
INSTITUTE OF PHYSICS PUBLISHING NANOTECHNOLOGY

Nanotechnology 16 (2005) 888–900 doi:10.1088/0957-4484/16/6/045

CMOL FPGA: a reconfigurable
architecture for hybrid digital circuits
with two-terminal nanodevices
Dmitri B Strukov and Konstantin K Likharev

Stony Brook University, Stony Brook, NY 11794-3800, USA

Received 4 February 2005, in final form 15 March 2005
Published 19 April 2005
Online at stacks.iop.org/Nano/16/888

Abstract
This paper describes a digital logic architecture for ‘CMOL’ hybrid circuits
which combine a semiconductor–transistor (CMOS) stack and two levels of
parallel nanowires, with molecular-scale nanodevices formed between the
nanowires at every crosspoint. This cell-based, field-programmable gate
array (FPGA)-like architecture is based on a uniform, reconfigurable CMOL
fabric, with four-transistor CMOS cells and two-terminal nanodevices
(‘latching switches’). The switches play two roles: they provide diode-like
I–V curves for logic circuit operation, and allow circuit mapping on CMOL
fabric and its reconfiguration around defective nanodevices. Monte Carlo
simulations of two simple circuits (a 32-bit integer adder and a 64-bit full
crossbar switch) have shown that the reconfiguration allows one to increase
the circuit yield above 99% at the fraction of bad nanodevices above 20%.
Estimates have shown that at the same time the circuits may have extremely
high density (approximately 500 times higher than that of the usual CMOS
FPGAs with the same design rules), while operating at higher speed at
acceptable power consumption.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The simple, uniform structure of semiconductor field-
programmable gate arrays (FPGAs) makes them very cost-
effective and allows FPGA chips to compete with custom
and application-specific integrated circuits for many important
applications [1–3]. The most important feature of FPGA
circuits, the possibility to reconfigure them after fabrication,
makes this approach even more valuable as the leading
semiconductor transistor technology, CMOS, approaches the
end of scaling [4]. Indeed, as individual transistors are scaled
down, their fabrication yield decreases, and the possibility to
reconfigure an integrated circuit around bad devices becomes
a very attractive option. Most probably, this feature will
become absolutely necessary beyond the scaling limit of the
purely CMOS technology, when further progress will require
its augmentation with novel nanoscale (e.g., molecular [5–8])
devices, because the yield of fabrication and/or self-assembly
of these components will hardly ever approach 100%.

Indeed, the application of such classical techniques of
providing fault tolerance as von Neumann multiplexing [9, 10]

or R-MD redundancy [10] to defects becomes rather inefficient
for high defect rates. For example, the recently improved
von Neumann multiplexing approach requires a 10-fold
redundancy for a bad device fraction q as low as ∼10−5

and a 100-fold redundancy for q ≈ 3 × 10−3 [11]. In
contrast, reconfigurable computer architectures, which allow
one to locate bad components first and then to implement
an optimum reconfiguration of the system, may provide high
defect tolerance even in these conditions. For example, the
Teramac computer [5] can be reconfigured to run a number
of real-world tasks even when up to 3% of its resources are
defective.

Several reconfigurable architectures for digital nanoelec-
tronic circuits have been proposed (see the recent review [8]
and subsequent publications [12, 13]); most of them are based
on FPGA-like structures. In FPGAs based on lookup ta-
bles (LUTs), all possible values of an m-bit Boolean function
of n binary operands are kept in m memory arrays, of size
2n × 1 each. (For m = 1, and some representative applica-
tions, the best resource utilization is achieved with n close to
4 [14], while the Teramac computer [5, 15] uses LUT blocks

