Cell Segmentation and Tracking

S. Shailja
Jiaxing (Tom) Jiang
Motivation

• Biological Process

• Disease Progress
Problem Statement
Dataset

- *C. elegans* developing embryo
 Waterston Lab, University of Washington

- Voxel size: 0.09 x 0.09 x 1.0 μm

- Time step (min): 1 (1.5)
Segmentation: Algorithm

Level 1: Initial segmentation (proposed by MPI-GE (benchmark))
Segmentation: Algorithm

Level 2: Superpixel segmentation

Input image → Noise filtering → SLIC → Superpixel segmentation → Segmented image 2
Segmentation: Algorithm

Level 3: Boundary Correction

Segmented image 1 + Segmented image 2 → Output image

Majority voting on boundary of segmented nuclei
Segmentation: Comparison

Input Data

Benchmark Segmentation
Segmentation: Comparison

Our Algorithm

Input Data
Segmentation: Comparison
Segmentation: Results

Validation

Dataset 01

Benchmark: 67.47%

Proposed algorithm: 69.73%

Dataset 02

Benchmark: 59.65%

Proposed algorithm: 64.77%
Take-home message

Addition of the proposed boundary correction pipeline improves the segmentation accuracy.
UC SANTA BARBARA

Prof. B.S. Manjunath Jiaxiang (Tom) Jiang

CELL TRACKING CHALLENGE TEAM

Martin Maška
Carlos Ortiz De Solorzano Aurusa
Tracking: Algorithm

Two consecutive segmented images → Graph construction → Undirected graphs → Node matching → Final labels
Tracking: Results (to do..)

Validation

Dataset 01
- Proposed algorithm: 67.47%
- Benchmark: 69.73%

Dataset 02
- Benchmark: 59.65%
- Benchmark: 69.73%