
Coded Computation for Multicore Setups
Kangwook Lee

KAIST
kw1jjang@kaist.ac.kr

Ramtin Pedarsani
UC Santa Barbara

ramtin@ece.ucsb.edu

Dimitris Papailiopoulos
UW-Madison

dimitris@papail.io

Kannan Ramchandran
UC Berkeley

kannanr@eecs.berkeley.edu

Abstract—Consider a distributed computing setup consisting
of a mater node and n worker nodes, each equipped with p cores,
and a function f(x) = g(f1(x), f2(x), . . . , fk(x)), where each fi
can be computed independently of the rest. Assuming that the
worker computational times have exponential tails, what is the
minimum possible time for computing f? Can we use coding
theory principles to speed up this distributed computation?

Unlike the case where the local functions are linear (recently
studied in [1]), in the non-linear case, it is not clear if traditional
codes can provide any gains due to the high density of the parities.
To resolve this problem, we propose the use of codes with sparse
generator matrices for assigning local functions to different cores,
and provide design guidelines for optimal constructions that
minimize the runtime. We show that our coding solution offers
(up to a constant factor) optimal performance, and has a provable
unbounded gap compared to any uncoded schemes.

I. INTRODUCTION

In recent years, deploying algorithms on distributed systems
has become the de facto choice for large-scale machine learn-
ing and data analytics. However, the performance of these al-
gorithms is critically affected by bottlenecks in communication
and delays caused by stragglers, or nodes that are substantially
slower compared to the average node in the same system.

There have been several approaches for straggler mitigation,
ranging from replicating jobs across redundant nodes, to
simply dropping stragglers (if the computation at hand is
robust to some errors) [2]–[9]. In a recent work [1], the
authors proposed the use of erasure codes to mitigate the
effects of stragglers; the high level idea is that stragglers can
be assumed as erased, hence a master can start ‘decoding’
a partial set of local results to obtain the full result. More
specifically, in [1] the authors employ simple MDS codes
and coded caching techniques to speed up distributed matrix
multiplication and data shuffling. In [10], the authors present
a novel trade-off between computation and communication in
MapReduce style setups. More recently, the authors of [11]
present gradient coding, a technique that is used to recover
the sum of all functions from a subset of coded symbols,
with applications to distributed gradient descent. Recently, [12]
presents a trade-off between coding flexibility and sparsity
of a code, focusing on the matrix multiplication application.
In [13], the authors propose a algorithm for speeding up
distributed matrix multiplication in heterogeneous clusters.

These studies have limited their focus to distributed setups
where the coding technique is oblivious to the potentially
multicore nature of the each individual node. However, in
practice, several of the publicly available cloud infrastructures

provide CPU instances that can have up to 128 cores (e.g.,
x1.32xlarge on amazon EC2), or GPU instances with 1000s
of CUDA cores (e.g., g2.2xlarge on amazon EC2) [14]. One
could argue that each of these cores can be considered as an
individual compute node in the distributed network. However,
due to the fact that core-to-RAM communication is orders
of magnitude faster than node-to-node communication in the
network, we can aim for a more powerful solution that
fully exploits the multi-core processing architecture in modern
distributed computing.

Accordingly, in this work, we focus on master-worker
architectures, where each of the n workers has p equally
computationally capable cores. Our goal is to compute a
separable function f(x) = g(f1(x), f2(x), . . . , fk(x)) as fast
as possible, by exploiting as much the computational resources
of the system. Specifically, our goal is to find the best function
assignment and worker-master communication scheme that
minimizes the time to compute f , under the (reasonable)
assumption that the individual worker computational times are
identically distributed and have exponential tails.

The main contribution of our work is a scheme for job
assignment and coded computation that achieves the expected
optimal runtime (up to constant factors). We supplement our
constructions with a converse establishing that any job assign-
ment (irrespective of job replication) not employing coding
during worker-to-master communication has an unbounded
gap of runtimes compared to our coded solution.