0957-4484/05/060888+13$30.00 © 2005 IOP Publishing Ltd Printed in the UK 888

http://dx.doi.org/10.1088/0957-4484/16/6/045
http://stacks.iop.org/Nano/16/888

CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices

with n = 6 and m = 2). The main problem with the idea [5]
of application of this approach to hybrid CMOS/nanodevice
circuits is that the memory arrays of the LUTs based on real-
istic nanodevices cannot provide address decoding and output
signal sensing (recovery). This means that those functions
should be implemented in the CMOS subsystem. The corre-
sponding overhead may be estimated, for example, using our
recent results for hybrid memories [16]. In particular, they
show that for a memory with 26 × 2 bits, performing the func-
tion of a Teramac’s LUT block, and for realistic parameters of
CMOS transistors and nanodevices, the area overhead would
be above four orders of magnitude, so it would lose the density
(and hence performance) competition even to a purely CMOS
circuit performing the same function. Increasing the memory
array size up to the optimum value calculated in [16] is not
a viable option either, because the LUT performance scales
(approximately) only as a log of its capacity [17].

The alternative, programmable-logic-array (PLA) FPGAs
are based on the fact that an arbitrary Boolean function can be
rewritten in the canonical form, i.e., in the two-level logical
representation. As a result, it may be implemented as a
connection of two crossbar arrays, for example one performing
the AND, and the other the OR function [8].

The first problem with the application of this approach
to the CMOS/nanodevice hybrids is the same as in the case
of LUTs: the optimum size of the PLA crossbars is finite
and typically small [18], so that the CMOS overhead is
extremely large. Moreover, any PLA logic built with diode-
like nanodevices faces an additional problem of high power
consumption. In contrast with LUT arrays, where it is possible
to have current only through one nanodevice at a time, in PLA
arrays the fraction of open devices is of the order of one half [8].

The power consumption may be reduced by using a
dynamic logic style, but this approach requires more complex
nanodevices. For example, reference [12] describes an
interesting dynamic-mode PLA-like structure using several
types of molecular-scale devices, most importantly including
field-effect transistors (FETs) formed at crosspoints of two
nanowires. In such a transistor, one (semiconductor)
nanowire would serve as a drain/channel/source structure,
while the perpendicular nanowire would play the role of
the gate. However, because of an exponential dependence
of the threshold voltage on the transistor dimensions,
semiconductor FETs with a channel a few nanometres long
are irreproducible [19, 20]. (Similar problems are faced by
the architecture described in [13], since it is entirely based on
crossed-nanowire FET transistors.)

The goal of this paper is to present an alternative
reconfigurable architecture for hybrid CMOS/nanodevice
circuits, whose structure is similar to the so-called cell-
based FPGAs [1, 28]. The architecture has been developed
for the recently suggested ‘CMOL’ variety of the hybrid
circuits [20, 21]. As in several earlier proposals [5, 8],
nanodevices in CMOL circuits are formed (or self-assembled)
at each crosspoint of a ‘crossbar’ array, consisting of two
levels of nanowires (figure 1). However, in order to overcome
the CMOS/nanodevice interface problems pertinent to earlier
proposals, in CMOL circuits the interface is provided by pins
that are distributed all over the circuit area, on the top of the
CMOS stack. (The technology necessary for fabrication of tips

nanodevices (a)

nanowiring
and

nanodevices

interface
 pins

upper
wiring

level of
CMOS
stack

selected
nanodevice

selected
word

nanowire

selected
bit

nanowire
interface

pin 1
interface

pin 2

α

(b)

CMOS
cell 2

CMOS
cell 1

(c)

2βFCMOS

2Fnano
α

pin 1

pin 2′

 pin 2

2rFnano

Figure 1. Low-level structure of the generic CMOL circuit:
(a) schematic side view; (b) the idea of addressing a particular
nanodevice, and (c) zoom-in on several adjacent pins to show that
any nanodevice may be addressed via the appropriate pin pair (e.g.,
pins 1 and 2 for the left of the two shown devices, and pins 1 and 2′
for the right device). In panel (b), only the activated CMOS lines
and nanowires are shown, while panel (c) shows only two devices.
(In reality, similar nanodevices are formed at all nanowire
crosspoints.) Also disguised in panel (c) are CMOS cells and
wiring. The incline angle α � 1 and dimensionless parameter β
satisfy two conditions, sin α = Fnano/βFCMOS and
cos α = r Fnano/βFCMOS, where r is an integer.

