b)̃sw(p) , (c) our metric without the dilation
process, and (d) our �nal metric are used as the noise map.
As seen,̃sw(p) is more global and has problems when there
is a mixture of statistics like the edges of out of focus chess
pieces. However, the combination ofs̃w(p) with s̃s(p)=µs(p)
in our metric works well everywhere. Our metric without di-
lation produces noisy results which shows that the dilation
process helps to �ll in the holes in the noise map.

(e.g., [HJW� 08]), we normalize the pixel samples' standard
deviation by the average value of the samples in the pixel:
s̃s(p)=µs(p) . When we weight̃sw(p) with this per-pixel stan-
dard deviation, we get our estimate of the standard deviation
of the noise in each pixel:

s̃ p =
� s̃s(p)

µs(p)

� 1=4 s̃w(p) ; (4)

where we used a weighted product to combine the two terms
with weights equal to 1/4 and 1, giving slightly more weight
to thes̃w(p) term. The overall map might have “noisy”s̃ p
estimates when using a small number of samples. Thus to
make the �nal noise map smoother, we perform a 3-pixel
dilation process on thẽss(p) ands̃w(p) terms separately be-
fore combining them to form̃s p to smooth out the map and
�ll holes. This dilation simply replaces each value with the
maximum value in its 3� 3 neighborhood around it, an ex-
ample of which is shown in Fig.5. Before we use this noise
map with our multilevel algorithm, we should normalize it
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by its maximum value and then scale it byg � max(s̃w(p))
whereg is a global parameter that de�nes the smoothness of
the results (larger values result in more smoothness), and the
max(s̃w(p)) term allows our denoising to adapt to the max-
imum noise level in the image. This allows us to keep theg
value constant for all scenes.

4.2. Multilevel Denoising Framework

The noise map obtained in the previous section tells us how
much each pixel should be denoised by giving us an estimate
of the standard deviation of the noise level at every pixel,
s̃ p. We now discuss how to use spatially-invariant denois-
ing algorithms to remove this varying noise. The naïve way
to do this is to repeatedly denoise the entire image using all
the differents̃ p values, and then select the pixels for the �-
nal image from each denoised result that had the appropriate
noise level. This is expensive because there are many differ-
ent s̃ p values so this would require invoking the denoising
algorithm hundreds of thousands of times. Furthermore, try-
ing to accelerate this process by selecting only a small region
around each pixel to denoise does not work, since many de-
noising algorithms like BM3D [DFKE06] use information
from other parts of the noisy image to denoise a particular
block. Therefore we would still need to process a large re-
gion in the image for each̃s p level to denoise the pixels.

Instead, we propose to accelerate this process by select-
ing a small subset of standard deviations to denoise which
best represent the varying noise levels in the entire image.
Our basic idea is to apply our denoising �lter a small num-
ber of times using these representative parameters, and then
select the pixels from these results that had similar noise for
the �nal image. The idea of accelerating �lters by repeatedly
applying them to the entire image using a small discrete set
of �lter parameters and then combining the results back to-
gether is not new [DD02,RKZ11]. However, previous meth-
ods that do this have selected the �lter parameters for the
different levels independently of the input data.

Instead, we propose to �nd the subset of noise levels that
best represent the varying̃s p values in our noise mapN
by dedicating more denoising steps to the noise levels with
more pixels in the noisy image. To do this, we do some-
thing similar to what is done in importance sampling when
we want to select a set of samples from a speci�c probabil-
ity density function (pdf). We �rst compute the cumulative
distribution function (cdf) of the noise mapF(N ) and then
invert the cdf using a uniform sampling to get a discrete set
of levels. An illustration of this is shown in Fig.4. For a de-
sired number of levelsL, we compute the standard deviation
for each discrete leveli as:

s(i) = F � 1(
i � 1
L � 1

); i = 1; : : : ;L: (5)

The number of discrete levels for each scene is best se-
lected according to the noise in the rendered image. We
found empirically thatL = dmax(s̃w(p))=10e gives the best
results for our scenes.
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Figure 4: On the left, we show how our algorithm decides
which noise levels to denoise (L= 8). As in standard impor-
tance sampling, we uniformly sample the y-axis of the CDF
with L samples and determine where the levels lie in terms of
s. This gives us a set of discrete levels that has been selected
based on the number of pixels that require that amount of de-
noising. On the right, we show the denoised images at each
of those levels. Note that 3 levels give the same standard de-
viation of 0 which makes the actual number of levels 6. The
individual denoised layers are noisy or blurry which shows
that applying a denoising method with a single globals does
not work. Our multilevel approach produces better results as
shown in Fig.6.