II. DISTRIBUTED MODEL AND PROBLEM FORMULATION

In this work, we consider a distributed master-worker
setup of n workers, each equipped with p cores. See Fig. 1
for high-level illustration of the system setup. The work-
ers can compute locally assigned tasks and can send mes-
sages to the master. Our goal is to compute a function
f(x) = g(f1(x), f2(x), . . . , fk(x)) in a distributed way,
where fi : Rd → Rw, and any of the local functions
fi can be assigned to and computed locally by any of the
n workers. For notational simplicity, we define a vector
f = [f1(x)ᵀ, f1(x)ᵀ, . . . , fk(x)ᵀ]ᵀ, and define g(f) =
g(f1(x), f2(x), . . . , fk(x)).

A. Algorithm Protocol

We now formally describe a general protocol of distributed
master-worker algorithms. In this work, we assume a single-
round of communication without cooperation, i.e., worker
tasks are fixed at the beginning of the algorithm, and cannot

master node

...

...

...

...

f1

f2

...

worker 1

worker 2

worker n

local functions

y1

y2

yn

fk

Fig. 1: A master-worker architecture of distributed computation with multiple
cores per machines. Each of k local functions is assigned to a subset of n
workers. Each worker computes the set of assigned functions, composes a
message yi, and transmits the message to the master node. The master node
collects yi’s until it can fully decode the k local functions.

be changed during runtime. Moreover, in the following we
will assume that w = 1, i.e., the functions are 1-dimensional,
however our results trivially generalize to arbitrary w. The
function assignment matrix for worker i, denoted by Ci =
[ci,j,m] ∈ RRi×k, is a coefficient matrix dictating which set of
functions have to be computed by the worker as well as how
a message of length Ri is constructed from locally computed
function evaluations.

Given this function assignment matrix, the goal of worker
i is to compute the message yi := Cif and transmit this
message to the master node. Note that a distributed computa-
tion scheme can be fully specified by the function assignment
matrices for all workers, i.e., C := [C1,C2, . . . ,Cn].

A computation scheme C is either uncoded or coded de-
pending on the structure of the function assignment matrices.

Definition 1 (Uncoded and Coded Schemes). A computation
scheme is called uncoded if every row of Ci has at most one
non-zero entry for all 1 ≤ i ≤ n, and called coded otherwise.

In other words, if any of the workers composes a message
by linearly combining the computed function values under a
certain computation scheme, the scheme is a coded scheme;
if a computation scheme does not add function values while
composing messages, the scheme is an uncoded scheme.

For simplicity, we assume that a worker is assigned at most
p local functions. We model this as a constraint on the function
assignment matrix by imposing that its number of non-zero
columns cannot be greater than p: by defining the set of local
functions assigned to worker i by Fi, we have

|Fi| := |{k : (∃j) [ci,j,k 6= 0]}| ≤ p.

With these definitions, the computation protocol can be
fully described as follows. Given the function assignment Ci,

worker i first computes the allocated functions in Fi in parallel
with its p cores, composes the message Cif , and transmits it
to the master.

The master node continues collecting messages from the
workers until it can fully recover f and hence f(x) = g(f).
Observe that this is feasible once the received equations
with respect to f1, . . . , fk have a unique solution, or the
corresponding coefficient matrix is full rank. These protocols
of workers and master are described in Alg. 1 and Alg. 2

Algorithm 1 Master node’s protocol
on Receiving an input argument x

Multicast x to all the workers
Crec = [], ylist = []
while rank(Crec) < k do

on Receiving a message yj from worker j
Crec ← [Crec Cj], ylist ← 〈ylist,yj〉

end while
f ← dec(Crec,ylist)
Return f(x) = g(f)

Algorithm 2 Worker node i’s protocol
on Receiving an input argument x

Compute [fj(x)]j∈Fi
and form yi = Cif

Send yi to the master node

B. Communication and Computation Time

Denote the completion time of worker whose function
assignment matrix is C ′ by T (C ′). We index the workers in
the order of completion by i1, i2, . . . , in. We also denote by
` the number of messages received after which full decoding
can take place. That is, ` is the minimum `′ such that

rank[Cᵀ
i1
· · · Cᵀ

i`′
] = k. (1)

Thus, the overall runtime of the algorithm of a computation
scheme C, denoted by T (C), is the completion time of worker
i`, which is T (Ci`).