with nanometre-scale points has been already developed in the
context of field-emission arrays [23].) As figure 1(c) shows,
pins of each type (reaching to the lower and upper nanowire
level) are arranged into a square array with side 2β FCMOS,
where FCMOS is the half-pitch of the CMOS subsystem, while
β is a dimensionless factor larger than 1, that depends on the
CMOS cell complexity. The nanowire crossbar is turned by
angle α = arcsin(Fnano/β FCMOS) relative to the CMOS pin
array, where Fnano is the nanowiring half-pitch. By activating

889

D B Strukov and K K Likharev

I

VVinjVt

VW

0

2VW

-2VW

OFF
state

ON
state

ON
state

Vej

OFF
state

source island drain

single-electron transistor

 single-electron trap

tunnel
junction Cg

Cc

 (b)

 (a)

VDD

-VW

(Vt)max

Figure 2. Two-terminal latching switch: (a) the I –V curve that has
been assumed in our analysis (the results are virtually unaffected by
the exact shape of the curve) and (b) the single-electron
implementation. In the OFF stage of the switch, the single-electron
transistor has a high Coulomb blockade threshold (Vt)max > VDD. If
the source–drain voltage V exceeds a certain value Vinj ∼ (Vt)max,
an additional electron is injected into the single-electron trap, and its
electric field suppresses the Coulomb blockade threshold to a lower
value Vt < VDD, enabling current to flow. (The ON state of the
latch.) The device may be turned OFF by applying voltage below
Vej and thus ejecting the additional electron from the trap island.

two pairs of perpendicular CMOS lines, two pins (and two
nanowires they contact) may be connected to CMOS data
lines (figure 1(b)). As figure 1(c) illustrates, this approach
allows a unique access to any nanodevice, even if Fnano �
FCMOS; see [21] for a detailed discussion of this point. If
the nanodevices have a sharp current threshold, like the usual
diodes, such access allows one to test each of them. Moreover,
if the device may be switched between two internal states
(figure 2(a)) as, for example, the single-electron latching
switches (figure 2(b), [20–22]), each device may be turned into
the desirable (ON or OFF) state by applying voltages ±VW

to the selected nanowires, so that the voltage V = ±2VW

applied to the selected nanodevice exceeds the corresponding
switching threshold, while half-selected devices (with V =
±VW) are not disturbed.

We see at least two key advantages of CMOL circuits over
other crossbar-type hybrids:

(i) Due to the uniformity of the nanowiring/nanodevice levels
of CMOL, they do not need to be precisely aligned with
each other and the underlying CMOS stack [21]. This fact
allows the use of advanced patterning techniques [24, 25],
which lack precise alignment, for nanowire formation.

(ii) CMOL circuits may work with two-terminal nanodevices
(e.g., single-electron latching switches) whose fabrication
and/or self-assembly is substantially less challenging than
that for their three-terminal counterparts. As will be
shown below, the relatively low functionality of two-
terminal nanodevices may be compensated by (relatively
sparse) transistors of the CMOS subsystem.

Recently, we have shown that the CMOL approach
allows one to reach high defect tolerance, together with high
performance, in digital terabit-scale memories [16] and mixed-
signal neuromorphic networks [26]. (For a recent review of
these results, see [21].) In this paper, we will show that by
using a cell-based FPGA architecture, a similar combination of
high performance and defect tolerance may also be reached in
Boolean-logic CMOL circuits. So far, we have analysed only
two, relatively simple circuits: a 32-bit Kogge–Stone adder and
a 64-bit fully connected crossbar. However, these first results
are so encouraging that we have decided to publish them right
away.

