
Master Project

Polar Codes: Construction and

Performance Analysis

Ramtin Pedarsani

ramtin.pedarsani@epfl.ch

Supervisor: Prof. Emre Telatar
Assistant: Hamed Hassani

Information Theory Laboratory (LTHI)
School of Computer and Communication Sciences (IC)

Swiss Federal Institute of Technology (EPFL)

June 2011

1

Abstract

Polar coding, recently invented by Erdal Arıkan, is an encoding/decoding scheme that
provably achieves the capacity of the class of symmetric binary memoryless channels. In
this thesis, we address two important problems regarding polar codes: the construction of
polar codes and performance of polar codes. First, we consider the problem of efficiently
constructing polar codes over symmetric binary discrete memoryless channels and provide
some algorithms for channel quantization that can be analyzed for complexity and accu-
racy. In particular, we show that the algorithm can find almost all the “good” channels
with computing complexity which is essentially linear in block-length. Next, we introduce
different methods and algorithms to enhance the performance of the successive cancellation
polar decoder. We provide numerical evidence as well as some mathematical analysis to
show that the performance of polar codes are improved by using these algorithms.

3

Acknowledgment

First and foremost I offer my sincerest gratitude to my supervisor, Prof. Emre Telatar, who
has supported me throughout my thesis with his patience, vast knowledge, and amazing
brilliance. I attribute the level of my Masters degree to his wisdom and effort, and without
his guidance and persistent help this thesis would not have been possible. I greatly appre-
ciated the kindness and honesty that were part of every interaction we had. One simply
could not wish for a better or friendlier supervisor.

I am indebted to Dr. Olivier Lévêque who was my first adviser at EPFL. I began
doing research in Information Theory under his supervision in a semester project which
led to two publications. I learned many things from Olivier, both on a technical and on a
personal level.

My special thanks go to Prof. Erdal Arıkan, from whom I learned many things during
his visit to EPFL. I would also like to thank Prof. Alexander Vardy for accepting to be
the expert of my defense. I am grateful to Dr. Sheng Yang and Dr. Ido Tal for their help
and contributions in our joint papers.

I would like to express my deepest appreciation to Hamed Hassani, who his continuous
help during this period played a major role on the fulfillment of this project. Besides being
a great assistant to my project, Hamed was one of my closest friends during my studies at
EPFL.

Finally, I devote my special thanks to my parents, my brother Pedram, and his wife
Noushin. I would like to thank Pedram and Noushin for their constant support and en-
couragement during my stay in Lausanne. There are no words that can fully express my
gratitude to my parents. This thesis is dedicated with love to them.

5

Contents

Contents 7

List of Figures 9

List of Tables 10

1 Introduction 11

1.1 Channel Coding Preliminaries . 11
1.1.1 Channel Models . 11
1.1.2 Representation of a Symmetric B-DMC as a Collection of BSC’s . . 12
1.1.3 Two Important Parameters . 12
1.1.4 Channel Degradation . 13

1.2 Polar Codes . 13
1.3 Thesis Main Contribution and Organization 13
1.4 Notations . 14

2 Channel Polarization 15

2.1 Polar Encoder . 15
2.2 Channel Polarization . 16
2.3 Polar Codes Achieve Symmetric Capacity of the Channel 19
2.4 Polar Decoder . 19
2.5 Simulation Results . 20

3 Polar Codes Construction 23

3.1 Problem Formulation . 23
3.2 Algorithms for Quantization . 24

3.2.1 Greedy Mass Transportation Algorithm 25
3.2.2 Mass Merging Algorithm . 25

3.3 Bounds on the Approximation Loss . 26
3.4 Exchange of Limits . 30
3.5 Simulation Results . 30

7

8 Contents

4 Performance of Polar Codes 33

4.1 BEC Channel . 33
4.1.1 Genie-aided Decoder . 33
4.1.2 Polar List-Decoder over BEC Channel 35

4.2 General Channel . 35
4.2.1 Typicality Check . 37
4.2.2 Random Parity Constraints . 38
4.2.3 Combined Algorithm . 41
4.2.4 A Hybrid ARQ Algorithm . 42

5 Conclusion 45

5.1 Summary of Contributions . 45
5.2 Future Work . 46

Bibliography 47

List of Figures

1.1 Block diagram of communication systems . 11

2.1 Combining two channels . 16
2.2 Channel combining . 17
2.3 Polar decoder for N = 4 . 20
2.4 Performance of SC decoder in terms of block error probability, when transmis-

sion takes place over the BSC with capacity 0.5. 21
2.5 Performance of SC decoder in terms of bit error probability, when transmission

takes place over the BSC with capacity 0.5. 21

4.1 Performance of SC decoder and MAP decoder in terms of block error probabil-
ity, when transmission takes place over a BEC channel with capacity 0.5 and
block-length N = 210. 34

4.2 Performance of 2k list-decoder in terms of block error probability, when trans-
mission takes place over a BEC channel with capacity 0.5, block-length N = 210,
and R = 0.35. 35

4.3 Performance of 2k list-decoder in terms of block error probability, when trans-
mission takes place over a BEC channel with capacity 0.5, block-length N = 210,
and R = 0.4. 36

4.4 Performance of 2k list-decoder in terms of block error probability, when trans-
mission takes place over a BEC channel with capacity 0.5 and block-length
N = 210. 36

4.5 Upper-bound on the throughput achievable in our framework with polar code
of block-length N = 28. 43

9

List of Tables

3.1 Achievable rate with error probability at most 10−3 for 3 different functions while

block-length N = 212 and maximum number of outputs k = 16 31
3.2 Achievable rate with error probability at most 10−3 vs. maximum number of outputs

k for block-length N = 215 . 32
3.3 Achievable rate with error probability at most 10−3 vs. block-length N = 2n for

k = 16 . 32
3.4 Achievable rate with error probability at most 10−3 vs. block-length N = 2n for

k = 16 . 32

4.1 Performance of typicality-check algorithm with threshold value t = 0.1, when trans-

mission takes place over a BSC channel with capacity 0.5 and block-length N = 210 39
4.2 Performance of typicality-check algorithm with threshold value t = 0.05, when trans-

mission takes place over a BSC channel with capacity 0.5 and block-length N = 210 39
4.3 Performance of parity-check algorithm with p bits of parity , when transmission takes

place over a BSC channel with capacity 0.5 and block-length N = 210 and the polar

code rate is 0.4. (PSC = 0.3475) . 41

10

Introduction 1
The purpose of communication systems is to transmit data reliably over a noisy channel.
The general block diagram of a communication system is shown in Figure 1.1. The source
encoder removes the redundant information from the source’s data. The channel encoder
adds redundancy to the data such that reliable communication can be achieved over a noisy
channel. The task of the channel decoder is to reproduce the data sent over the channel
from the channel output. In the end, the source decoder reproduces the source’s data from
the output of channel decoder. Our main concern in this thesis will be the blocks channel
encoder, channel, and channel decoder which we describe in more detail in the sequel.

- -Channel
Source

Encoder
Channel
Encoder

Channel
Decoder

Source

Decoder

Figure 1.1: Block diagram of communication systems

1.1 Channel Coding Preliminaries

1.1.1 Channel Models

A channel is defined mathematically as a set of possible inputs to the channel X , a set of
possible outputs to the channel Y , and a conditional probability distribution on the set of
the outputs conditioned on the set of the inputs W (y|x). The simplest class of channels
are discrete memoryless channels (DMC).

11

12 Introduction

Definition 1. A symmetric binary discrete memoryless channel (B-DMC) is a B-DMC
W : {0, 1} → Y with the additional property that there exists a permutation over the
outputs of the channel π : Y → Y such that π = π−1 and W (y|0) = W (π(y)|1).

Symmetric B-DMCs are an important class of channels studied in information theory.
Two important examples of B-DMCs are binary symmetric channels (BSC) and binary
erasure channels (BEC).

1.1.2 Representation of a Symmetric B-DMC as a Collection of

BSC’s

Any symmetric B-DMC can be represented as a collection of binary symmetric channels
(BSC’s). The binary input is given to one of these BSC’s at random such that the i-th
BSC is chosen with probability pi. The output of this BSC together with its cross over
probability xi is the output of the channel. Therefore, a symmetric B-DMC W can be
completely described by a random variable χ ∈ [0, 1/2]. The pdf of χ will be of the form:

Pχ(x) =
m
∑

i=1

piδ(x − xi) (1.1)

such that
∑m

i=1 pi = 1 and 0 ≤ xi ≤ 1/2.

1.1.3 Two Important Parameters

We define two important parameters of symmetric B-DMC’s: the mutual information and
the Bhattacharyya parameter.

Definition 2. The mutual information of a B-DMC with input alphabet X = {0, 1} is
defined

I(W) ,
1

2

∑

y∈Y

∑

x∈X
W (y|x) log

W (y|x)
1
2
W (y|0) + 1

2
W (y|1)

(1.2)

Note that the capacity of a symmetric B-DMC equals the mutual information between
the input and output of the channel with uniform distribution on the inputs. I(W) is a
measure of rate in a channel. It is well-known that reliable communication is possible over
a symmetric B-DMC at any rates up to I(W).

