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Abstract—We consider the problem of estimating queue-
lengths at an intersection from a pair of advance and stop bar
detectors that count vehicles, when these measurements are noisy
and biased. The key assumption is that we know weather the
queue is empty or not. We propose a real-time queue estimation
algorithm based on stochastic gradient descent. The algorithm
provably learns the detector bias, and efficiently estimates the
queue-length with theoretical guarantee. The algorithm is tested
in a simulation and in a case study using traffic data from an
intersection in Beaufort, North Carolina.

I. INTRODUCTION

Knowledge of the queue lengths at signalized intersections
is used in performance evaluation and for feedback signal
control. Evaluation of performance measures such as inter-
section delay, travel time and spillback usually requires the
queue length probability distribution, which can be derived
from the statistics of demand and the signal control laws. For
isolated intersections the distribution may be revealed through
probabilistic analysis or through simulation, see, e.g. [1], [2],
[3], [4], [5], [6]. For a network of intersections one must
resort to simulation to estimate the joint distribution of queue
lengths. But the number of simulations needed to estimate a
multi-variate queue length distribution is so large that such
procedures have not been reported in the literature. Instead
simulations are used to estimate measures such as average
delay and travel time.

Queue-based feedback control methods are proposed for
example in [7], [8], [9], [10], [11]. These methods require
knowledge of queue lengths in real time. Since they cannot
be measured directly by current detection technology, one
must estimate the queue lengths based on other measurements.
A simple approach is to use detector vehicle counts at the
entrance to the queue (e.g. from an advance detector) and at
the exit of the queue (from a stop bar detector) to construct a
naive queue estimate as the cumulative difference between the
flows of vehicles at the entrance and the exit. But unknown
biases in detector counts and random errors make this naive
estimate useless, so estimation algorithms propose alternatives.
For example, [12] uses time-occupancy to estimate queues,
following a relationship between occupancy and counts in-
vestigated in [13]; and [14] uses high-resolution detector
measurements to estimate queue lengths by first identifying
‘break points’ in shockwaves predicted by the LWR theory.
Future availability of accurate vehicle GPS position in real
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time may also be exploited for queue length estimation as
suggested in [15], [16], [17]. Real time estimation of queues
is also needed for ramp control and poses similar problems as
intersection queues. [18] compares four alternative ramp queue
estimation methods based on occupancy measurements at the
ramp entrance, vehicle counts at the on-ramp entrance and
exit, speed measurements at the ramp entrance, and vehicle
reidentification based on magnetic “signatures”. A unique
attribute of [18] is that the estimates are compared with video-
based ground truth; most algorithms are tested via simulation.

The approach described here is close to the naive estimator,
corrected by compensation for the errors from biased and noisy
advance and stop bar detector counts. The bias is discovered
by an online learning algorithm based on stochastic gradient
descent. The method provably learns the bias, and efficiently
estimates the queue length with a theoretical guarantee under a
certain condition on the detectors, namely, the stop bar detector
reliably indicates when there is no queue in front of it.

The rest of the paper is organized as follows. In §II the
queue-length estimation problem is formulated. In §III the
online algorithm is described. In §IV it is proved that the
algorithm learns the detector bias. The temporal convergence
of the algorithm is explored through simulation and in a case
study in §V and VI. Concluding remarks are collected in §VII.

II. PROBLEM FORMULATION

Time is continuous. Let Q(t), t ≥ 0 be the queue length
i.e. the number of vehicles beyond the advance detector that
are stopped at the stop bar at time t. The set {t | Q(t)> 0} is
a union of intervals called busy periods (τi, τ̄i), i≥ 1; τi is the
beginning, τ̄i = τi +Ti is the end, and Ti is the length of busy
period i. More precisely, Q(t)> 0 if t ∈∪i(τi, τ̄i) and Q(t) = 0
if t /∈ ∪i(τi, τ̄i). We assume that the stop bar detector indicates
when Q(t) = 0, i.e. when t /∈ ∪i(τi, τ̄i). Q(t) evolves as

Q(t) =
{

An(t)−Dn(t) t ∈ (τn, τ̄n), for some n
0 t /∈ ∪n(τn, τ̄n)