2. Architecture

For FPGA applications, it is more convenient (though not
absolutely necessary) to turn the nanowire crossbar by almost
45◦ relative the square array of CMOS cells and interface
pins. More exactly, the requirements for the angle α and the
dimensionless factor β that determines the CMOS cell area
A = (2β FCMOS)

2 now take the form:

cos α = r Fnano

β FCMOS
, sin α = (r − 1)Fnano

β FCMOS
, (1)

where r is a positive integer number1. The nanowires
are fabricated with small breaks repeated with period L =
2β2 F2

CMOS/Fnano. With this arrangement, each nanowire
segment is connected to one interface pin2. As a result, each
input or output of a CMOS cell can be connected through
a pin–nanowire–nanodevice–nanowire–pin link to each of
M = 2r(r − 1) − 1 other cells located within a square-
shaped ‘connectivity domain’ around the initial cell; see
figure 3(a). (For infinitesimal gaps, M would equal 2r(r − 1),
but for a more feasible gap width of the order of 2Fnano,
the connectivity domain is by one cell smaller. This is
also convenient for analysis, since the resulting connectivity
domain is symmetric.)

Each CMOS cell (figure 3(b)) consists of an inverter and
two pass transistors that serve two pins (one of each type)
serving as the cell input and output, respectively. During the
configuration stage, all inverters are disabled by an appropriate
choice of global voltages Vdd and Vgnd (figure 3(b)), and testing
and setting of all nanodevices is carried out absolutely similarly
to the procedure described in the introduction (figure 1(b); see
also [16] and [21]).

When the configuration stage has been completed, the
pass transistors are used as pull-down resistors, while the
nanodevices set into ON (low-resistive) state are used as pull-
up resistors. Together with CMOS inverters, these components

1 Though our analysis is valid for arbitrary r , the best use of CMOL
capabilities is achieved at Fnano � βFCMOS, when angle α ≈ π/4 − 1/r
is very close to 45◦, the integer r ≈ βFCMOS/

√
2Fnano is large, and the

spectrum of possible values of β, β = (2r2 − 2r + 1)1/2 × (Fnano/FCMOS),
is so dense that choosing one of them that is convenient for the CMOS cell
design is not a problem.
2 The best performance is achieved if the pin contacts the wire fragment in
its middle, and our analysis has been carried out with this assumption. This
may be assured if the nanowire breaks are provided by features of the same
lithographic mask that defines interface pin positions. It is also straightforward
to show that at r � 1, a modest misalignment of the pin and breaks (by
∼FCMOS) reduces the circuit performance only by a small factor of the order
of 1/β � 1.

890

CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices

(b)

output nanowire

input
nanowire

 CMOS
column 2

CMOS
row 1

CMOS
inverter

CMOS
column 1

CMOS
row 2

VDD

(a) 2β 2 ×βFCMOS FCMOS 2(r - 1) α

Figure 3. CMOL FPGA: (a) the topology and (b) logic cell
schematics. In panel (a), M = 2r(r − 1) − 1 CMOS cells painted
light-grey (in the shown case, r = 3, M = 11) form the
‘connectivity domain’ for the input pin of the cell painted dark-grey.
(The output connectivity domain has as many cells.) Note that there
are r nanowires of one orientation and (r − 1) of the perpendicular
orientation per CMOS cell side.

may be used to form the basic ‘wired-NOR’ gates (figure 4).
For example, if only the two nanodevices shown in figure 4(b)
are in the ON state, while all other latches connected to the
input nanowire of cell F are in the OFF (high resistance) state,
then cell F calculates the NOR function of signals A and B.
Clearly, gates with high fan-in and fan-out (broadcast) may
be readily formed as well by turning ON the corresponding
latching switches. Having these primitives is sufficient to
implement any Boolean function, as well as to perform routing,
providing that the hardware resources are sufficient. Moreover,
our circuits are inherently defect-tolerant, since they have
M = 2r(r −1)−1 � 1 nanodevices per CMOS cell, and only
a few of them (on the average, the same as the gate fan-out)
are required for circuit operation.