Definition 3. The Bhattacharyya parameter of a channel is defined as

Z(W) ,
∑

y∈Y

√

W (y|0)W (y|1). (1.3)

The Bhattacharyya parameter is a measure of the reliability of a channel since Z(W) is
an upper bound on the probability of maximum-likelihood (ML) decision error for uncoded
transmission over W .

Furthermore, note that Z(W) and 1 − I(W) are expectations of the functions f(x) =
2
√

x(1 − x) and g(x) = −x log(x)−(1−x) log(1−x) over the distribution Pχ, respectively.

1.2. Polar Codes 13

1.1.4 Channel Degradation

We define the notion of channel degradation which will be used in Chapter 3.

Definition 4. Suppose that P1 and P2 are two channels with probability transitions matrices
p1(y|x) and p2(z|x) respectively. Channel P2 is said to be a stochastically degraded form of
P1 if there exists a probability transition matrix p3(z|y) such that

p2(z|x) =
∑

y∈Y
p1(y|x)p3(z|y)

Note that a degraded channel has larger Bhattacharrya parameter and smaller mutual
information than the original channel.

1.2 Polar Codes

Polar codes, introduced by Arıkan in [1], are linear codes which provably achieve the capac-
ity of symmetric B-DMC’s. The idea of polar codes is to create from N independent copies
of a B-DMC W , N different channels W

(i)
N , 1 ≤ i ≤ N through a linear transformation,

such that as N grows large these synthesized channels are polarized. I.e., their mutual
information are close to either 0 or 1. It is shown that the fraction of indices i for which
I(W

(i)
N) is close to 1 is I(W), and the fraction of indices i for which I(W

(i)
N) is close to 0 is

1− I(W), asymptotically. The encoding/decoding complexity of the codes is O(N log N).
We will discuss polar codes in more detail in Chapter 2.

1.3 Thesis Main Contribution and Organization

The two important concerns about using polar codes in practice, as we will see later, are

1. The construction of polar codes

2. The performance of polar codes in short block-length

This thesis will address these two important issues and provide some practical methods
and algorithms to address them.

The rest of the thesis is organized as follows:
Chapter 2 goes briefly through the method of channel polarization and introduces polar

codes as a linear capacity-achieving code. We describe the low-complexity successive can-
cellation (SC) polar decoder which is used to achieve the capacity of symmetric channels.

Chapter 3 considers the problem of efficiently constructing polar codes over binary
discrete memoryless symmetric channels. Following the approach of Tal and Vardy [3],
we present a framework where the algorithms of [3] and new related algorithms can be
analyzed for complexity and accuracy.

14 Introduction

Chapter 4 introduces different algorithms to improve the performance of polar codes
over different types of channels. The results are mainly supported by numerical analysis
and partly by analytical evidence.

1.4 Notations

Throughout the thesis, we use the following notations. We use upper case letters X to
denote the random variables and lower case letters x for their realizations. The bold-
face lower case letters x represent a vector. Xi represents a vector of random variables
[X1, X2, . . . , Xi]. Matrices are shown by boldface upper case letters G. EX(·) stands for the
expectation operator over the random variable X. [·]T denotes the matrix transposition.
log(·) and ln(·) stand for the base-2 and natural logarithms, respectively.

Channel Polarization 2
In this chapter, we discuss polar codes, introduced by Arıkan in [1] for channel coding.
The chapter is a short overview of Arıkan’s paper [1] without too much concern about the
proofs and mathematical details.

2.1 Polar Encoder

Polar codes are linear codes, i.e., any linear combination of codewords is another codeword
of the code. The polar transform is to apply the transform G⊗n

2 , the nth Kronecker power

of G2 =

[

1 0
1 1

]

to the block of N = 2n bits U.

The polar encoder chooses a set of NR rows of the matrix Gn to form a NR×N matrix
which is used as the generator matrix in the encoding procedure.The way this set is chosen
is dependent on the channel W and uses a phenomenon called channel polarization which
is described later.

Using the fast transform methods in signal processing, it is easy to show that the
complexity of the polar encoder is O(N log N). In fact, due to the recursive channel
combining the encoding complexity of blocklength N , χE(N) is

χE(N) =
N

2
+ 2χE(

N

2
), (2.1)

since we require N
2

XOR operations plus encoding two blocks of length N
2
. For blocklength

2, χE(2) = 1. Therefore, one can conclude that χE(N) = O(N log N).

15

16 Channel Polarization

2.2 Channel Polarization

Channel polarization is an operation which produces N channels {W (i)
N : 1 ≤ i ≤ N} from

N independent copies of a B-DMC W such that the new parallel channels are polarized in
the sense that their mutual information is either close to 0 (completely noisy channels) or
close to 1 (perfectly noiseless channels). Channel polarization consists of two phases:

1. Channel Combining: In this phase, copies of a B-DMC are combined in a recur-
sive manner in n steps to form a vector channel WN , where N = 2n. The basic
transformation used in channel combining is the following.

W

WU2

U1

X2

X1

Y2

Y1

Figure 2.1: Combining two channels

W2(y1, y2|u1, u2) = W (y1|u1 ⊕ u2)W (y2|u2) (2.2)

As one can see, two seperate channels are combined to create a new vector channel
of size 2, which is W2 : {0, 1}2 → Y2. Since the linear transform between (U1, U2)
and (X1, X2) is a one-to-one mapping the following equality holds:

I(U1, U2; Y1, Y2) = I(X1, X2; Y1, Y2) = 2I(W) (2.3)

The channel combining for general N = 2n is done recursively in the following way:
The channel WN : XN → YN is defined as

WN (YN |UN) = WN/2(Y
N/2|UN

o ⊕ UN
e)WN/2(Y

N
N/2+1|UN

e),

where UN−1
o = (u1, u3, . . . , uN−1) and UN−1

e = (u2, u4, . . . , uN). The channel combin-
ing procedure for N = 8 is shown in Figure 2.2. For more details please refer to [1]
and [2].

2. Channel Splitting: In the second phase, the vector channel WN is split back into N
channels W

(i)
N : {0, 1} → YN × {0, 1}i−1, 1 ≤ i ≤ N .

In the basic case, N = 2, using chain rule of mutual information, the left hand side
of equation (2.3) can be written as

I(U1, U2; Y1, Y2) = I(U1; Y1, Y2) + I(U1; Y1, Y2, U1) (2.4)

2.2. Channel Polarization 17

W

W

W

W

W

W

W

W

U8

U7

U6

U5

U4

U3

U2

U1

X8

X7

X6

X5

X4

X3

X2

X1

Y8

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Figure 2.2: Channel combining

We can see that I(U1; Y1, Y2) is the mutual information of the channel between U1

and Y1, Y2. Let this channel be W− : {0, 1} → Y2. Furthermore, I(U2; Y1, Y2, U1) is
the mutual information of the channel between U2 and the output given that U1 is
known. Let this channel be W+. The transition probabilities of these two channels
can be written as

W−(y1, y2|u1) =
1

2

∑

u2∈{0,1}
W (y1|u1 ⊕ u2)W (y2|u2) (2.5)

W+(y1, y2, u1|u2) =
1

2
W (y1|u1 ⊕ u2)W (y2|u2) (2.6)

In other words, the combined channel W2 is split into two channels W+ and W−.

The following two properties hold for channels created by operations (2.5) and (2.6). [1]

(i)
I(W+) + I(W−) = 2I(W) (2.7)

(ii)

Z(W−) ≤ 2Z(W) − Z(W)2 (2.8)

Z(W+) = Z(W)2 (2.9)

Note that I(W+) ≥ I(W) ≥ I(W−). As one can see, I(W+) and I(W−) are pushed to
the extremes 0 and 1 with respect to I(W) while their sum is still 2I(W).

18 Channel Polarization

Similarly, we can split channel vector W4 into 4 channels W−−, W−+, W+−, and W++.
In general, from N = 2n copies of channel W , we can create N channels W s1,s2,...,sn, si ∈
{−, +}, 1 ≤ i ≤ n. Alternatively, we represent these channels by W

(i)
N , 1 ≤ i ≤ N . It is

easy to check that the channels created following the operations (2.5) and (2.6), are those
channels that appear in the chain rule expansion of the mutual information.

NI(W) = I(XN ;YN) (2.10)

= I(UN ;YN) (2.11)

=

N
∑

i=1

I(Ui;Y
N ,Ui−1) (2.12)

To analyze the behavior of these channels, we define a random process. Let {Bn : n ≥ 1}
be a sequence of i.i.d. Bernoulli random variables with parameter 1

2
, and {Fn, n ≥ 1} be

the σ-field generated by Bn. Define a tree process as the following

Wn+1 =

{

Wn
− if Bn = 0,

Wn
+ if Bn = 1,

and W0 = W . We are interested to see the behavior of the random processes I(Wn) and
Z(Wn). In [1, 2], it is shown that

(i) The sequence {In,Fn, n ≥ 0} is a bounded martingale.