Once we have the standard deviation of the noise for each
of the L levels, we run the denoising algorithm with each
parameter to produceL denoised images:D1; : : : ;DL. Our
last step is then to combine these denoised images to com-
pute the �nal image. To do this, we simply interpolate the
pixel value for each �nal pixel using the corresponding value
from the two levels that are closest in standard deviation to
the given pixel. For example, for the case in Fig.4, if the
a pixel hass̃ p = 50, the denoised images withs = 43:16
ands = 57:46 would be used to compute its �nal value. The
simple alpha-blending process to compute each pixel in the
�nal image I(p) can be written as:

I (p) = a � Dk(p) + ( 1� a) � Dk� 1(p);

wherek is the minimumi that satis�ess(i) > s̃ p anda =
(s̃ p � s(k � 1))=(s(k) � s(k � 1)) .

4.3. Adaptive Sampling Using Noise Estimation

Given the accurate noise metric introduced in Sec.4.1, an
obvious extension is to use it to adaptively place samples for
reducing the noise. Initially, one might want to use our noise
mapN as an importance map, but the two serve different
purposes that make it a less-than-ideal choice. On the one
hand, the noise map needs to be accurate in estimating the
noise at every pixel since inaccuracy will show up as pixe-
lated artifacts in the �nal result. In the case of the importance
map, however, some inaccuracy is desirable to spread the
samples around a bit more in the noisy regions in an effort
to capture missing detail. For example, if we useN as the
importance map to sample the CHESSscene, we would not
be able to capture the boundaries of the out of focus chess
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initial image 
(2 samples/pixel)

DWT

diagonal detail 
coe!cients

importance map re"ned image 
(2 + 4 samples/pixel)

add more
samplesEq. 7

DWT

diagonal detail
coe!cients

spatial domain wavelet domain
next iteration

before dilation after dilation

Figure 5: Overview of our adaptive sampling algorithm.

pieces correctly. Therefore, instead of using the variance of
the samples in each pixels̃2

s(p) as we did earlier, we use the
contrast metric proposed by Hachisuka et al. [HJW� 08]:

gs(w(p)) =
1

js(w(p)) j å
i2 w(p)

jsi � µs(w(p)) j

µs(w(p))
; (6)

where s(w(p)) contains all of the colors of the samples
within window w(p), µs(w(p)) is the average of these sam-
ples, andjs(w(p)) j is the number of samples. Therefore the
�nal importance map is:

M p =
q

gs(w(p)) s̃
2
w(p) : (7)

As in the noise map calculation, we perform a dilation
process on each of thegs(w(p)) ands̃2

w(p) terms in Eq.7 to
smooth them out before combining them to compute our im-
portance map. Furthermore, for acceleration we do not com-
pute our importance map at every pixel, but rather divide the
image into non-overlapping blocks and compute it once per
block using the same importance value for the entire block.

Our adaptive sampling algorithm then uses the �nal im-
portance mapM to decide where to allocate its budget of
samples. To do this, we use an iterative approach that uses
part of the budget in each iteration and recomputes the im-
portance map each time for the next iteration. In the �rst
step, we sample the whole scene with 2 samples/pixel to ini-
tialize our importance map. We kept this number small to
do not waste our sample budget by throwing them in regions
that do not need it. After this initialization step, we spend
the remaining sample budget in 3 more iterations. In each of
these, we dedicate 1=7, 2=7 and 4=7 of the number of sam-
ples remaining after the initialization step, respectively. We
also adjust the block size for calculating the importance map
to 8, 4 and 2 for each iteration, respectively. An illustration
of our adaptive sampling process is shown in Fig.5.

Our full algorithm, which uses both adaptive sampling
during rendering and multilevel denoising as a postprocess,
is called adaptive multilevel denoising (AMLD).

5. Results

We implemented the proposed framework in MATLAB and
leveraged its parallel computing toolbox to accelerate the
running time. The adaptive sampling method was imple-
mented in C++ and integrated into PBRT2 [PH10] which
was then run directly from the MATLAB program. To test a
couple of image denoising algorithms with our framework,
we ran our experiments on the BLS-GSM [PSWS03] and

BM3D [DFKE06] denoising algorithms mentioned earlier.
We implemented the BLS-GSM method in C++ and used
the code provided by Dabov et al. for BM3D. For both algo-
rithms, we used the standard default parameters provided by
the respective authors.