We assume that T (Ci) is composed of communication time
and computation time:

T (Ci) = Tcomm(Ci) + Tcomp(Ci).

For the communication time, we assume that the uplink
communication bandwidth from each machine to the master
node is fixed, and hence the time it takes for worker i to
send a message of length Ri is assumed to be Ri, i.e.,
Tcomm(Ci) = Ri.

At this point, we abstract away decoding and encoding com-
plexities from our model, but we will revisit the complexity
of decoding in Section IV-B. Our goal is to find the optimal
assignment and coding schemes, i.e.,

C? = arg min
C

E[T (C)]. (2)

To design optimal function assignment matrices, we need
to define a model for the local compute times. We assume

fully correlated computation times of p cores inside a single
worker, and let Xi, 1 ≤ i ≤ n be the random variable denoting
the computation time of the ith worker. We assume that each
core is equally computationally strong and that all functions fi
require on average the same computation time; since |Fi| ≤ p,
we will assume that all workers, on average, spend the same
computational effort on the allocated jobs, i.e., E [Xi] = C.

We model the runtime of the workers by a random vari-
ables Xi that are independent and identically distributed –and
similar to [1]– they follow an exponential distribution with
c.d.f. Pr (Xi ≤ x) = 1 − e−λx, with mean E [Xi] = 1

λ = C.
With this exponential computational-time model, we present
the following useful results on the order statistics: the expected
value of the maximum of n exponential random variables of
rate µ is Hn/µ where Hn =

∑n
i=1 1/i; the expected value of

the kth order statistics of n exponential random variables of
rate µ is (Hn−Hn−k)/µ; and the minimum of r exponential
random variable of rate µ is exponentially distributed with rate
rµ. Further, Hk = log k+γ+o(1), where γ is a fixed constant.

Our goal is to characterize minC T (C), and obtain fun-
damental bounds for uncoded and coded approaches. In this
paper, we focus on the practically relevant regime where the
number of machines n scales linearly with the number of
functions k, the number of cores per machine p scales at
least logarithmically with the number of functions k, and the
average computational-time of every machine C is a constant.
This regime is formally stated in the following assumption.

Assumption 1. We assume that the number of workers is a
constant times the number of functions, i.e., n

k = γ = Θ(1)
for some γ ≥ 1. Moreover, the number of cores is at least
logarithmic, i.e., p = Ω(log k). Finally, the average time to
compute one functions is assumed to be constant C = Θ(1).

Remark 1. Apart from its simplicity, our model of fully
correlated times inside a single worker is motivated by the
fact that the delays of completion time of distributed workers
are mainly caused by extrinsic system delays, such us com-
munication bottlenecks, shared resources, failed machines, etc
[15]. More often than not, locally all p cores are expected to
perform approximately the same, without any stragglers.

Our main theorem is a “capacity” bound type of result on
the optimal runtime for a coded distributed setup.

Theorem 1. (informal) Under Assumption 1, any scheme
for distributed computation of f(x) requires runtime at least
Ω(1). Any strictly uncoded distributed computation scheme
requires at least expected time Ω(

√
log k). There exists coded

distributed computation schemes that achieve the expected
optimal runtime of Θ(1).

In the following sections, we formalize the above result and
present our converse and code construction that leads to the
(up to constants) tight Θ(1) bound on the runtime of coded
computation for multicore setups.

III. UNCODED SCHEMES

In this section, we study the performance of uncoded
schemes, and show that the best uncoded scheme has an
expected runtime of Ω(

√
log k). Further, this lower bound can

be achieved by an optimal repetition scheme.
We first consider a replication-based uncoded scheme where

R, 1 ≤ R ≤ p, functions are grouped together, and each
of k/R groups of functions are replicated γR times. More
precisely, assume that k/R and nR/k are integer numbers.
Then, the functions are divided to k/R groups as follows:

Ji = {fR(i−1)+1, . . . , fRi}, i ∈ [k/R]. (3)

Each group is then repeatedly assigned to nR/k = γR
machines. The following theorem states the optimal latency
performance of the replication uncoded schemes.

Theorem 2. Under Assumption 1, the expected runtime of the
optimal replication scheme is Θ

(√
log k

)
.