(ii) The sequence {Zn,Fn, n ≥ 0} is a bounded super-martingale.

Therefore, using the martingale properties it is readily shown that

(i) The sequence {In} converges almost surely to a random variable I∞ and

I∞ =

{

1 w.p. I(W),
0 w.p. 1 − I(W).

(ii) The sequence {Zn} converges almost surely to a random variable Z∞ and

Z∞ =

{

1 w.p. 1 − I(W),
0 w.p. I(W).

In other words, the N created channels from recursively applying operations (2.5) and
(2.6), are polarized to the extremes: they are either close to completely noisy channels
(mutual information close to 0), or perfectly clean channels (mutual information close to
1).

2.3. Polar Codes Achieve Symmetric Capacity of the Channel 19

2.3 Polar Codes Achieve Symmetric Capacity of the

Channel

In section 2.2, we showed how to create polarized channels which are either noiseless (good
channels) or completely noisy (bad channels). Therefore, a natural coding scheme is to send
information bits on those good channels, i.e., Ui is an information bit if I(Ui;Y

N ,Ui−1)
is close to 1, and freeze the bit Ui otherwise, and reveal this value to the decoder. Note
that I(Ui;Y

N ,Ui−1) corresponds to decoding Ui with the knowledge of the output Y and
the previously decoded bits Ui−1. This naturally leads to a successive cancellation (SC)
decoder which decodes the bits U1, U2, . . . , UN in order. In fact, the decoder has only an
estimate of the the bits Ûj, 1 ≤ j ≤ i − 1. In [1, 2], it is shown that the block error
probability of the SC decoder decays to zero for rates below I(W); consequently, polar
codes achieve the capacity of symmetric B-DMC’s using the SC decoder.

It is worth mentioning that the following bounds for the block error probability of polar
codes hold:

max
i∈F c

1

2

(

1 −
√

1 − Z(W
(i)
N)2

)

≤ PSC ≤
∑

i∈F c

Z(W
(i)
N), (2.13)

where F is the set of indices of frozen bits and PSC is the average block error probability
of the code under SC decoder.

Furthermore, it is shown in [7] that the block error probability decays to zero like

O(2−
√

N) asymptotically.

2.4 Polar Decoder

The SC decoder generates an estimate ûN of uN by observing the channel output yN . The
decoder takes N decisions for each ui. If ui is a frozen bit, the decoder will fix ûi to its
known value. If ui is an information bit, the decoder waits to estimate all the previous
bits, and then computes the following likelihood ratio:

L
(i)
N (yN , ûi−1) =

W
(i)
N (yN , ûi−1|0)

W
(i)
N (yN , ûi−1|1)

(2.14)

The decoder sets ûi = 0, if L
(i)
N ≥ 1, and ûi = 1 otherwise. Therefore, the complexity of the

decoding algorithm is determined by the complexity of computing the LR’s. The recursive
relations for computing the LR values are

L
(2i−1)
N (yN , û2i−2) =

1 + L
(i)
N/2(y

N/2, û2i−2
o ⊕ û2i−2

e)L
(i)
N/2(y

N
N/2+1, û

2i−2
e)

L
(i)
N/2(y

N/2, û2i−2
o ⊕ û2i−2

e) + L
(i)
N/2(y

N
N/2+1, û

2i−2
e)

, (2.15)

L
(2i)
N (yN , û2i) = L

(i)
N/2(y

N/2, û2i−2
o ⊕ û2i−2

e)1−2û2i−1L
(i)
N/2(y

N
N/2+1, û

2i−2
e). (2.16)

20 Channel Polarization

b

b

b

b

1

2

3

4

5

6

7

8

9

10

11

12

Figure 2.3: Polar decoder for N = 4

Therefore, the LR’s can be computed with O(N) computations from the likelihood
ratios of the previous level. Let χD(N) be the complexity of the decoder with blocklength
N . Thus,

χD(N) = O(N) + 2χD(N/2) (2.17)

This implies the O(N log N) complexity of the SC polar decoder.
To clarify, we describe the decoding procedure in more details for N = 4. As one

can see in Figure 2.3, the decoder should compute N(log N + 1) = 12 LR’s. At first, the
decoder activates node 1 to decide the value of û1. Node 1 needs the LR’s of nodes 5 and 6
so it activates them. Nodes 5 and 6 themselves activate nodes 9,11,10, and 12 respectively.
The LR values at these nodes are known since they are at the channel level. Therefore,
LR’s at nodes 5 and 6 are computed using formula 2.15 and from them, LR at node 1 is
computed. Now the decoder decides on û1 on the basis of the LR if it is an information bit.
For computing LR at node 2, this node activates nodes 5 and 6 whose LR’s are already
computed. If û1 = 0, the LR’s at nodes 5 and 6 are combined using formula 2.16, and if
û1 = 1, the LR at node 6 will be combined with the inverse of LR at node 5 using formula
2.16. Estimating û1 and û2 update the estimated bits at nodes 5 and 6. To estimate u3,
node 3 activates nodes 7 and 8. The LR’s at these nodes are computed using LR values of
nodes 9 to 12 alongside the status of nodes 5 and 6, as previously described. In fact, node
5 determines whether the LR at node 11 should be combined with the LR at node 9 or the
inverse of the LR at node 9. Finally, from nodes 7 and 8 the LR’s at node 3 and then 4
(on the basis of û3) are computed and the decoding procedure is completed.

2.5 Simulation Results

In this part, we see the performance of a polar code using SC decoder over a BSC channel
with cross-over probability 0.11 (capacity 0.5). For determining the frozen indices we have
used a Monte-Carlo method [1]. As one can see, the performance of polar codes is not
very impressive in short block-lengths [2, 10, 11]. In chapter 4, we try to improve the
performance of polar codes under SC decoder by various methods.

2.5. Simulation Results 21

0.32 0.34 0.36 0.38 0.4 0.42 0.44
10

−4

10
−3

10
−2

10
−1

10
0

Rate

B
lo

ck
 e

rr
or

 p
ro

ba
bi

lit
y

n=8
n=10
n=12

Figure 2.4: Performance of SC decoder in terms of block error probability, when transmission
takes place over the BSC with capacity 0.5.

0.32 0.34 0.36 0.38 0.4 0.42 0.44
10

−5

10
−4

10
−3

10
−2

10
−1

Rate

B
it

er
ro

r
pr

ob
ab

ili
ty

n=8
n=10
n=12

Figure 2.5: Performance of SC decoder in terms of bit error probability, when transmission
takes place over the BSC with capacity 0.5.

Polar Codes Construction 3
In this chapter, we consider the problem of efficiently constructing polar codes over sym-
metric binary discrete memory-less channels. As mentioned in Section 1.3, the construction
of polar codes is one of the important concerns in using polar codes in practice.

3.1 Problem Formulation

Designing a polar code is equivalent to finding the set of good indices among the N polarized
channels described in Section 2.2. The output alphabet of the channel W

(i)
N is YN ×{0, 1}i,

and consequently, the cardinality of the output alphabet of the channels after n levels
of polarization grows exponentially in block-length. So computing the exact transition
probabilities of these channels seems to be intractable and hence we need some efficient
methods to “approximate” these channels.

In [1], it is suggested to use a Monte-Carlo method for estimating the Bhattacharyya
parameters. In this thesis, we follow the approach of Tal and Vardy [3] to use quantization
methods for the purpose. Quantization is to approximate a given channel with another
channel that has less fewer output symbols [3, 4, 5], [6, Appendix B]. More precisely, given a
number k, the task is to come up with efficient methods to replace channels that have more
that k outputs with “close” channels that have at most k outputs. In the following, we
state some comments to clarify the problem. The term “close” depends on the definition of
the quantization error which can be different depending on the context. In our problem, we
define the quantization error as the difference between the true set of good indices and the
approximate set of good indices. Unfortunately, this type of error seems to be analytically
intractable. For the theoretical analysis of the problem, we consider other types of error
to analyze.

The quantization problem is to find procedures to replace each channel P at each level

23

24 Polar Codes Construction

of the binary tree with another symmetric channel P̃ with the number of outputs limited
to k such that firstly, the set of good indices obtained with this procedure is a subset
of the true good indices obtained from the channel polarization, i.e., channel P̃ is polar
degraded with respect to P , and secondly the ratio of these good indices is maximized.
As a result, the indices identified as good by the quantization procedure is never bad, i.e.,
misidentification is always conservative.