To handle color images, we compute the terms in Eqs.4
(for the noise map) and7 (for the importance map) for each
channel separately and then average them before computing
the �nal noise/importance map value. We also tried applying
weights based on perceptual importance of each color chan-
nel (more weight to the green and less weight to the blue
channel). However, the difference in the results was not no-
ticeable. Furthermore, we tonemap the sample values to the
range 0 to 1 before computing these terms because most de-
noising algorithms work on standard images. As for the pa-
rameters of our algorithm, we use a window sizew = 8 and
a smoothness parameter (described at the end of Sec.4.1)
g = 1:5 for BLS-GSM andg = 3 for BM3D. This param-
eterg is kept constant for all scenes and there are no other
parameters in our code.

All the results shown here were computed on an In-
tel dual quad-core Xeon X5570 3.06 GHz machine with
16 GB of memory. We compare our results against four
state-of-the-art general Monte Carlo algorithms: Multidi-
mensional Adaptive Sampling (MDAS) [HJW� 08], Adap-
tive Wavelet Rendering (AWR) [ODR09], the method of
Rousselle et al. [RKZ11], and Random Parameter Filter-
ing (RPF) [SD12]. We also show comparisons to algorithms
designed to handle only one speci�c MC effect, such as
the sheared-�lter motion blur (SFMB) method of Egan et
al. [ETH� 09]. For all these algorithms, we used the im-
plementations provided by the respective authors. Note that
AWR uses a different rendering system that is accelerated
with a partition traversal algorithm [ORM08], so their ren-
dering times are faster than PBRT and their shading models
are a little different.

In Fig. 6, we begin by comparing our full adaptive frame-
work (AMLD) using two denoising algorithms (BM3D and
BLS-GSM) against AWR, which, like our method, uses only
sample colors and not any higher dimensional feature in-
formation. As can be seen, both denoising methods in our
framework produce smooth, high quality results. However,
we found BM3D to be typically faster and better, and there-
fore we will use it to produce most of the results in the paper.
Furthermore, in comparison with AWR, our approach does
not have the objectionable wavelet artifacts, which are even
worse when the scenes are animated as can be seen in the
supplemental video.

In Fig. 7, we compare our approach with the method of
Rousselle et al. [RKZ11], which is also an iterative �lter-
ing technique but it uses a simple Gaussian kernel to remove
the noise. The KILLEROOS scene has soft shadows on the
sharp lines on the �oor which cannot be �ltered while si-
multaneously preserving the sharp edges by the Rousselle et

c
 2013 The Author(s)
c
 2013 The Eurographics Association and Blackwell PublishingLtd.



N. K. Kalantari & P. Sen / Removing the Noise in Monte Carlo Rendering withGeneral Image Denoising Algorithms

(1024 samples/pixel) 
1806 seconds

(8 samples/pixel) 
34 seconds

75 seconds 70 seconds

(4096 samples/pixel) 
782 seconds

(8 samples/pixel) 
6 seconds

11 seconds 19 seconds

(512 samples/pixel) 
1583 seconds

(8 samples/pixel) 
70 seconds

157 seconds 109 seconds

Reference After adaptive sampling AWR Ours using BM3D 
(AMLD)

83 seconds

33 seconds

148 seconds

Ours using BLS-GSM 
(AMLD)

Figure 6: Comparison between AWR and our approach for
the (top)CHESSscene with depth of �eld, (middle)POOL-
BALL scene with motion blur, and (bottom)TOASTERS

scene with area light sources and depth of �eld, all rendered
at 8 samples/pixel.

al.'s method, as pointed out by the authors themselves. Our
method, on the other hand, can produce smooth shadows and
sharp lines. For the TOASTERSscene, the inset on the left
shows detail on the �oor that appears sharp in the reference
image. Our method preserves this detail while smoothing the
noise from the soft shadows, but the Rousselle et al. method
blurs the details slightly and produces shadows that are not
fully smooth. Finally, the SIBENIK scene is a challenging
path-traced scene because it still contains signi�cant amount
of noise at 32 samples/pixels. As can be seen, our algorithm
is better at removing the unwanted noise while preserving
the important scene detail. The difference is expected be-
cause it is dif�cult for the Gaussian �lter in Rousselle et al.'s
method to compete with a sophisticated denoising algorithm
such as BM3D.

Fig. 8 compares our method with MDAS and RPF on the
POOLBALL and TOASTERSscenes. These methods use addi-
tional feature information and therefore require more mem-
ory. Moreover, they have some parameters that we optimized
for each scene to get the best results (in our method all
the parameters are �xed). Our results are both faster and of
higher quality than those produced by MDAS or RPF.