, (1)

in which An(t), t ∈ [τn, τ̄n] and Dn(t) ∈ [τn, τ̄n] are the cu-
mulative arrival and departure processes of the queue in the
n-th busy period. That is, An(t) vehicles entered the queue
and Dn(t) vehicles departed the queue during [τn, t]. Note that
arrivals during a non-busy period are immediately served, so
a vehicle arriving during t /∈ ∪n(τn, τ̄n) does not face a queue.
Advance detectors at the entrance and stop bar detectors at the
exit of the queue measure An(t) and Dn(t), possibly with some
bias or independent noise. Denote by Ân(t), t ∈ [τn, τ̄n] the
cumulative counts of the entrance detector, and by D̂n(t), t ∈
[τn, τ̄n] the cumulative counts of the exit detector. Because of
detector noise and bias Ân(t) may not equal An(t) and D̂n(t)
may not equal Dn(t) . Since the stop bar detector indicates



when Q(t) = 0, a naive queue length estimator is

Q̂naive(t) =
{

Ân(t)− D̂n(t) t ∈ (τn, τ̄n), for some n
0 t /∈ ∪n(τn, τ̄n).

(2)

This naive estimator uses the information about when the
queue becomes empty only to reset its estimate to zero, and
does not attempt to estimate any systematic counting error.
Further, it may lead to negative estimates of the queue length.

The proposed estimation algorithm and its theoretical
properties are based on the following model of the detector
counting processes:

Ân(t)− D̂n(t)

= An(t)−Dn(t)+
∫ t

τn

b(t)dt +Zn(t− τn), t ∈ [τn, τ̄n].

(3)

Here b(t) is the (possibly time-varying) systematic error or bias
of the detectors’ counting processes, and Zn(t) is a sequence
of independent cumulative zero-mean noise random variables
with Zn(0) = 0. We assume that E[Z2

n(t)]≤ c1t for some finite
constant c1 > 0 for all n. To prove convergence of our proposed
algorithm, it is assumed that b(t) = b is fixed, but in practice
b(t) may change with time, and simulation results show that
the proposed algorithm can track time-varying b(t).

III. QUEUE-LENGTH ESTIMATION ALGORITHM

The estimation algorithm is based on stochastic gradient
descent. We assume that b(t) = b. Let αn, n ≥ 1, be the
step-size (learning rate) of the algorithm, that is a positive
decreasing sequence with the following properties:

lim
n→∞

αn = 0 (4)
∞

∑
n=1

αn = ∞ (5)

∞

∑
n=1

α
2
n < ∞ (6)

lim
n→∞

1
nαn

< ∞. (7)

For example, αn =
1
n satisfies these properties. The properties

for the step size are standard for stochastic approximation
[19]. The intuition is that the sum of the step sizes should
be unbounded so that learning does not stop, while the sum of
the squares of step sizes should be finite so that the cumulative
error of estimation remains bounded.

The estimate is designed to be

Q̂(t) = [Â(t)− D̂(t)− εnt]+,

wherein εn is the correction term for busy period n, and [x]+ =
max(x,0). εn is updated to learn the bias term b. Formally, the
algorithm proceeds as follows.

1) Initialize ε0 = 0 and n = 0.
2) If t /∈ ∪n(τn, τ̄n), then Q̂(t) = 0.
3) If t ∈ (τn, τ̄n) for some n, then Q̂(t) = [Â(t)− D̂(t)−

εn(t− τn)]
+.

4) Update the correction term at the end of the busy
period: εn+1← εn +αn(Â(τ̄n)− D̂(τ̄n)− εnTn).

5) n← n+1. Repeat steps 2–5.

We now provide some intuition for the algorithm, which
tries to learn the bias b of the naive estimator in (3). To find this
bias adaptively, we consider a correction term εn, n≥ 1, that
ideally should be close to b. We update εn based on stochastic
gradient descent which tries to solve the following offline
optimization problem: minε f (ε) = 1

2 (b− ε)2. The solution
to the optimization problem is obviously ε∗ = b. If gradient
descent is used to find the optimal solution, the update rule
for ε would be

εn+1 = εn−α
∂

∂ε
f (ε) = εn +α(b− ε),

in which α is the step size. To find an algorithm based
on knowing when the queue is empty, we replace b− ε by
its (scaled) unbiased estimator Â(τ̄n)− D̂(τ̄n)− εnTn. Lastly,
stochastic approximation theory suggests a step-size αn that
satisfies (4)–(7). Note that

E[Â(τ̄n)− D̂(τ̄n)− εnTn|Tn] = E[bTn− εnTn +Zn(Tn)|Tn]

= Tn(b− εn).