To clarify the procedure, we start from channel W , and quantize it to W̃ . Then
performing the channel splitting operations (2.5) and (2.6), we create channels W̃+ and
W̃−. Then, we quantize these two channels and proceed to create the N quantized channels
in the end. A formal definition of a quantization procedure would be the following. Let Qk

be a quantization procedure that assigns to each channel P a binary symmetric channel P̃
such that the output alphabet of P̃ is limited to a constant k. We call Qk admissible if for
any i and n

I(W̃
(i)
N) ≤ I(W

(i)
N). (3.1)

Alternatively, we call Qk admissible if for any i and n

Z(W̃
(i)
N) ≥ Z(W

(i)
N). (3.2)

Note that (3.1) and (3.2) are essentially equivalent as N grows large. Given an admissible
procedure Qk and a symmetric B-DMC W , let ρ(Qk, W) be1

ρ(Qk, W) = lim
n→∞

|{i : I(W̃
(i)
N) > 1

2
}|

N
(3.3)

So the quantization problem is that given a number k ∈ N and a channel W , how can we
find admissible procedures Qk such that ρ(Qk, W) is maximized and is close to the capacity
of W . An important question which arises here is that whether we can achieve capacity of
the channel as k tends to infinity. Obviously, if we first let k tend to infinity and then N ,
the limit is indeed capacity, but we are stating another problem here which is what will
happen if we first let N go to infinity and then k. We answer this question in Section 3.4.

3.2 Algorithms for Quantization

In this section, we propose different algorithms for the channel quantization.
Recall the representation of symmetric B-DMC with a collection of BSC’s in Section

1.1, Equation (1.1). In the quantization problem we want to replace the mass distribution
Pχ with another mass distribution Pχ̃ such that the number of output symbols of χ̃ is at
most k, and the channel W̃ is polar degraded with respect to W .

There are two known operations which imply polar degradation:

(i) Stochastically degrading the channel.

1Instead of 1

2
in (3.3) we can use any number in (0, 1).

3.2. Algorithms for Quantization 25

(ii) Replacing the channel with a BEC channel with the same Bhattacharyya parameter.

Furthermore, note that the stochastic dominance of random variable χ̃ with respect to χ
implies W̃ is stochastically degraded with respect to W . (But the reverse is not true.)

In the following, we state two different algorithms based on different methods of polar
degradation of the channel. The first algorithm is a naive algorithm called the mass
transportation algorithm based on the stochastic dominance of the random variable χ̃, and
the second one which outperforms the first is called greedy mass merging algorithm. For
both of the algorithms the quantized channel is stochastically degraded with respect to the
original one.

3.2.1 Greedy Mass Transportation Algorithm

In the most general form of this algorithm we basically look at the problem as a mass trans-
port problem. In fact, we have non-negative masses pi at locations xi, i = 1, · · · , m, x1 <
· · · < xm. What is required is to move the masses, by only moves to the right, to con-
centrate them on k < m locations, and try to minimize

∑

i pidi where di = xi+1 − xi is
the amount ith mass has moved. Later, we will show that this method is not optimal but
useful in theoretical analysis of algorithms that follow.

Algorithm 1 Mass Transportation Algorithm

1: Start from the list (p1, x1), · · · , (pm, xm).
2: Repeat m − k times
3: Find j = argmin{pidi : i 6= m}
4: Add pj to pj+1 (i.e. move pj to xj+1)
5: Delete (pj, xj) from the list.

Note that Algorithm 1 is based on the stochastic dominance of random variable χ̃ with
respect to χ. Furthermore, in general, we can let di = f(xi+1) − f(xi), for an arbitrary
bounded increasing function f .

3.2.2 Mass Merging Algorithm

The second algorithm merges the masses. Two masses p1 and p2 at positions x1 and x2

would be merged into one mass p1 + p2 at position x̄1 = p1

p1+p2
x1 + p2

p1+p2
x2. This algorithm

is based on the stochastic degradation of the channel, but the random variable χ is not
stochastically dominated by χ̃. The greedy algorithm for the merging of the masses is
shown in Algorithm 2.

Note that in practice, the function f can be any increasing concave function, for ex-
ample, the entropy function or the Bhattacharyya function. In fact, since the algorithm
is greedy and suboptimal, it is hard to investigate explicitly how changing the function
f will affect the total error of the algorithm in the end (i.e., how far W̃ is from W). In
Section 3.5, we will see the results of applying Algorithm 2 for 3 different functions: the
Bhattacharrya function, the entropy function, and the function f(x) = x(1 − x).

26 Polar Codes Construction

Algorithm 2 Merging Masses Algorithm

1: Start from the list (p1, x1), · · · , (pm, xm).
2: Repeat m − k times
3: Find j = argmin{pi(f(x̄i) − f(xi)) − pi+1(f(xi+1) − f(x̄i)) : i 6= m} x̄i = pi

pi+pi+1
xi +

pi+1

pi+pi+1
xi+1

4: Replace the two masses (pj, xj) and (pj+1, xj+1) with a single mass (pj + pj+1, x̄j).

3.3 Bounds on the Approximation Loss

In this section, we provide some bounds on the maximum approximation loss we have in
the algorithms. We define the “approximation loss” to be the difference between the expec-
tation of the function f under the true distribution Pχ and the approximated distribution
Pχ̃. Note that the kind of error that is analyzed in this section is different from what was
defined in Section 3.1. The connection of the approximation loss with the quantization er-
ror is made clear in Theorem 1. For convenience, we will simply stick to the word “error”
instead of “approximation loss” from now on.

Lemma 1. The maximum error made by Algorithms 1 and 2 is upper bounded by O(1
k
).

Proof. First, we derive an upper bound on the error of Algorithms 1 and 2 in each iteration,
and therefore a bound on the error of the whole process. Let us consider Algorithm 1. The
problem can be reduced to the following optimization problem:

e = max
pi,xi

min
i

(pidi) (3.4)

such that
∑

i

pi = 1,
∑

i

di ≤ 1, (3.5)

where di = f(xi+1) − f(xi). We prove the lemma by Cauchy-Schwarz inequality.

min
i

pidi =

(

√

min
i

pidi

)2

=
(

min
i

√

pidi

)2

(3.6)

Now by applying Cauchy-Schwarz we have

m
∑

i=1

√

pidi ≤
(

m
∑

i=1

pi

)1/2(m
∑

i=1

di

)1/2

≤ 1 (3.7)

Since the sum of m terms
√

pidi is less than 1, the minimum of the terms will be certainly
less than 1

m
. Therefore,

e =
(

min
√

pidi

)2

≤ 1

m2
. (3.8)

3.3. Bounds on the Approximation Loss 27

For Algorithm 2, achieving the same bound as Algorithm 1 is trivial. Denote e(1) the error
made in Algorithm 1 and e(2) the error made in Algorithm 2. Then,

e
(2)
i = pi (f(x̄i) − f(xi)) − pi+1 (f(xi+1) − f(x̄i)) (3.9)

≤ pi (f(x̄i) − f(xi)) (3.10)

≤ pi (f(xi+1) − f(xi)) = e
(1)
i . (3.11)

Consequently, the error generated by running the whole algorithm can be upper bounded
by
∑n

i=k+1
1
i2

which is O(1
k
).

What is stated in Lemma 1 is a loose upper bound for the error of Algorithm 2. To
achieve better bounds, we upper bound the error made in each iteration of the Algorithm
2 as the following:

ei = pi (f(x̄i) − f(xi)) − pi+1 (f(xi+1) − f(x̄i)) (3.12)

≤ pi
pi+1

pi + pi+1

∆xif
′(xi) − pi+1

pi

pi + pi+1

∆xif
′(xi+1) (3.13)

=
pipi+1

pi + pi+1
∆xi (f

′(xi) − f ′(xi+1)) (3.14)

≤ pi + pi+1

4
∆x2

i |f ′′(ci)|, (3.15)

where ∆xi = xi+1 − xi and (3.13) is due to concavity of function f . Furthermore, (3.15) is
by mean value theorem, where xi ≤ ci ≤ xi+1.

If |f ′′(x)| is bounded for x ∈ (0, 1), for example for f(x) = x(1− x), we can prove that
mini ei ∼ O(1

m3) by methods similar to those used in Lemma 1. Therefore the error of the
whole algorithm would be O(1

k2). Unfortunately, this is not the case for either of entropy
function or Bhattacharyya function. However, we can still achieve a better upper bound
for the error of Algorithm 2.

Lemma 2. The maximum error made by Algorithm 2 for the entropy function h(x) can

be upper bounded by O(log(k)
k1.5).

