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Fig.3:The training workflow of two-level binary classification approach.

e Each model has different advantages and disadvantages and they tend
to seize the data from different angles.

e (Can build several estimators independently and ensemble their
predictions.

Methodology

e Proposed a two-level ensemble approach:
o first level: averages the probability maps from the same type of
models
o second level: boosts the averaged probability maps from different
models by using the XGBoost algorithm in the second level.
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Fig.4: Examples of predictions from different ensemble methods. The top left image shows the ground-truth lesion
acadient boost mask, and the top middle image shows the predictions using the arithmetic mean. The top right image shows the

KRGS prediction using a two-level multi-class classification (TLMC) method. The bottom left image shows the prediction
using a two-level binary classification (TLBC) method, and the bottom right image shows the prediction using a
two-level fusion classification (TLFC) method. Red: enhancing tumor, yellow: necrosis & non-enhancing tumor, and
green: edema. ITK-SNAP (Fedorov et al., 2012) is used to visualize the MR images and lesion masks.

Methods DSC _ET DSC_WT DSC TC
DeepMedic 79.0 (22.6) 89.6(6.4) | 81.3(21.8)

3D U-Net 76.4(25.4) | 90.1(6.4) | 76.9(24.4)

TLFC 78.2(25.6) | 90.8(6.1) | 82.3(21.2)

Table 1: Comparison of Dice Scores for various algorithms on BraTS 2018 validation set. The
results are reported as mean (standard deviation). Bold numbers highlight the improved
results.

Fig.1: Glioma sub-regions, edema (yellow), non-enhancing solid core (red), necrotic core (green) and enhancing
core(blue)
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Summary :
N - e Proposed a two-level fusion classification method.
XGBoost D"e"'“e"jai‘”"”"e‘ e This method can also be easily integrated with more different types of
e N neural networks.
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Fig.2:The workflow of two-level ensemble approach to improve state-of-art CNNs. ° Create an automated tOOl for ensemb“ng the different mOdEIS'
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