The simulations and the case study presented in §V and VI
are based on the described algorithm. However, for the proof
of convergence, we consider a slightly modified version of
the algorithm. First, we make the trivial assumption that b is
bounded; that is |b|<C for some constant C. Let C = [−C,C].
We define the euclidean projection operator on set C as [.]C .
Second, consider a large positive constant 0 < K < ∞ and two
constants 0 <K1�K2 <∞. Define the noisy negative gradient
term

gn , Â(τ̄n)− D̂(τ̄n)− εnTn = bTn− εTn +ZnTn. (8)

We update the correction term εn only when |gn|< K and Tn ∈
[K1,K2]. The intuitive reasons behind these merely technical
assumptions are as follows. First, we update the correction
term only if the busy period length is bounded so that E[Z2

nTn]
is bounded. Second, we update the correction term only if
the busy period is lower bounded by an arbitrarily small but
positive constant so that learning happens after each update.
Thus, step 4 of the algorithm is modified to

εn+1← [εn +αngn1{|gn|<K,Tn∈[K1,K2]}]C , (9)

where 1A is the indicator of event A. The modification is done
to prove that εn→ b as n→∞ almost surely. We will later see
that the constant K can be chosen essentially arbitrarily but
independent of n.

IV. MAIN THEORETICAL RESULT

The main theoretical result of this paper requires the
following assumption.

Assumption 1. Constants K, K1 and K2 are chosen such that
Pr(|gn| < K,Tn ∈ [K1,K2]) ≥ δ > 0 for some positive constant
δ.

Assumption 1 holds when the queue is stable and visits the
empty state infinitely often since the length of the busy period
has bounded mean and variance. Further, b is bounded and
the noise term B(τ̄n)−B(τn) is bounded with high probability.
So Assumption 1 holds if the queue clears infinitely often. For
ease of notation define the event En, {|gn|<K,Tn ∈ [K1,K2]}.



Theorem 1. Under Assumption 1, the correction term εn
updated according to (9) converges to b almost surely.

The rest of this section is dedicated to the proof of Theorem
1. There are two key steps. We first show that the algorithm
updates often enough to be able to converge. Next we show that
the cumulative stochastic estimation error present in the update
is an L2-bounded martingale. So by the martingale convergence
theorem the cumulative estimation error converges and has
a vanishing tail, and after some time the estimation error
becomes negligible. The proof technique is similar to the one
in [20], [21].

Lemma 1. The following equality holds almost surely,

lim
n→∞

n

∑
i=1

αi1Ei = ∞. (10)

Proof: Consider a sample path and let xi , αi1Ei . Since
xi≥ 0, by the monotone convergence theorem the series ∑

n
i=1 xi

either converges or approaches infinity. We prove the lemma
by contradiction. Suppose that

lim
n→∞

n

∑
i=1

xi = c,

for some finite c> 0. Define the sequence yn =
1

αn
. Then, since

the sequence yn is increasing and yn→∞ as n→∞ due to (4),
by Kronecker’s lemma

lim
n→∞

1
yn

n

∑
i=1

xiyi = 0,

and so

lim
n→∞

1
yn

n

∑
i=1

1Ei = 0.

Note that by (7), limn→∞
n
yn

> 0. Moreover, by Assumption 1,
Pr(Ei)≥ δ > 0. Thus,

lim inf
n→∞

n

∑
i=1

1Ei ≥ δ,

which leads to a contradiction.

From now on we work with the probability-1 event defined
in Lemma 1. Define dn =

1
2 (εn−b)2. Fix some ε′> 0. We show

that there exists some n0(ε
′) such that for all n≥ n0(ε

′),

(i) If dn < ε′, then dn+1 < 3ε′.

(ii) If dn ≥ ε′, then dn+1 ≤ dn − βn for some positive
sequence βn, where ∑

∞
n=1 βn =∞ and βn→ 0 as n→∞.

Note that property (ii) shows that for some large enough
n1 > n0(ε

′), dn < ε′ since ∑
∞
n=1 βn = ∞. Further, property (i)

shows that dn remains small for n≥ n1. More precisely, dn ≤
3ε′ if n ≥ n1. Since, this is true for all ε′ > 0, it follows that
dn converges to 0 almost surely.

First, we upper bound dn+1 as follows.

dn+1 =
1
2
(εn+1−b)2

=
1
2
([εn +αngn1An ]C −b)2

≤ 1
2
(εn−b)2 +

1
2

α
2
nK2 +αngn(εn−b)1An

= dn−βn,

where βn , −αngn(εn− b)1En − 1
2 α2

nK2. We now show prop-
erty (ii). Note that 1

2 α2
nK2 < ∞ by (6), so we need to show

that ∑
∞
n=1 αngn(b− εn)1En = ∞ almost surely. We simplify the

expression as follows.