Proof. Let us first find an upper bound for the second derivative of the entropy function
h(x) = −x log(x) − (1 − x) log(1 − x).

|h′′(x)| =
1

x(1 − x) ln(2)
. (3.16)

For 0 ≤ x ≤ 1
2

we have

|h′′(x)| ≤ 2

x ln(2)
. (3.17)

28 Polar Codes Construction

Now we are ready to prove the lemma. Using (3.17) the minimum error can further be
upper bounded by

min
i

ei ≤ min
i

(pi + pi+1)∆x2
i

1

xi ln(4)
. (3.18)

Now suppose that we have l mass points with xi ≤ 1√
m

and m−l mass points with xi ≥ 1√
m

.
For the l first mass points we use the upper bound obtained in Algorithm 1. Hence, for
1 ≤ i ≤ l we have

min
i

ei ≤ min
i

pi∆h(xi) (3.19)

∼ O
(

log(m)

l2
√

m

)

, (3.20)

where (3.19) is due to (3.11) and (3.20) can be derived again by applying Cauchy-Schwarz
inequality. Note that this time

l
∑

i=1

∆h(xi) ≤ h(
1√
m

) ∼ O
(

log(m)√
m

)

. (3.21)

For the m − l mass points one can write

min
i

ei ≤ min
i

(pi + pi+1)∆x2
i

1

xi ln(4)
(3.22)

≤ min
i

(pi + pi+1)∆x2
i

√
m

ln(4)
(3.23)

∼ O
(√

m

(m − l)3

)

, (3.24)

where (3.24) is due to Holder inequality as follows:
Let qi = pi + pi+1. Therefore,

∑

i(pi + pi+1) ≤ 2 and
∑

i ∆xi ≤ 1/2.

min
i

qi∆x2
i =

(

(

min
i

qi∆x2
i

)1/3
)3

=
(

min
i

(

qi∆x2
i

)1/3
)3

(3.25)

Now by applying Holder inequality we have

∑

i

(

qi∆x2
i

)1/3 ≤
(

∑

i

qi

)1/3(
∑

i

∆xi

)2/3

≤ 1 (3.26)

Therefore,

min
i

ei ≤
√

m
(

min
i

(qi∆x2
i)

1/3
)3

∼ O
(√

m

(m − l)3

)

. (3.27)

3.3. Bounds on the Approximation Loss 29

Overall, the error made in the first step of the algorithm would be

min
i

ei ∼ min

{

O
(

log(m)

l2
√

m

)

,O
(√

m

(m − l)3

)}

(3.28)

∼ O
(

log(m)

m2.5

)

. (3.29)

Therefore, the error generated by running the whole algorithm can be upper bounded
by
∑m

i=k+1
log(i)
i2.5 ∼ log(k)

k1.5 .

We can see that the error is improved by a factor of log k√
k

in comparison with Algorithm
1.

Now we use the result of Lemma 1 to provide bounds on the total error made in
estimating the mutual information of a channel after n levels of operations (2.5) and (2.6).

Theorem 1. Assume W is a symmetric B-DMC and using Algorithm 1 or 2 we quantize
the channel W to a channel W̃ . Taking k = n2 is sufficient to give an approximation error
that decays to zero.

Proof. First notice that for any two symmetric B-DMCs W and V , doing the polarization
operations (2.5) and (2.6), the following is true:

(I(W−) − I(V −)) + (I(W+) − I(V +)) = 2(I(W) − I(V)) (3.30)

Let Sn be the sum of the errors in approximating the mutual information of the N channels
after n level of polarizations. Replacing V with W̃ in (3.30) and using the result of Lemma
1, we get the following recursive relation for the sequence sn.

s0 ≤
1

k

sn ≤ 2sn−1 +
2n

k
(3.31)

Solving (3.31) explicitly, we have sn ≤ (n+1)2n

k
. Therefore, we conclude that after n levels

of polarization the sum of the errors in approximating the mutual information of the 2n

channels is upper-bounded by O(n2n

k
). In particular, taking k = n2, one can say that the

“average” approximation error of the 2n channels at level n is upper-bounded by O(1
n
).

Therefore, at least a fraction 1− 1√
n

of the channels are distorted by at most 1√
n

i.e., except
for a negligible fraction of the channels the error in approximating the mutual information
decays to zero.

The theorem above shows that the algorithm finds all the “good” channels except a neg-
ligible fraction of 1− 1√

n
. The computational complexity of construction is O(k2N) which

for k = n2 yields to an almost linear complexity in blocklength except a polylogarithmic
factor of (log N)4.

30 Polar Codes Construction

3.4 Exchange of Limits

In this section, we show that there are admissible schemes such that as k → ∞, the limit
in (3.3) approaches I(W) for any BMS channel W . In contrast to the previous section, k
is a constant that grows, unlike k = n2. We use definition stated in equation (3.2) for the
admissibility of the quantization procedure.

Theorem 2. Given a BMS channel W and for large enough k, there exist admissible
quantization schemes Qk such that ρ(Qk, W) is arbitrarily close to I(W).

Proof. Consider the following algorithm: The algorithm starts with a quantized version
of W and it does the normal channel splitting transformation followed by quantization
according to Algorithms 1 or 2, but once a sub-channel is sufficiently good, in the sense
that its Bhattacharyya parameter is less than an appropriately chosen parameter δ, the
algorithm replaces the sub-channel with a binary erasure channel which is degraded (polar
degradation) with respect to it (As the operations (2.5) and (2.6) over an erasure channel
also yields and erasure channel, no further quantization is need for the children of this
sub-channel).

Since the ratio of the total good indices of BEC(Z(P)) is 1 − Z(P), then the total
error that we make by replacing P with BEC(Z(P)) is at most Z(P) which in the above
algorithm is less that the parameter δ.

Now, for a fixed level n, according to Theorem 1 if we make k large enough, the ratio
of the quantized sub-channels that their Bhattacharyya value is less that δ approaches to
its original value (with no quantization), and for these sub-channels as explained above
the total error made with the algorithm is δ. Now from the polarization theorem and by
sending δ to zero we deduce that as k → ∞ the number of good indices approaches the
capacity of the original channel.

3.5 Simulation Results

In order to evaluate the performance of our quantization algorithm, we compare the perfor-
mance of the degraded quantized channel with the performance of an upgraded quantized
channel. Similarly to Section 3.2 Algorithm 2, we introduce an algorithm which this time
splits the masses between its two neighbors. To clarify, consider three neighbor masses
in positions (xi−1, xi, xi+1) with probabilities (pi−1, pi, pi+1). Let t = xi−xi−1

xi+1−xi−1
. Then, we

split the middle mass at xi to the other two masses such that the final probabilities will
be (pi−1 + (1 − t)pi, pi+1 + tpi) at positions (xi−1, xi+1). The greedy algorithm is shown in
Algorithm 3.

An upper bound on the error of this algorithm can be provided similarly to Section 3.3

3.5. Simulation Results 31

Algorithm 3 Splitting Masses Algorithm

1: Start from the list (p1, x1), · · · , (pn, xn).
2: Repeat n − k times
3: Find j = argmin{pi (f(xi) − tf(xi1) − (1 − t)f(xi−1)) : i 6= 1, n}
4: Add (1 − t)pj to pj−1 and tpj to pj+1.
5: Delete (pj, xj) from the list.

with a little bit of modification. Consider the error made in each step of the algorithm:

ei = pi (f(xi) − tf(xi+1) − (1 − t)f(xi−1)) (3.32)

= −tpi (f(xi+1 − f(xi)) + (1 − t)pi (f(xi) − f(xi−1)) (3.33)

≤ −tpi(1 − t)∆xif
′(xi+1) + (1 − t)pit∆xif

′(xi−1) (3.34)

= pit(1 − t)∆x2
i |f ′′(ci)|, (3.35)

where xi−1 ≤ ci ≤ xi+1 and ∆xi , xi+1 − xi−1. The difference with Section 3.3 is that
now

∑

i ∆xi ≤ 1 (not 1/2). On the other hand, for 0 ≤ t ≤ 1 we have t(1 − t) ≤ 1
4
.

Therefore, exactly the same results of Section 3.3 can be applied here, and the total error

of the algorithm can be upper bounded by O
(

log(k)

k
√

k

)

for the entropy function, and O(1
k2)

for functions that |f ′′(x)| is bounded.
In the simulations, we measure the maximum achievable rate while keeping the prob-

ability of error less than 10−3 by finding maximum possible number of channels with
the smallest Bhattacharyya parameters such that the sum of their Bhattacharyya pa-
rameters is upper bounded by 10−3. The channel is a binary symmetric channel with
capacity 0.5. First, we compare 3 different functions f1(x) = h(x) (entropy function),
f2(x) = 2

√

x(1 − x) (Bhattacharrya function), and f3(x) = x(1 − x) in Algorithms 2 and
3 for degrading and upgrading the channels and compare their performances. We obtain
the following results:

f(x) f1(x) f2(x) f3(x)
degrade 0.3208 0.3210 0.3022
upgrade 0.3220 0.3218 0.3245

Table 3.1: Achievable rate with error probability at most 10−3 for 3 different functions while
block-length N = 212 and maximum number of outputs k = 16

We can see that the Bhattacharyya function has the best performance in the greedy
algorithm, and f3(x) = x(1−x) the worse. One surprising point is that we prove an upper
bound of O(1

k2) for f3(x) and O(log k
k1.5) for the entropy function, but the entropy function

has better performance. In the following simulations, we use the Bhattacharrya function
for our simulations.

32 Polar Codes Construction

k 2 4 8 16 32 64
degrade 0.2895 0.3667 0.3774 0.3795 0.3799 0.3800
upgrade 0.4590 0.3943 0.3836 0.3808 0.3802 0.3801

Table 3.2: Achievable rate with error probability at most 10−3 vs. maximum number of outputs
k for block-length N = 215

It is worth restating that the algorithm runs in complexity O(k2N). Table 3.2 shows
the achievable rates for Algorithms 2 and 3 when the block-length is fixed to N = 215 and
k changes in the range of 2 to 64.