Proof: For notational simplicity, we denote the runtime of
the repetition scheme, T (Crepetition), simply by T . Since every
machine computes R functions and the scheme is uncoded,
the communication time is R for all workers. Further, the
computational time is the first time that every function is
computed in at least one of the machines. Let T̃i be the
first time that fi(x) is computed in at least one of the γR
machines that fi(x) is assigned to. Since the repetition scheme
is uncoded, we have

T = R+ max
i∈[k]

T̃i. (4)

Note that since the functions are grouped according to (3), the
functions in each group are computed at the same time by the
fastest of the γR machines that the group is assigned to, i.e.

T̃R(i−1)+1 = T̃R(i−1)+2 = · · · = T̃Ri

for i ∈ [k/R]. Further, since the computing times of the
machines are i.i.d., one finds that T̃i is distributed as the
minimum of γR i.i.d. random variables with exponential
distribution for all i ∈ [k]. Thus, the computational time
term in (4) can be written as the maximum of k/R i.i.d.
random variables, each distributed as the minimum of γR i.i.d.
exponential random variables:

T = R+ max
i∈[k/R]

T̃1+R(i−1).

One can then compute that

E[T] = R+
C

γR

(
1 +

1

2
+ · · ·+ 1

k/R

)
= R+

C

γR
log(k/R) + o(1). (5)

By optimizing the expression over R, one can find the optimal
uncoded scheme. First, it is easy to show that E[T] is concave
in R. Let a = C

γ . By equating dE[T]
dR with 0, we have

R2 = a log(k/R) + a. The above equation can be solved in
closed using the Lambert function W (x) that is the solution

to f(x) = xex. Using the fact that W (x) = log x− log log x+
o(1), we obtain

R? =

√
a

2
W

(
2

a
k2e2

)
=
√

log k + o(1). (6)

Plugging this in (5) concludes the proof.
Next, we show that under Assumption 1, no uncoded

scheme is able to achieve an expected completion time of
o(
√

log k). This result is stated formally in the following
theorem.

Theorem 3. Under Assumption 1, the expected runtime of any
uncoded scheme is Ω(

√
log k).

Proof: We prove the theorem by contradiction. Suppose
that there exists an uncoded scheme with expected completion
time that is o(

√
log k). This implies that the deterministic com-

munication time of the uncoded scheme is also o(
√

log k), i.e.
the number of functions assigned to each machine is o(

√
log k)

since in the uncoded scheme, the computed functions at each
machine are sent back to the master node one by one without
coding. Let R = o(

√
log k) be the maximum number of

functions that is assigned to one machine.
We next study the expected computation time

Tcomp(Cuncoded) of an arbitrary uncoded scheme Cuncoded.
Since the total number of functions computed in all
cores (including the repetitions) is O(Rn), the average
repetition factor of the functions is upper bounded by
Rn/k = o(

√
log k). Thus, a fraction 1− o(1) of the functions

are repeated o(
√

log k) times. We denote the set of such
functions by S. Note that if a positive fraction of the functions
are repeated Ω(

√
log k) times, then the average repetition

factor would also be Ω(
√

log k). From now on, we find a
lower bound on the average completion time of the uncoded
scheme by assuming that the o(1) fraction of functions that
are repeated Ω(

√
log k) times are immediately available at the

master node when the computations start, and focusing only
on the functions that are repeated o(

√
log k) times, i.e. the

functions S. Let γ = o(
√

log k) be the maximum number of
times that a function in set S is computed across machines.
Let Ii be the set of machines that compute function i. Thus,
|Ii| ≤ γ for i ∈ S. Let T̃i be the first time that fi is computed
by at least one of the machines in Ii. Then,

Tcomp(Cuncoded) ≥ max
i∈S

T̃i. (7)