αngn(b− εn)1{|gn|<K}
= αn(bTn +Zn(Tn)− εnTn))(b− εn)1En

= αn[(b− εn)
2Tn + vn(b− εn)]1En ,

where vn , Zn(Tn). Note that E[vn+1|v1,v2, . . . ,vn] = 0. Thus,
wn , ∑

n
m=0 αnvn is an L2-bounded martingale that is E(w2

n)<
∞, since Tn <K2. Thus by the martingale convergence theorem
vn converges to a finite random variable. Furthermore, |b−
εn|< 2C is bounded. So ∑

∞
n=1 αnvn(b−εn)< ∞ almost surely.

Now by assumption in the statement of property (ii), dn =
1
2 (b−εn)

2 > ε′. Thus Lemma 1, (5), and the fact that Tn > K1
imply that ∑

∞
n=1 αn(b− εn)

2Tn = ∞. This proves ∑
∞
n=1 βn = ∞,

and property (ii) is proved.

Property (i) is proved as follows.

dn+1 =
1
2
([εn +αngn1En ]C −b)2 (11)

≤ 1
2
(εn +αngn1En −b)2 (12)

≤ 2dn +α
2
nK2. (13)

Here (12) is due to the fact that projection is non-expansive,
and (13) is due to the following inequality: (a+ b)2 ≤ 2a2 +
2b2. Thus, if dn ≤ ε′, for large enough n, one has α2

nK2 < ε′

by (4). This proves property (i), and completes the proof of
Theorem 1. �

V. SIMULATION RESULTS

We now present simulation results to demonstrate the
efficacy of our algorithm. Consider a single discrete-time
queue with Poisson arrivals at rate λ vehicles per time slot.
Suppose each time slot is 5 seconds. We set λ = 1.4 veh/(5
sec) = 1008 veh/hr. We consider a cycle time of 12 time slots
or 60 seconds with 6 time slots of green signal (30 seconds),
and 6 time slots of red signal. We assume that the yellow
signal interval is negligible. The service time distribution in our
simulation is deterministic with service rate µ = 0.6 veh/sec =
2160 veh/hr if the signal is green and µ = 0 if the signal is
red. So the queue is stable if λ < 1.5.

There 3 detectors as indicated in Figure 1. Detector A
counts the number of vehicles that enter the queue, B counts
the number of vehicles that exit the queue, and C reveals
whetheror not the queue is empty. We evaluate the performance
of the proposed algorithm in two cases. In the first case,
we assume that detector C is noiseless, detector A counts
each arriving vehicle with probability 0.95 independently, and
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Fig. 1: A single queue equipped with 3 detectors.

detector B counts each departing vehicle with probability
0.85 independently. We remark that this discrete-time model
is slightly different from the continuous-time model in (3);
however, it captures the two important properties of the model:
1) random noise since each vehicles is observed with some
probability independently, and 2) time-invariant bias since the
observation probabilities of detectors A and B are different
but fixed, which creates a bias. Observe that with the ex-
plained choices of the parameters, we expect to see a bias
b = (0.95−0.85)λ = 0.14 vehicles per time slot.

In the second case, we consider 2 modes of operation: (i)
the first mode is the one above; (ii) in the second mode, the
arrival rate is decreased to λ = 1 veh/(5 sec) = 720 veh/hr.
We assume that the system switches between these two modes
every 2 hours or 1440 time slots. In this case, we choose a
constant step size of α = 0.004 so that the algorithm can adapt
to the changes in the system. Note that the decaying step size
enables us to prove the convergence of the correction term
when b is fixed. However, when b(t) is time-varying, the step
size should be non-decaying so that learning does not stop.
Recall that the step size is the learning rate of the algorithm.
Thus, larger step size speeds up learning. However, if the step
size is too large, the gradient-descent-based algorithm may not
converge.

We now evaluate the performance of the proposed algo-
rithm in the first case. We choose the step size αn =

0.02
n0.6 , which

satisfies (4)–(7). Figure 2 shows how the correction term εn
converges to the bias b= 0.14. One observes that after 30 busy
periods the algorithm learns the bias and gets close to 0.14.
The estimated queue-length for a period of 5000 seconds is
shown in Figure 3a.