We also compare our adaptive algorithm against the sim-
pler, postprocess multi-level denoising (MLD) version ap-
plied on standard, low-discrepancy Monte Carlo samples. As

(4096 samples/pixel) 
approx. 5 hours

(8 samples/pixel) 
57 seconds

128 seconds 109 seconds

Reference After adaptive sampling Rousselle et al. Ours using BM3D (AMLD)

(4096 samples/pixel) 
approx. 1.5 hours

(8 samples/pixel) 
35 seconds

99 seconds 88 seconds

(1024 samples/pixel) 
approx. 45 minutes

(32 samples/pixel) 
117 seconds

222 seconds 176 seconds

Figure 7: Comparison between the Rousselle et al. method
and our method for the (top)K ILLEROOS, (middle)TOAST-
ERS, and (bottom)SIBENIK scenes. Our method is better
able to keep the details and remove the noise.
can be seen in Fig. ref�g:StagesUsedSeparately, the adap-
tive AMLD method produces slightly better results (MSE
for AMLD is 1:42� 10� 4, and for MLD is 1:54� 10� 4).
To get the same MSE as our adaptive algorithm, MLD would
only need 4 additional more samples per pixel, which sug-
gests that there is still bene�t from using our MLD denoising
framework separately as a postprocess if desired.

Indeed, the next two comparisons (shown in Figs.10
and11) use standard MC samples as the input to our MLD
algorithm. Fig.10 compares MLD against different meth-
ods on the CAR scene with motion blur, rendered at 4 sam-
ples/pixel. In this case, the sheared-�lter motion blur algo-
rithm (SFMB) [ETH� 09] is speci�cally designed for motion
blur but our result is comparable to SFMB in many parts of
the image and in some cases better, such as in the shadows
below the car. RPF can handle the shadow below the car bet-
ter than SFMB, but overblurs the back wall. Our algorithm
is able to preserve the detail in these regions.

For a numerical comparison, we compare the mean-
squared error (MSE) of our approach with the RPF on the
ROBOTS scene in Fig.11, which shows our method has
lower MSE than the RPF algorithm for varying sampling
rates. Moreover, the bottom part of the �gure shows an equal
time comparison with RPF (we are not able to match the tim-
ing exactly because the low discrepancy sampling pattern
requires power-of-two samples). As seen, our method with
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(512 samples/pixel) 
1140 seconds

(8 samples/pixel) 
475 seconds

(8 samples/pixel) 
98 seconds

(8 samples/pixel) 
95 seconds

(4096 samples/pixel) 
782 seconds

(8 samples/pixel) 
875 seconds

(8 samples/pixel) 
67 seconds

(16 samples/pixel) 
21 seconds

Reference MDAS RPF Ours using BM3D (AMLD)

Figure 8: Comparison between different algorithms for the
POOLBALL and TOASTERSscenes. Our algorithm is both
faster and has better quality than MDAS and RPF. Note that
the resolution for thePOOLBALL scene in this �gure is dif-
ferent from Fig.6 and thus the timings are different.

Reference (1024 samples/pixel) Our denoising on MC 8spp (MLD) Our full approach (AMLD)

Figure 9: Results of our approach with and without adaptive
sampling. The MLD method is applied to samples computed
with standard low-discrepancy MC techniques.

64 samples/pixel takes approximately as long as RPF with 8
samples/pixel and generates an image that is better visually
and is an order of magnitude better in MSE.

Finally, in terms of timing, our algorithm is reasonably
fast, taking on the order of seconds to denoise an image. We
have included timing numbers for comparison in most of the
�gures. A thorough timing breakdown for the CHESSscene
is shown in Table1.

6. Discussion, Limitations, and Future Work

The �exibility and simplicity of our framework allows us to
use state-of-the-art video denoising methods to remove the
noise from Monte Carlo renderings of animated sequences.
In the supplemental video, we use our framework with the
BM3D video denoising method [DFE07] and compare the
results with both AWR [ODR09] and RPF [SD11]. Our
method is much faster (less than 10 seconds for an 800� 600
frame, excluding the rendering time) and has higher quality.

Reference (256 samples/pixel) Input Monte Carlo (4 samples/pixel)

MDAS

Ours using BM3D (MLD)RPF

SFMB

Figure 10: For this motion-blurredCAR scene (rendered
at 4 samples/pixel), we compare our non-adaptive MLD
method against MDAS, sheared-�lter motion blur (SFMB),
and Random Parameter Filtering (RPF).

Reference 
(8192 samples/pixel) 4 hours

Monte Carlo 
(64 samples/pixel) 112 seconds

RPF 
(8 samples/pixel) 121 seconds

Ours using BM3D (MLD)
(64 samples/pixel) 132 seconds
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Figure 11: (top) MSE comparison of our MLD method
with RPF for theROBOTS scene with depth of �eld and
path tracing effects. Note that our algorithm is signi�cantly
faster than RPF for the same number of samples. (bot-
tom) In an approximate, equal time comparison, RPF at 8
samples/pixel takes about 121 seconds and has an MSE of
1:15� 10� 3, while ours takes 132 seconds to render and
reconstruct 64 samples/pixel with an MSE of1:46� 10� 4.