Note that the random variables T̃i, i ∈ S are not independent,
which complicates the exact calculation of the right hand side
of (7). We next claim that there exists a set of Θ(k/R2)
functions in S that do not share any common machines among
them, i.e. they are computed on mutually disjoint set of
machines. To see this, without loss of generality, consider
f1 ∈ S that is computed over I1. There are at most γR
functions that are computed over all the cores of the machines
in I1. Thus, f1 does not share a machine with at least |S|−γR
other functions. Without loss of generality, assume that f2 is
among those. Repeating the argument, f2 does not share a

machine with at least |S|−γR other functions. Thus, f1 and f2
do not share a machine with at least |S|−2γR functions. Thus,
by repeating the above argument, we find that there exists a
set S1 of |S|/γR = Θ(k/R2) functions that are computed
over mutually disjoint machines. Thus, the random variables
{T̃i} for i ∈ S1 are mutually independent. Further,

Tcomp(Cuncoded) ≥ max
i∈S

T̃i ≥ max
i∈S1

T̃i. (8)

Using the property of exponential random variables and inde-
pendence, we can easily compute that

E
[
max
i∈S1

T̃i

]
≥ Θ

(
log |S1|
R

)
= Θ

(
log k

R

)
= Ω

(√
log k

)
,

since R = o(
√

log k). Therefore, the average completion
time is dominated by the average computation time that is
Ω(
√

log k). This completes the proof of the theorem.

IV. CODED SCHEMES

In this section we will show how codes with sufficiently
sparse parities, can offer orderwise optimal results. First,
observe that traditional MDS codes are unsuitable for this
setup due to the fact that they would require dense parities.
This is because a dense parity that involves all k functions
f1, . . . , fk, implies that each of the n workers has to compute
all of the k functions locally. In this section, we present how
to go beyond MDS codes by using simple random linear codes
and sparse-graph codes, which are shown to offer order-wise
optimal performance.

A. Random Sparse Codes

We first propose a random-linear-coded computation
scheme. Under this scheme, every worker computes a certain
set of functions, linearly combines them, and sends to the
master a message of length 1, i.e., Ri = 1 for all i. The
function assignment matrix of user i, Ci ∈ R1×k, is randomly
drawn as a Gaussian random vector whose entries are i.i.d.
zero-mean Gaussian random variables with unit variance 1
with probability pk, and 0 with probability 1 − pk. The
following theorem characterizes the expected runtime of this
random scheme.

Theorem 4. Under Assumption 1, with probability 1 −
e−α·pk·k, the random-linear-coded computation Crandom with
pk ≥ β log k

k , for some universal positive constants α, β,
achieves

E[T (Crandom)] = 1 + C log

(
γ

γ − 1

)
+ o(1) = Θ(1). (9)

Proof: First of all, assume that after the fastest k nodes
we can recover our functions f1, . . . , fk, then the completion
time for such a scheme is Θ(1), due to the order statistics
of the exponential distribution, i.e., the expected completion
time is equal to the expected time that it takes the fastest k
machines to return their results.

Then, the main question is what is the chance of successful
decoding after receiving a random subset of k nodes. To do
that, we employ a recent result in random matrix theory, i.e.,

Corollary 1.8 [16], which states that a random matrix of size
k by k whose entries are standard Gaussian variables with
probability pk ≥ β log k

k (and 0 otherwise) is non-singular with
probability at least 1− e−α·pk·k, where α and β are universal
constants.

B. LDGM codes

While the random-linear-coded computation achieves the
constant runtime, the computational complexity of its decoding
algorithm is O(k3). Low-density generator matrix (LDGM)
codes are linear codes whose generator matrices are sparse,
i.e., the number of non-zero entries in each row is O(1). The
sparse nature of their generator matrices allow for linear time
decoding algorithm such as the peeling decoder [17]. Accord-
ingly, we propose the LDGM-coded computation scheme, a
computation scheme whose assignment matrix is the generator
matrix of efficient LDGM codes.

However, compared to the random-linear-coded scheme, the
LDGM-coded scheme is not able to collect all of the k task
results by a fixed time for the following reason. Under the
LDGM-coded scheme, each task is assigned a constant number
of times on average, and hence at least a constant fraction
of the tasks are assigned a constant number of times. The
probability that each of these tasks is not completed by a fixed
time is constant, and hence the average time to collect all task
results is ω(1). Thus, the LDGM-coded computation scheme
cannot achieve Θ(1) runtime in theory.