It can be seen from Table 3.2 that the difference of achievable rates within the upgraded
and degraded version of the scheme is as small as 10−4 for k = 64. We expect that for a
fixed k, as the block-length increases the difference will also increase (see Table 3.3).

n 5 8 11 14 17 20
degrade 0.1250 0.2109 0.2969 0.3620 0.4085 0.4403
upgrade 0.1250 0.2109 0.2974 0.3633 0.4102 0.4423

Table 3.3: Achievable rate with error probability at most 10−3 vs. block-length N = 2n for
k = 16

However, in our scheme this difference will remain small even as N grows arbitrarily
large as predicted by Theorem 2. (see Table 3.4).

n 21 22 23 24 25
degrade 0.4484 0.4555 0.4616 0.4669 0.4715
upgrade 0.4504 0.4575 0.4636 0.4689 0.4735

Table 3.4: Achievable rate with error probability at most 10−3 vs. block-length N = 2n for
k = 16

We see that the difference between the rate achievable in the degraded channel and
upgraded channel gets constant 2 × 10−3 even after 25 levels of polarizations for k = 16.

Performance of Polar Codes 4
In this chapter we analyze the performance of polar codes. As mentioned in previous
chapters, the performance of polar codes in short length, for example the block-length
mainly used in practical situations such as wireless communication, is not very impressive.
[2, 10, 11] Therefore, the enhancement of polar codes’ performance is an important issue.
This chapter is divided into two sections: polar codes over BEC channel and general
channel. We use the block error probability as the measure of our performance analysis.

4.1 BEC Channel

In this section, we first investigate the performance of polar codes under successive cancel-
lation decoder in a BEC channel. Later on it becomes more clear why we have restricted
ourselves to the BEC channel first. We use the BEC channel with erasure probability 0.5
in our simulations. Figure 4.1 shows the performance of the SC decoder compared to the
MAP decoder in the BEC channel.

As one can see there exists a considerable gap between the error probability of the SC
decoder and the MAP decoder. Unfortunately, the complexity of a MAP decoder in general
(except for the BEC) is exponential in block-length. Therefore, an important question is
that whether one can modify the SC decoder such that this gap decreases while we still
have a low-complexity decoder. We try to address this question in the following. First, we
introduce the notion of a genie-aided decoder.

4.1.1 Genie-aided Decoder

In this part, we define what a genie-aided decoder is. The following notions are mostly
developed by Erdal Arıkan.

33

34 Performance of Polar Codes

0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45
10

−3

10
−2

10
−1

10
0

Rate

B
lo

ck
 e

rr
or

 p
ro

ba
bi

lit
y

SC
MAP

Figure 4.1: Performance of SC decoder and MAP decoder in terms of block error probability,
when transmission takes place over a BEC channel with capacity 0.5 and block-length N = 210.

For the moment, consider that we are transmitting data over a general channel. Suppose
that you have access to a genie who knows what the correct information bits are. While
decoding using the successive cancellation decoder, you might make an error in estimating
one of the information bits. Due to the successive nature of the SC decoder, this will cause
lots of more errors in decoding the next-coming bits. Now consider requesting help from
our genie. One approach known as the active genie-aided decoder is that the genie will
come to help us as soon as we make an error. Therefore, we correct this error and continue
the decoding procedure. We define a k-active genie-aided decoder, a decoder where the
genie comes to our help at most k times. We call a decoder to be a passive genie-aided
decoder if the genie does not come to our help as soon as we make an error. Instead, we
are allowed to ask the genie whether this estimated information bit is right or not. We
call a decoder to be a k-passive genie-aided decoder if we are allowed to ask the genie
about the correctness of at most k bits. So the question that naturally appears here is
that how we can find out that it is a good chance that we have made an error in the
estimated bit. Obviously, the active and passive genie-aided decoders are the same in the
case of BEC channel since no errors will occur in decoding the information bits and we
will have only erasures. Active genie-aided decoder cannot be implemented in reality, but
a passive genie-aided decoder completely coincides with a list-decoder. Simply instead of
asking a genie we proceed our decoding with both 0 and 1 for the estimated bit and put the
resulting decoded information-word in our list. Therefore, a k-passive genie-aided decoder
is nothing but a list decoder with list size of 2k.

4.2. General Channel 35

4.1.2 Polar List-Decoder over BEC Channel

Now we investigate the performance of a k genie-aided SC decoder in a BEC channel with
capacity 0.5 and block-length N = 210. In Figure 4.2, the rate is fixed to 0.35. We can see
that with a list size of 32, the error will be reduced to order of 10−7. Furthermore, it is
interesting to notice that the error probability has approximately an exponential behavior
in k. In other words, with one extra help from the genie, the error probability is reduced
by an order of magnitude. In Figure 4.3, the rate is fixed to 0.4. As expected, we have

0 1 2 3 4 5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

k

B
lo

ck
 e

rr
or

 p
ro

ba
bi

lit
y

Figure 4.2: Performance of 2k list-decoder in terms of block error probability, when
transmission takes place over a BEC channel with capacity 0.5, block-length N = 210, and

R = 0.35.

less improvement in error probability with each extra help from the genie but still the
exponential behavior of the curve can be seen.

In Figure 4.4, the performance of a simple SC decoder is compared with list-decoders
of size 4 and 16 in different rates. Again, it can be seen that with only 2 helps from the
genie, the error probability is reduced significantly.

4.2 General Channel

In this section, we consider improving the performance of a polar SC decoder over a general
channel, for example the BSC channel with cross-over probability ǫ. The problem with a
general channel is that it is not easy to guess in which information bits we have made an
error in our estimation (since we do not have only erasures), so it is difficult to implement
a passive genie-aided decoder (list-decoder).

Motivated by Forney’s framework [8], we try to use the concepts of erasure and feedback
to enhance the performance of polar codes. Therefore, an idea to improve the performance

36 Performance of Polar Codes

0 5 10 15
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k

B
lo

ck
 e

rr
or

 p
ro

ba
bi

lit
y

Figure 4.3: Performance of 2k list-decoder in terms of block error probability, when
transmission takes place over a BEC channel with capacity 0.5, block-length N = 210, and

R = 0.4.

0.34 0.36 0.38 0.4 0.42 0.44 0.46
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Rate

B
lo

ck
 e

rr
or

 p
ro

ba
bi

lit
y

k=0
k=2
k=4

Figure 4.4: Performance of 2k list-decoder in terms of block error probability, when
transmission takes place over a BEC channel with capacity 0.5 and block-length N = 210.

of a polar SC decoder is to determine whether we have estimated a whole block with error
or not instead of being worried about each information bit. If we can detect our block
errors with high probability, then we can erase the block and retransmit using an ARQ
system to achieve better performance. In the following, we will discuss two methods for
detecting our errors, and then combine them and use them in a HARQ system mentioned

4.2. General Channel 37

later.

4.2.1 Typicality Check

Considering that we have estimated our information bits correctly, we expect the sequence
of the outputs with respect to the conditional probability distribution on our codeword
to be a typical sequence. More precisely, we expect 1

N
log 1

p(y|x)
to be close to H(Y |X)

(which is h(ǫ) in the BSC channel). Therefore, one method to detect whether we have
made an error in our estimation or not is to re-encode the estimated information bits û in
the decoder and compute the estimated codeword x̂. Then we can declare an erasure if

1

N
log

1

p(y|x̂)
− H(Y |X) ≥ t, (4.1)

where t is a threshold value which needs to be adjusted properly. Obviously, we have
a trade-off between “false” erasure probability and error probability. By false erasure
probability we mean that we had estimated the codeword right but declared an erasure.
We can provide a theoretical bound on this quantity.

Lemma 3. The false erasure probability decays exponentially in block-length.

Proof. We prove the lemma for a BSC channel with cross-over probability ǫ. Considering
that the estimated codeword is true, the false erasure probability is

Pfalse = Pr
(1

N
log

1

p(y|x)
− h(ǫ) ≥ t

)

, (4.2)

where h(ǫ) = −ǫ log ǫ − (1 − ǫ) log(1 − ǫ). Let us define a new random variable

Vi ,
1

log 1−ǫ
ǫ

(

log
1

p(yi|xi)
− log

1

1 − ǫ

)

. (4.3)

Clearly, Vi is a Bernouli random variable with parameter ǫ (E(Vi) = ǫ). Rewriting (4.2) in
terms of Vi, we have

Pfalse = Pr
(1

N

N
∑

i=1

Vi − E(Vi) ≥
t

log 1−ǫ
ǫ

)

(4.4)

≤ exp
(

− ND(ǫ +
t

log 1−ǫ
ǫ

||ǫ)
)

, (4.5)

where D(x||y) = x log x
y

+ (1 − x) log 1−x
1−y

is the Kullback-Leibler divergence between

Bernoulli distributed random variables with parameters x and y respectively, and (4.5)
is the Chernoff bound for a sequence of i.i.d. Bernoulli random variables.