We compare the performance of our estimator with the
naive estimator that does not learn the bias (though it uses
the observation ;of when the queue-length is 0). We plot the
cumulative distribution function (cdf) of the absolute error term
in estimation that is |Q(t)− Q̂(t)| for the two estimators in
Figure 3b. Our algorithm significantly reduces the absolute
error in estimation.

Next, we consider the case that the arrival rate (thus the
bias) is not constant, and it switches between two modes that
have biases b1 = 0.14 and b2 = 0.1. Figure 4 shows how
the correction term εn can track the changes in b(t). Note
that when the arrival rate is smaller, the queue empties more
frequently that results in more busy periods and more learning
opportunities for the algorithm.

Fig. 2: This figure illustrates how εn converges to b in a few
iterations.

Fig. 4: This figure illustrates how εn can track the changes in
the bias b(t).

VI. CASE STUDY

We present a case study of an intersection in Beaufort,
South Carolina. Figure 5 shows the layout of the intersection.
The intersection has 4 approaches, labeled legs 1 through
4. The road is equipped with magnetic detectors from Sen-
sys Networks, Inc (www.sensysnetorks.com). As shown in
Figure 5, there are 3 types of detectors (advance, stop bar,
and departure). Advance detectors are located 200-300 feet
upstream of the intersection in each lane. Stop bar detectors
are in front of the intersection, and detect a vehicle when it
enters the intersection. Further, we have signal phase data from
the controller conflict monitoring card. The measurements are
time synchronous to within 0.1 sec, so we know the phase
corresponding to every vehicle movement. Also available, but
not used, is the time-occupancy of the sensor by each vehicle
and the speed of each vehicle as it enters the intersection.

Note that the data does not include the queue length
of different lanes, so there is no ground truth to evaluate
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Fig. 3: Figure (a) shows the queue-length process and the estimated queue-length for 1000 time slots (5000 seconds). Figure (b)
compares the absolute error in estimation for our proposed algorithm with the error of the naive estimator.

the performance of our algorithm. However, we can still
investigate whether there is a bias in the detectors, and whether
our algorithm can learn this bias and converge. Moreover, there
is no detector that can directly measure whether the queue
length is zero or not. We use the following simple rule: If
the light is green and for more than 1 time slot, 3 seconds,
no vehicle crosses the stop bar detector the queue is declared
empty. Also, as soon as a vehicle crosses the advance detector
during the red interval, a queue starts to form. It is important
to mention that if a vehicle crosses both advance and stop bar
detectors when there is no queue and the light is green, we do
not consider that a queue of is formed. Of course, detecting
whether the queue is empty or not in this way is not exact,
and does not completely match the theoretical model.

We study all the legs and estimate the queue length based
on observations from their advance and stop bar sensors. The
time slots are of length 3 seconds. The data is for Monday May
4th, 2015, from 7:00 AM to 7:00 PM. To track the changes
in the bias, we use a constant learning for the algorithm α =
0.002.

In this period, we observe 351 busy periods spanning 354
cycles for the queue of leg 1, so the number of iterations of
the gradient algorithm is 351. Figure 6 shows the evolution
of the correction term εn. Observe that the average length of
busy periods is approximately 55 seconds or 18 time slots.
Figure 7 shows the queue length estimated for a 2-hour time
interval, from 12:00 PM to 2:00 PM, for all legs. The reason
for picking this time interval is because there are a hospital
and a school close to this intersection and during lunch time,
many vehicles enter the intersection resulting in large queues
for the through movement.

VII. CONCLUSION AND FUTURE WORK

We considered the problem of estimating the queue lengths
at an intersection from noisy and biased vehicle count observa-
tions. We developed a real-time estimation algorithm based on
stochastic gradient descent that provably learns detector bias,
and estimates the queue-length with theoretical guarantee. We
supported our theoretical contribution with simulations results
and a detailed case study.

Fig. 6: The evolution of εn for the case study.

There are two immediate directions for future research.

• We assumed that the algorithm perfectly observes
whether the queue is empty or not. It would be inter-
esting to investigate the performance of the algorithm
with noisy observation of whether the queue is empty,
both theoretically and experimentally.

• One reason for estimating queue lengths is to design
efficient feedback control policies for the network. For
example, the max-pressure algorithm [9] is known
to be throughput-optimal, but it requires knowledge
of the queue lengths. An interesting question is to
study the stability of the network with estimated queue
lengths that are asymptotically exact. How robust is a
queue based control scheme such as max-pressure to
approximate queue length estimates?
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Fig. 5: Study intersection in Beaufort, NC. Each white dot is a magnetic sensor that detects when a vehicles crosses it.
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