3. Reconfiguration

Generally, there may be many different algorithms to
reconfigure the CMOL FPGA structure around known defects,
including quasi-optimal, exhaustive-search options which
are impracticable, because the resources required for their
implementation are exponential in circuit size. Here we will
describe a very simple linear-time algorithm, whose execution

B

A

F F

 A B

CMOS inverter

nanodevices

pass
transistor

A
B

F

(a) (b)

RON

Rpass Cwire

Figure 4. CMOL wired-NOR gate: (a) schematics and (b) one of
(many possible) configurations.

Figure 5. Pseudo-code of the algorithm used for CMOL FPGA
reconfiguration around bad nanodevices. For detailed explanations,
see the text.

timescales just as N M (where N is the number of gates
in the circuit), which nevertheless gives very good results.
In this approach, the CMOL FPGA configuration is carried
out in two stages: first, mapping the desired circuit on the
apparently perfect (defect-free) CMOL fabric, and second, its
reconfiguration around defective components.

For our initial analysis of a few simple circuits we have
performed the first step manually, though the mapping of more
complex circuits will certainly require the development of
dedicated CAD tools, quite similar to those already developed
for conventional FPGAs; see, for example, [27].

For the second stage we have developed an automatic
procedure, so far assuming only one defect type: the
absence of nanodevices (latching switches) at certain nanowire
crosspoints. (Circuit-wise, such a defect is equivalent to
the ‘stuck-on-open’ fault.) This model has been used
in most other works on nanoelectronic circuits (see, for
example, [13, 16, 39]) because it is adequate for molecular
electronics where such defects result from the failure of
molecular self-assembly. In our modelling, the defects
have been assumed to be randomly distributed among the
crosspoints, with probability q < 1.

Our algorithm (formally presented in figure 5) is based
on sequential attempts to move each gate from a cell with bad

891

D B Strukov and K K Likharev

(a)

CMOS
cell 2

B

1

4

A

3

(c)

A B

4

1

3

2
repair
region

(b)

A

2(r - 1) cells

1

4

cell
currently used for gate A

Figure 6. Example of a circuit fragment reconfiguration. (a) Circuit
whose gate A is to be relocated, because at least one of its
connections (with its either input gate 1 or output gate 4) is faulty.
(b) The ‘repair region’ of gate A (painted pink) is the intersect of the
connectivity domains (shown by dashed lines) of its input and
output gate cells. (c) If a cell of the ‘repair region’ of A already
houses another gate B, the repair domain of the latter cell (painted
light blue) is also calculated. Since in this case A is within the repair
domain of B, these gates may be swapped, connection quality
permitting. For clarity, in this figure r = 6; optimal values of r are
typically larger (see below).

input or/and output connections to a new cell, while keeping its
input and output gates in fixed positions. (Note that according
to the CMOL FPGA topology shown in figure 3(a), in each
position the cell uses a different set of nanodevices.) At such
a move, the gate may be swapped with another one, provided
that all connections of the swapped gates can be realized with
the CMOL fabric and are not defective.

In order to implement this idea, we first calculate the
‘repair region’ of the gate, where it could be moved if there
were no other cells around; this region is just the overlap
of the connectivity domains of all its input and output cells.
For example, for the circuit shown in figure 6(a), gate A
can be moved to any cell of the repair region painted pink
in figure 6(b), which is the intersection of the connectivity
domains of its output and input gates 1 and 4. If some cell of the
repair region is already occupied by another gate, for example
gate B (figure 6(c)), then a similar region is calculated for that
gate as well. (For example, in figure 6(c) the repair region for
gate B is the intersection of the connectivity domains of gates 2,
3, and 4.) If the original gate lies in that new repair region, then
these two gates can be swapped, keeping the circuit functional
(provided that all the connections are good).