38 Performance of Polar Codes

In the following, we show that the error probability of the typicality-check algorithm
is highly correlated to the distance distribution of polar codes. Suppose that we have
estimated some of the information bits incorrectly. Without loss of generality we suppose
that codeword 0 is sent. Then,

x̂ = ûG = (u + e)G = eG, (4.6)

where e is the error vector. Considering the rows of generator matrix G, where G =
[g1, g2, . . . , gN]T , we have

x̂ =
∑

i∈Ie

gi, (4.7)

where Ie is the set of information bits indices that have been estimated with error. There-
fore, the number of positions where p(yi|x̂i) differs from its true value p(yi|xi) is nothing
but the hamming weight of the vector

∑

i∈Ie
gi. Now the relationship between the error

probability of the algorithm and the distance distribution of polar codes is getting clear.
If the minimum distance of polar codes was O(N), we could have immediately proved that
the algorithm detects all the errors and declares erasures as N grows large. Unfortunately,
this is not the case as the hamming distance of polar codes is O(

√
N). On the other

hand, in the SC polar decoder usually many errors occur after the first information bit is
estimated wrongly. So the number of indices in Ie is large and we know that there are few
codewords with distance of close to dmin from the distance distribution of polar codes so
this implies that the algorithm does not let any errors escape with high probability as N
grows large, but it appears to be difficult to provide a rigorous mathematical proof.

Tables 4.1 and 4.2 show the performance of the typicality-check algorithm for 2 different
values of t. In Table 4.1, t is chosen such that no false erasure is declared in 105 trials of
the simulation. The false erausre probability is

Pfalse = Perase + Pe − PSC (4.8)

One can roughly say that 70-percent of the errors of the SC decoder are detected and
declared as erasures without declaring any false erasures. In Table 4.2, the threshold t
is chosen less conservatively and a few false erasure declarations are allowed. We can see
that around 95-percent of the errors are detected, while missing 2-percent of the previously
correctly-detected blocks. (declaring them falsely as erasures) Also note that the parameter
t, may also be tuned for different rates. A good approach will be Neyman-Pearson type
of argument, i.e., choose t to minimize error probability Pe, subject to the constraint that
Pfalse ≤ τ , and τ is set by the application.

4.2.2 Random Parity Constraints

In this section, we propose another method to detect the block errors made in decoding
the output. The method is to add p random parity check bits to the information bits.
Therefore, the actual rate is

r =
k − p

N
. (4.9)

4.2. General Channel 39

R 0.35 0.37 0.39 0.41 0.43
Pe 0.0168 0.0336 0.0603 0.1043 0.1436

Perase 0.0612 0.1121 0.2171 0.3232 0.4644
PSC 0.0780 0.1457 0.2774 0.4275 0.6080

Table 4.1: Performance of typicality-check algorithm with threshold value t = 0.1, when
transmission takes place over a BSC channel with capacity 0.5 and block-length N = 210

R 0.35 0.37 0.39 0.41 0.43
Pe 0.0018 0.0048 0.0093 0.0273 0.0463

Perase 0.1098 0.1645 0.2780 0.4031 0.5619
PSC 0.0779 0.1456 0.2774 0.4275 0.6080

Table 4.2: Performance of typicality-check algorithm with threshold value t = 0.05, when
transmission takes place over a BSC channel with capacity 0.5 and block-length N = 210

As one can see, we have sacrificed the rate by p
N

. The encoding process is the following.
First, k − p information bits will be encoded to k bits by the parity generator matrix
G(p)

(k−p)×k, and then the k bits is sent to the polar encoder to form the N bits codeword.
The polar decoder estimates the k bits û, then checks the parity-check constraint:

Hp×kû = 0, (4.10)

where H is the parity-check matrix.

Lemma 4. Using a random parity-check matrix, the error probability of the SC polar
decoder is reduced to PSC

2p in expectation, where PSC is the block error probability of a SC
polar decoder and p is the number of parity-check bits.

Proof. Without loss of generality, we can assume that codeword 0 is sent. Define αi and
1 ≤ i ≤ 2k − 1, the sequence of all non-zero binary vectors of length k. We can write the

40 Performance of Polar Codes

expectation of the block error probability as the following:

Pe = EH (Pr (Hû = 0, û 6= 0)) (4.11)

= EH

2k−1
∑

i=1

Pr (û = αi) Pr (Hαi = 0)

 (4.12)

=

2k−1
∑

i=1

Pr (û = αi) EH (Pr (Hαi = 0)) (4.13)

=

2k−1
∑

i=1

Pr (û = αi)

p
∏

j=1

EH (Pr (hj.αi = 0)) (4.14)

=
1

2p

2k−1
∑

i=1

Pr (û = αi) (4.15)

=
PSC

2p
, (4.16)

where (4.15) is due to the fact that the entries of random parity-check matrix H are i.i.d.
Bernoulli random variables with parameter 1

2
.

Theorem 3. Using a random parity-check algorithm, we can achieve an error exponent
N

log N
and erasure exponent

√
N without any rate loss.

Proof. Using Lemma 4, let p be O(N
log N

). Then, the rate would be

r =
k − N

log N

N
= O(

k

N
) (4.17)

So we do not have a rate loss asymptotically. We know that PSC is asymptotically
O(2−

√
N)[7]. Therefore, by Lemma 4.2.2 the error probability is asymptotically

Pe = O(
2−

√
N

2
N

log N

) = O(2−
N

log N) (4.18)

The erasure probability is

Perase = PSC − Pe = O(2−
√

N) (4.19)

In Table 4.3, we see the simulation results of the parity-check algorithm. The polar
code rate is 0.4, but as mentioned previously we have some rate loss due to the use of
parity-check bits. The error probability of the SC decoder is the error probability while
sending with the “actual” rate. The validity of Lemma 4 is shown numerically in Table
4.3.

4.2. General Channel 41

p 3 4 5 6 7 8
R 0.3965 0.3955 0.3945 0.3936 0.3926 0.3916
Pe 0.0448 0.0225 0.0104 0.0059 0.0.0033 0.0017

Perase 0.3027 0.3249 0.3371 0.3416 0.3442 0.3458
PSC 0.3298 0.3207 0.3090 0.3024 0.2976 0.2806

Table 4.3: Performance of parity-check algorithm with p bits of parity , when transmission takes
place over a BSC channel with capacity 0.5 and block-length N = 210 and the polar code rate is

0.4. (PSC = 0.3475)

4.2.3 Combined Algorithm

In this section, we combine the algorithms mentions in sections 4.2.1 and 4.2.2 to provide a
powerful tool for detecting the block errors in a general channel while using polar decoder
and encoder. In fact, we declare erasures if either the parity-check or the typicality-check
fails. The interesting problem here is that we have two parameters t and p to tune. Similarly
to Lemma 4, it is easy to prove that for the combined algorithm the error probability will
be reduced by a factor of 2p with respect to the error probability of the typicality-check
algorithm. (Pe =

Pe,typical

2p) One interesting question in this regard is that whether combining
the algorithms helps at all. In fact, both of the algorithms are somehow detecting most of
the block errors of the SC decoder, in the expense of missing some of the correct blocks,
or alternatively some rate loss. Therefore, one algorithm may totally outperform the other
one. The intuitive answer to this question is that combining the two algorithms does help
the performance since each of them are detecting errors through different underlying logic.
The parity-check algorithm detects all of the errors except a fraction of 1

2p on average, and
its success has nothing to do with the “quality” of the received data. On the other hand,
the typicality-check algorithm detects what we call “strong” noises (which are the non-
typical ones indeed) and miss the errors due to “mild” noises. Therefore, combining the
two algorithms has the advantage that even in the case of having a mild noise we detect all
the errors other than a small fraction of 1

2p . Another interesting engineering problem here
is how to tune the parameters p and t to design a polar code with certain error probability
and erasure probability requirements. In other words, how should we share the weight
of detecting errors between these two algorithms to have the optimum error and erasure
probabilities. In the following, we state an example of polar code design.

Example 1. Using the typicality-check and random-parity-check algorithms, design a polar
code of block-length N = 210 with maximum possible rate over a BSC channel of capacity
0.5 such that the following conditions are satisfied:

(i) Pe ≤ 10−4

(ii) Perase ≤ 0.05

42 Performance of Polar Codes

As one can see, the problem is nothing but an optimization over 3 parameters of R, t,
and p. What we want to maximize is R− p

N
. Obviously, the solution of the problem is only

through numerical analysis. One suboptimal method to solve the problem in simpler way
is the following. A logical approach is to set t to the minimum possible value such that we
do not have any false erasures caused by the typicality-check algorithm. (The parity-check
algorithm does not declare any incorrect erasures.) The problem is that optimizing the
threshold value t is itself dependent on the rate so it not obvious that for which rate we
should locally optimize t. From the results of Table 4.1 and 4.2, one can see that the
achievable rate is certainly less than 0.35. Let us fix an optimum t for the rate R = 0.3.
The obtained value for t is t = 0.11. Fixing t, it remains to find a suitable p to satisfy
the problem’s conditions. Again the dependency to R exists. After some ad-hoc and
simultaneous tuning of these two parameters, we set p = 5, and achieve actual rate of
0.324 with Pe = 5× 10−5 and Perase = 0.04. One can now optimize t for the new obtained
rate and re-do the procedure.