However, the probability that some of the task results are
not completed by a fixed time can be made arbitrarily small
by assigning a sufficiently large constant number of cores
per worker. Further, while we focus on the setup where the
target function needs to be exactly computed as well as all the
function assignments are fixed prior to the actual computation
process, some of these assumptions might be relaxed in
practice. For instance, if a small number of tasks are missing
after some fixed time, the master node may be able to reassign
missing tasks to the idle workers at some additional cost. Also,
some computation tasks – such as computing gradients of a
loss function of machine learning problems – are inherently
robust to missing computation tasks.

V. SIMULATION RESULTS

In this section, we simulate the runtime performance of the
computation schemes. We assume that n = 256, k = 128,
and p ∈ {4, 8, 16, 32}. For the uncoded computation scheme,
we vary R ∈ {1, 2, 4, 8, 16, 32}, choose the optimal value
of R? ≤ p for each p, and plot the average runtimes of
the respective optimal schemes. For both coded computation
schemes, we run Monte Carlo simulation to estimate the
runtime of them. The LDGM-coded schemes are designed
based on LDGM codes with regular-left degree distribution.
Shown in Fig. 2 are the average runtimes achieved by different
schemes along with the lower bound on the runtime. We
can observe that the random-linear-coded computation scheme
achieve near-optimal runtimes for most cases.

Number of cores per machine, P
4 8 16 32

E
[T

]

1

1.5

2

2.5

3

3.5
Uncoded
Random-linear-coded
Left-Regular-LDGM-coded
Lower bound w/ R=1

(a) C = 1

Number of cores per machine, P
4 8 16 32

E
[T

]

7

8

9

10

11

12

13

14
Uncoded
Random-linear-coded
Left-Regular-LDGM-coded
Lower bound w/ R=1

(b) C = 10

Fig. 2: Average runtime of various computation schemes. The average
runtime of different computation schemes are plotted. Plotted on left is the
comparison of the runtimes of different computation schemes when C = 1,
and plotted on right when C = 10. Note that we use the optimal value of R
for each p for the uncoded scheme. One can observe that the random-linear-
coded scheme achieves the best performance in most cases.

REFERENCES

[1] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” arXiv preprint
arXiv:1512.02673, 2015.

[2] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environments,”
in Proc. of the 8th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2008.

[3] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in Map-Reduce clusters
using Mantri,” in Proc. of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2010.

[4] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in Proc. of the 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2013.

[5] N. B. Shah, K. Lee, and K. Ramchandran, “When do redundant requests
reduce latency?” in Proc. of the 51st Annual Allerton Conference on
Communication, Control, and Computing, 2013.

[6] D. Wang, G. Joshi, and G. W. Wornell, “Efficient task replication for fast
response times in parallel computation,” in Proc. of ACM SIGMETRICS,
2014.

[7] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytiä,
“Reducing latency via redundant requests: Exact analysis,” in Proc. of
ACM SIGMETRICS, 2015.

[8] M. Chaubey and E. Saule, “Replicated data placement for uncertain
scheduling,” in Proc. of IEEE International Parallel and Distributed
Processing Symposium Workshop (IPDPS), 2015.

[9] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous sgd,” preprint, 2016.

[10] S. Li, M. A. Maddah-ali, and S. Avestimehr, “Coded MapReduce,”
Presented at the 53rd Annual Allerton conference on Communication,
Control, and Computing, Monticello, IL, 2015.

[11] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding,” arXiv preprint arXiv:1612.03301, 2016.

[12] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Advances
In Neural Information Processing Systems, 2016.

[13] A. Reisizadehmobarakeh, S. Prakash, R. Pedarsani, and S. Aves-
timehr, “Coded computation over heterogeneous clusters,” arXiv preprint
arXiv:1701.05973, 2017.

[14] “EC2 Instance Types - Amazon Web Services (AWS),” https://aws.
amazon.com/ec2/instance-types/, accessed: 2017-01-23.

[15] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, pp. 74–80, 2013.

[16] A. Basak and M. Rudelson, “Invertibility of sparse non-hermitian
matrices,” arXiv preprint arXiv:1507.03525, 2015.

[17] T. Richardson and R. Urbanke, Modern coding theory. Cambridge
University Press, 2008.