If there are several cells in the initial gate’s repair domain
(i.e., several positions this gate may be moved to), higher
priority is assigned to positions providing smaller interconnect
length. More exactly, for each position we calculate the penalty
function

F =
∑

i

[(�xi)
2 + (�yi)

2] f , (2)

where x and y are the horizontal and vertical coordinates of
each cell, and f is an empirically selected exponent. (We have
got the best results for f = 2.) The summation in equation (2)
is over all potential interconnects; if the move requires a cell
swap, interconnections of both cells are counted. For example,
in figure 6(c) five connections (from gate A to 1 and 4, and
from gate B to 2, 3, and 4) give contributions to this sum.
(Typically, though not always, this rule gives higher priority to
a gate moving into an initially empty cell.)

After the list of all possible moving options has been
compiled, they are checked, in the order of increasing penalty

F , for defective interconnects. The first met option with all
good connections is implemented. The case when there are no
possible moving options with good connections is considered
a reconfiguration failure.

An approximate analysis of this reconfiguration algorithm
shows that most reconfiguration failures come from the longest
initial connections, corresponding to the very periphery of the
cell connectivity domains. This is why we have found that
from the point of view of defect tolerance it is beneficial to
carry out the initial design for artificially confined connectivity
domains. They are similar in shape to that shown in figure 3(a),
but have only M ′ < M cells. In the discussion below, we will
mostly quote the linear size scale (‘radius’) r ′ of the confined
connectivity domain, defined by relation M ′ = 2r ′(r ′ −1)−1
(similar to that relating M and r).

4. First case study: Kogge–Stone adder

4.1. Initial mapping

As the first example, we will consider the CMOL FPGA
implementation of an integer, parallel-prefix adder which is
one of the key digital logic circuits in digital design; see,
for example, [28]. Among such adders, the Kogge–Stone
adder [37] has the most regular structure (figures 7(a), (b))
and therefore we could carry out its manual mapping on the
CMOL FPGA fabric. First, the 32-bit adder circuitry has been
converted into a netlist of fan-in-two NOR gates (figure 7(c))
and then mapped onto a rectangular CMOL block (figure 8),
with interleaved inputs A[31:0] and B[31:0] on the top side and
outputs S[31:0] and Cout on the bottom side. (For simplicity,
Cin is assumed to be always ‘0’). The mapping procedure was
first performed for one bit slice and then repeated for the rest of
the circuit, for several values of the connectivity domain radius
r ′ � r . For example, figure 8(a) shows the map for r ′ = 10.
(As a reminder, in CMOL hardware each of these straight lines
actually consists of two mutually perpendicular nanowires,
connected with a nanoscale latching switch; see figures 3(a)
and 4(b)). For this case the connectivity domain’s diagonal
has 2(r ′ − 1) = 18 cells; however, in the last (fourth) logic
stage the signal vector G (generate) has to span over 32 cells in
the horizontal direction. To implement such connections, two
additional inverters have been added in the design in each bit
slice. Also, assuming that the inputs to the adder are provided
by CMOS lines, the broadcast of the input signal vectors A
and B (figure 7(b)) has been avoided by adding another logic
level (figure 7(c)).

For this particular value of r ′, the final ‘logic depth’ (the
number of logic levels in the critical path) is 21, the number to
be compared to 13 levels for the conventional implementation,
and 7 levels for the implementation with [4:1] LUTs. Figure 9
shows the depth as a function of r ′ . Smaller values of r ′ result in
larger depth and hence a larger total number of CMOS cells, up
to the point r ′ = rmin, at which the layout becomes impossible.
However, a reduction of r ′ is beneficial for defect tolerance;
see the next section.

