A robust Reeb graph model of white matter fibers

A Reeb graph-based approach discovers the branch and merge structure of the streamlines that unravels a topological understanding of white matter fibers.

Introduction	Obje
 Tractography generates billions of complex curvilinear fibers (streamlines). 	Problem structur
 Streamlines are usually noisy, and in turn affect structural brain connectivity analysis. 	Solution geomet
$T_1 T_2 T_3 p_1 T_4 T_5 T_6$ $p_2 p_3$	
$I = \{T_1, T_2, T_2, \dots, T_n\}$	B ₂

An example showing the branching structure of the streamlines and the Reeb graph where nodes encode the merge, split, and termination characteristics.

 p_m

Results

Reeb graph representation of major tracts from International Society for Magnetic Resonance in Medicine (ISMRM) dataset [4].

 $\{I_1, I_2, I_3, \dots, I_n\}$

References

[1] Shailja, S., Scott T. Grafton, and B. S. Manjunath. "A robust Reeb graph model of white matter fibers with application to Alzheimer's disease progression." bioRxiv (2022).

[2] Shailja, S., Angela Zhang, and B. S. Manjunath. "A computational geometry approach for modeling neuronal fiber pathways." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2021. [3] Buchin, Kevin, et al. "Trajectory grouping structure." Workshop on Algorithms and Data Structures. Springer, Berlin, Heidelberg, 2013. [4] Maier-Hein, Klaus H., et al. "The challenge of mapping the human connectome based on diffusion tractography." Nature Communications , 2017.

ective

m: To model the bundling res of streamlines.

: We propose a computational try approach using Reeb graphs.

github.com/UCSB-VRL/ReebGraph

Algorithm

Steps:

1. Construct dynamic graph G. 2. Find connected components in G. 3. Compute *R*.

Robustness

 ϵ – distance between a pair of streamlines in a bundle that defines its sparsity

 α – spatial length of the bundle that introduces persistence

 δ – the bundle thickness

Applications

Conclusion

- the pathways.
- orientated quantitative analysis.

We would like to thank Vikram Bhagavatula and Angela Zhang for their insightful discussion on the research project. This research was supported by NSF award: SSI # 1664172.

S. Shailja¹, Scott T. Grafton², B. S. Manjunath¹

¹Department of Electrical and Computer Engineering

² Psychological and Brain Sciences Department

UC SANTA BARBARA

• Ranking, quantification, and comparing diseaserelevant region of interests.

Reeb graph skeletons for active diagnosis with

increasing age and physiological changes in the brain.

• We present a computational model of spatial evolution of neuronal trajectories to encode the critical points of

• Point correspondence of the critical coordinates in the 3D brain is an essential requirement of the tract-

Relevant brain regions for Alzheimer's Disease show severe decrements in the fiber density (ROIs marked with *).