As we discussed in Section4.1, metrics such as variance
and contrast can often incorrectly identify scene details as
noise. To show the difference in practice, we compare the
sample distribution using the MDAS contrast metric and our
proposed importance metric in Fig.12. As seen, the MDAS
metric labels the �xed detail in the green surface of the pool
table as noise, wasting many valuable samples in these re-
gions. Our algorithm, on the other hand, correctly focuses
the samples on the motion blur alone.

We also experimented with varying the number of noise
levelsL computed during our multilevel denoising process
(see Sec.4.2). Fig.13shows the result of varying this param-
eter, which provides a tradeoff between quality and speed.
In practice, we found thatL = dmax(s̃w(p))=10e levels were
suf�cient to produce the results shown in the paper.
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Step in the algorithm Time (secs.) Percentage
Calculating importance map 0.8 1.1%
Rendering samples 33.8 48.2%
Adaptive sampling: 34.6 49.3%

Calculating noise map 2.4 3.4%
Denoising levels with BM3D 32.8 46.7%
Combining images 0.4 0.6%
Reconstruction: 35.6 50.7%
Total time for AMLD 70.2 100%

Table 1: Timing breakdown for the complete AMLD algo-
rithm on theCHESSscene.

Proposed metric MDAS contrast metric

Figure 12: Comparison of the sample distribution from
MDAS and our importance metric (Eq.7). MDAS's contrast
metric tends to sample the green regions of the pool table
because the texture detail there results in high contrast.

Because we are operating on image-space samples using
only their color information, we cannot always distinguish
noise from scene detail in the general case. For example,
there might be a noisy texture on an object that might be
considered noise by our estimation metric, so we would blur
it. Also, if there is a small noisy region between two smooth
regions (like the edges of the checkerboard in the CHESS

scene in Fig.6 or the sharp back edge of the �oor in the
K ILLEROOSscene in Fig.7), we might consider it scene de-
tail and preserve it. One possible solution is to perform a
clustering on the samples [SD12] to exclude the smooth re-
gions when we are calculating the noise metric using Eq.3.
However, this is the subject of future work.

As shown in Figs.9, 10, and11, our denoising algorithm
can work without the adaptive sampling stage and still pro-
duces good results. The adaptive sampler improves the qual-
ity of �nal results with at cost of small additional time for
computing the importance map, which is negligible in com-
parison to the entire rendering time as shown in Table1. Al-
though other adaptive sampling techniques might be used
with our denoising method, the proposed adaptive sampling
method uses a similar metric, making it more compatible
with our denoising method.

Although for most of the scenes we showed the results
with 8 samples/pixel, for some scenes (e.g., SIBENIK ) we
needed more samples to get a good quality results. Since
our algorithm estimates the noise variance at each iteration
of its adaptive sampling stage, this value can be used as a
stopping criterion for sampling. Therefore it can continue
the sampling until the maximum standard deviation of the
noise falls below some certain user-de�ned threshold.

3 levels 4 levels 5 levels 6 levels

number of levels we use

Figure 13: Here we vary the number of levels L for denois-
ing , as described in Sec.4.2. There is a signi�cant difference
in quality between 3 levels and 4, but afterwards there is not
much improvement.

Finally, we note that this work opens several avenues for
future work. First, we only tested a couple of denoising algo-
rithms, since they outperformed state-of-the-art techniques
for Monte Carlo rendering which was suf�cient for the pur-
poses of this paper. A thorough, comparative study of state-
of-the-art denoising algorithms will have to be conducted
since there are probably other algorithms that work faster
and better. Furthermore, our framework is simple enough
where it might be paired up with GPU-friendly denoising
algorithms in order to remove the noise from stochastic ras-
terization algorithms for real time applications.

7. Conclusion

Although powerful denoising algorithms have been devel-
oped over the years by the image processing community,
they have remained inapplicable for rendering because of
their inherent assumption of spatially-invariant noise. In this
paper, we have presented a way to use general spatially-
invariant denoising algorithms by �rst estimating the per-
pixel noise level followed by a multilevel algorithm that ap-
plies the denoising method in a spatially-varying manner. We
showed results for various scenes that outperform state-of-
the-art methods in MC rendering. In the future, as denoising
algorithms improve, our framework will allow us to leverage
newly-developed techniques to further improve the quality
of the results shown in the paper.
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