4.2. Reconfiguration results

The defect tolerance of the circuit immediately after the initial
mapping is very poor, with the circuit yield going down

892

CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices

(a) (b) (c)

Figure 7. (a) The 32-bit Kogge–Stone adder and ((b), (c)) its single (16th) bit slice implemented with: (b) AND, OR, and XOR gates, and
(c) NOR gates only.

rapidly at the bad device fraction q as low as ∼5 × 10−5,
since the damage of any of ∼2300 actively used nanodevices
leads to the circuit failure. The reconfiguration increases the
acceptable q dramatically. The increase has been calculated
using numerical Monte Carlo simulation of the reconfiguration
on our group’s supercomputer cluster Njal (http://njal.physics.
sunysb.edu/). For each initially mapped circuit, the program
has been run 10 000 times with a randomly chosen set of
defects, formed with the same probability q. For some
(randomly chosen) successful reconfiguration runs the final
layout has been functionally simulated to verify the correctness
of the design. This was achieved by first saving the layout in
the blif format and then converting it into the structural VHDL
code with the help of the SIS package [29]. The verification
has been fully successful.

Figure 8(b) shows the final connection map of the
same adder as in figure 8(a) (r ′ = 10), after a typical
successful reconfiguration with r = 12 and q = 0.5, while
figure 10 shows the layout of a small fragment of this circuit,
with defective nanodevices marked black. We were very
much impressed how resilient the circuit was, retaining full
functionality after reconfiguration around as many as 50%
of bad devices. Actually, the defect tolerance could be even
higher if we allowed the input and output cells of the adder to

be moved (as can be done at a joint reconfiguration of several
functional units).

Figures 11(a) and (c) show the fault tolerance of the adder
as a function of r and r ′. If we choose not to confine the
initial mapping additionally (i.e., take r ′ = r), the circuit
becomes more defect tolerant as r is increased. (With a
fixed CMOS technology, FCMOS, this requires scaling down
the nanowire and nanodevice half-pitch Fnano.) If r , i.e.,
fabrication technology, is fixed, the defect tolerance may still
be improved remarkably by taking just a slightly lower r ′. The
practical limit for this reduction is imposed by the explosive
growth of the logic depth at r ′ → rmin (figure 9), as the
corresponding performance degradation; see section 6 below.

The results show, for example, that at realistic parameters
(r = 12, r ′ = 10) the circuit may have a fabrication yield
above3 99% at the fraction of bad nanodevices as high as
∼22% (figure 11(c)). Surprisingly enough, this is much better
than our results for CMOL memories [16]. Probably, this

3 Our estimates have shown that for hierarchically organized VLSI chips,
this circuit reliability is sufficient for high total chip yield, with very minor
additional circuit-level redundancy. For example, a CMOL analogue of the
Teramac computer [5, 15] with circuits of this quality would have a total yield
in excess of 99%, at circuit redundancy between 2 and 3.

893

http://njal.physics.sunysb.edu/
http://njal.physics.sunysb.edu/
http://njal.physics.sunysb.edu/
http://njal.physics.sunysb.edu/
http://njal.physics.sunysb.edu/

D B Strukov and K K Likharev

a0
b0 a1

b1 a30
b30 a31

b31

s0 s1 s30 s31

01
23
45
67
89
1011
1213
1415
1617
1819
2021
22 23

2425
2627
28 29

3031
32
34 35

3637
3839
4041

4243
44

47
0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

01
23

4
56

7
89

10

11

12

131415
16

17

1819

20

2122

2324

2526
2728

29
30

31

32

34

35
36

37
38

39

4041

42

43

4447
0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

(a)

(b)

Figure 8. Mapping of the 32-bit Kogge–Stone adder on CMOL FPGA fabric with r ′ = 10: (a) the corresponding initial map of cell
connections, and (b) the connection map after the successful reconfiguration of the circuit around as many as 50% of bad nanodevices (for
r = 12). Gates of the 16th bit slice (see the dashed line in figure 7(a)) are painted yellow and numbered in accordance with figure 7(c).

means that the memory architecture we have analysed may
be considerably improved.