4.2.4 A Hybrid ARQ Algorithm

In this section, we state a practical algorithm for retransmitting the data when erasure
has occurred and we provide some simulation results for the throughput of the H-ARQ
algorithm based on polar codes. We see that using the H-ARQ algorithm we achieve great
improvement in the performance of polar codes which is very important especially in short
block-lengths for practical purposes.

The main idea of the algorithm is to retransmit the same block (this method is known
as chase combining), and add the log-likelihood ratios (LLRs) obtained in the output of
channels to the previous LLRs and run the polar decoder with the new LLR values. A
more detailed description of the algorithm for transmitting one block is the following: For
the first attempt, send the corresponding codeword as usual. Run the polar decoder while
saving the channel LLRs in a buffer. If no erasure is declared, the transmission is finished.
If an erasure is detected, retransmit the same codeword and add the new channel LLRs
with the previous LLRs. Then, run the polar decoder with these new LLRs and proceed as
before. To make implementing the algorithm feasible, one should set a maximum number
of attempts allowed for retransmission. We set this number to 4 in our simulations.

It is well-known that the important factors in measuring the performance of an ARQ
system is its throughput and error probability. (Suppose that we have let enough re-
transmissions such that the erasure probability is negligible.) Recall that throughput is
the average rate of a successful frame delivery. First, let us find an upper bound on
the achievable throughput in our framework. Suppose that a genie has proposed us an
algorithm which detects all of the block errors in the SC decoder without declaring any
false erasure and any rate loss. Furthermore, suppose that we retransmit our data so wisely
that we always succeed to decode our message in our second attempt without any errors.
The normalized expectation of our transmission time will be

E(T) = 1 + PSC(R). (4.20)

4.2. General Channel 43

Therefore, the throughput η is upper bounded by

η ≤ R

1 + PSC(R)
. (4.21)

Figure 4.5 shows the function in (4.21) versus R for polar codes of block-length 28 over
a BSC channel with capacity 0.5. It can be seen that the maximum throughput roughly
equals 0.322 which is obtained around R = 0.37.

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46
0.295

0.3

0.305

0.31

0.315

0.32

0.325

Rate

th
ro

ug
hp

ut

Figure 4.5: Upper-bound on the throughput achievable in our framework with polar code of
block-length N = 28.

Motivated by this result, we test our H-ARQ algorithm for block-length 28 at R =
0.37. After tuning parameters p and t, we can achieve throughput η = 0.291 with error
probability of Pe = 10−4 and negligible erasure probability. One can see that our result is
not far from the upper bound shown in Figure 4.5. Furthermore, it is interesting to mention
that using a simple SC decoder the same error probability and rate (vs throughput) can
roughly be achieved with a block-length of 211.

Conclusion 5
5.1 Summary of Contributions

Polar coding is a recently discovered coding technique which is capable of achieving the
symmetric capacity of binary discrete memoryless channels. Polar codes have low com-
plexity encoding and decoding (O(N log N)), where N is the blocklength of the code.
Furthermore, for any rate below capacity the block error probability of polar codes decay
to zero like O(2−

√
N).

Since polar coding is a new technique, there are still many open questions about polar
codes. In this thesis, we address two problems which are important for implementing polar
codes in practice:

1. Construction of Polar Codes: Since the output alphabet size of synthesized channels
through channel polarization grows exponentially in blocklength, computing the ex-
act transition probabilities of these channels seem to be intractable. Therefore, one
needs to come up with an efficient algorithm to approximate these channels such
that the approximated set of good indices are close to the true good indices. In this
thesis, we followed the approach of Tal and Vardy [3] to quantize the channels, and
provided some algorithms which can be analyzed for complexity and accuracy. We
showed that using an algorithm which has almost linear complexity in blocklength,
one can find all the good channels except a negligible fraction.

2. Performance of Polar Codes: Polar codes in their current format, fall short in terms
of performance in comparison with other powerful codes like LDPC. However, po-
lar codes have many advantages, mainly its low-complexity encoding and decoding
procedures, as well as its analytical tractability. An interesting question is to come
up with modified decoding algorithms such that the performance is improved while

45

46 Conclusion

keeping the low complexity decoder. In this thesis, we provided different algorithms
for different channels to enhance the performance of polar decoder. For the BEC,
using the nature of the channel that no errors occur in estimating the information
bits (but only erasures), we introduced the notion of genie-aided decoder, and pro-
vided numerical results for the performance of list-decoders over BEC with different
list sizes. For general channel, motivated by Forney’s seminal work on erasure and
feedback schemes, we introduced two algorithms, the typicality-check algorithm and
the parity-check constraints algorithm to detect our block errors and declare era-
sures. Then, we combined these two algorithms and came up with a Hybrid ARQ
scheme which significantly improves the performance of polar codes considering the
throughput of the system.

5.2 Future Work

In the following, we motivate some important problems as extensions of our work.

• In Chapter 3, we introduced several greedy and low-complexity algorithms for quan-
tizing the channels. The algorithms are indeed suboptimal. An important question is
that how far these algorithms are from the optimal algorithm. Can we come up with
a low-complexity algorithm which is close in terms of performance to the optimal
one? Furthermore, it is interesting to investigate that how changing the function
f(x) in Algorithms 1 and 2, affect the performance of the algorithms. Can we come
up with an optimum function in the greedy algorithms?

• In Chapter 4, we provided different methods and algorithms for enhancing the per-
formance of polar decoders. The results in this chapter were mainly supported by
numerical evidence. Therefore, there are many open problems in the analysis of the
performance of these algorithms. Some important questions in this regard are the
following:

(i) What is the error exponent of a polar list-decoder over the BEC channel? Can
we relate it to the exponents derived in the seminal works of Gallager and
Forney? [8, 9]

(ii) How can we find out if we have made an error in estimating one of the informa-
tion bits in a general channel?

(iii) Can we analytically prove that the typicality check algorithm detects all of
the block errors asymptotically? How can we relate the performance of this
algorithm to the weight distribution of polar codes?

(iv) Considering an HARQ system, what is the optimal strategy for sending the
packet in our second attempt? Is it optimal to resend the whole block?

Bibliography

[1] E. Arıkan, “Channel Polarization: A Method for Constructing Capacity-Achieving
Codes for Symmetric Binary-Input Memoryless Channels,” IEEE Trans. Inf. Theory,
vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[2] S. B. Korada, “Polar Codes for Channel and Source Coding,” Ph.D. dissertation,
EPFL, Lausanne, Switzerland, Jul. 2009.

[3] I. Tal and A. Vardy, “How to Construct Polar Codes,” talk given in Information Theory
Workshop, Dublin, Aug. 2010. (also available on arxiv)

[4] S. H. Hassani, S. B. Korada, and R. Urbanke, “The Compound Capacity of Polar
Codes,” Proceedings of Allerton Conference on Communication, Control and Comput-
ing, Allerton, Sep. 2009.

[5] R. Mori and T. Tanaka, “Performance and Construction of Polar Codes on Symmetric
Binary-Input Memoryless Channels,” Proceedings of ISIT, Seoul, South Korea, Jul.
2009, pp. 1496–1500.

[6] T. Richardson and R. Urbanke, “Modern Coding Theory,” Cambridge University
Press, 2008.

[7] E. Arıkan, E. Telatar, “On the Rate of Channel Polarization,” Proceedings of IEEE
International Symposium on Information Theory, Seoul, Jul. 2009.

[8] G. D. Forney, Jr., “Exponential Error Bounds for Erasure, List and Decision Feedback
Schemes,” IEEE Trans. Inf. Theory, vol. IT-14, no. 2, pp. 206–220, Mar. 1968.

[9] R. G. Gallager, “Information Theory and Reliable Communication,” New York: Wiley,
1968.

[10] N. Hussami, S. B. Korada, and R. Urbanke, “Performance of Polar Codes for Channel
and Source Coding,” Proceedings of IEEE International Symposium on Information
Theory, Seoul, Jul. 2009.

47

48 Bibliography

[11] E. Arıkan, “A Performance Comparison of Polar Codes and Reed-Muller Codes,”
IEEE Communications Letter, vol. 12, no. 6, 2008.

[12] T. M. Cover and , J. A. Thomas, “Elements of Information Theory,” New York: Wiley,
1991.

[13] R. Pedarsani, S. H. Hassani, I. Tal, and E. Telatar “On the Construction of Polar
Codes,” Proceedings of IEEE International Symposium on Information Theory, Saint
Petersburg, Jul. 2011.