5. Second case study: full crossbar

5.1. Initial mapping

Routing resources are a very important part of conventional
FPGAs, as well as more exotic reconfigurable systems such as
the Teramac computer [5]. This is why as our second case we
have chosen the fully connected crossbar (figure 12(a)). For
this circuit even the initial mapping on a rectangular CMOL
array (with gates working as simple inverters) may be readily
automated, for example using the simple ‘greedy’ algorithm4.
In this procedure, the I/O pairs to be connected are mapped onto
the array one-by-one. Each pair is first assigned a perfect-
world Manhattan route, using the vertical rows of the input

4 Since the number n of I/O pairs is typically much larger than the connectivity
radius r , inputs and outputs cannot be connected directly.

and output cells and some horizontal row (figure 12(b)). The
algorithm checks that the vertical fragments of various routes
do not overlap, while uniformly distributing their horizontal
fragments among the array rows.

Then, to create an actual path for each I/O pair, the
algorithm tries to allocate cells which are closest to the perfect
route and are within each other’s connectivity radius. (Of
course, the cells used in mapping of the previously routed pairs
cannot be used again.) Just as in the previous case, an artificial
reduction of the connectivity to radius r ′ � r (at the initial
mapping only) improves the final defect tolerance.

In order to use this (or any other) routing algorithm
practically, one needs to select the vertical size m of the CMOL
array first (figure 12(a)). In general, we are interested in
the smallest value of m, because this leads to the smallest
area and logic depth of the crossbar. Such a value can be
calculated considering the worst possible combinations of the
I/O pairs, which result in the largest aggregate data flow (n
routes) across the middle cross-section S of the rectangular

894

CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices

5 10 15 20 25 30
1

10

100

32-bit Kogge-Stone adder

64-bit crossbar

Lo
gi

c
D

ep
th

 d

 (
st

ag
es

)

Effective Connectivity Domain Radius r'

(r ')
min

Figure 9. Logic depth (critical path length) of the two studied
circuits as a function of the effective connectivity radius r ′.

Figure 10. A small fragment of the adder after the same
reconfiguration as in figure 8(b). Bad nanodevices (50% of the total
number) are shown in black, good used devices in green, and unused
devices are not shown, for clarity. Coloured circles are only a help
for the eye, showing the location of interface pins (red and blue
points) and nanodevices used. Thin vertical and horizontal lines
show CMOS cell borders.

array (figure 12(c)). Since CMOL fabric has (r −1) nanowires
passing over each CMOS cell in the least favourable direction
(figure 3(a)), and only (r ′ − 1) of them are used at the
constrained-radius mapping, there are only m(r ′−1)nanowires
overall to serve the critical cross-section S. This is why the
crossbar height should satisfy the condition m(r ′ − 1) � n.
Moreover, in our simple ‘greedy’ algorithm, nanowires of the
same critical cross-section may be used to provide vertical
transport of (in the worst case) n routes, so that a more strict
condition should be satisfied: m(r ′ − 1) � n + m, i.e.,
m � n/(r ′ − 2). Finally, including two input and output rows,
the minimal crossbar height is mmin = 	n/(r ′ − 2)
 + 2.

From here, the maximum logic depth d (the number
of cell-to-cell hops) of the crossbar may be calculated as
	(n + m)/(r ′ − 2)
, because the longest route has the length
of (n + m) cells and each cell-to-cell hop allows one to move
along this route by (r ′ − 2) cells in the worst (left-to-right)
case. The resulting dependence of the logic depth of a 64-bit
crossbar on r ′ is shown in figure 9; it is substantially smaller
than the depth of the 32-bit adder which has the same total
input vector width (32 + 32 = 64).

(a)

(b)

0.01 0.1 1
0

20

40

60

80

100

1E-5 1E-4 1E-3 0.01 0.1 1
90

99

1E-3

99.99

0.01 0.1 1
0

20

40

60

80

100

Bad Nanodevice Fraction q

r'=17, r =
 17

r'=10, r =
 10
 11
 12
 13

C
irc

ui
t Y

ie
ld

 Y
 (

%
)

Bad Nanodevice Fraction q

r'=10
r=12

r'=10, r=10

crossbar
 adder

99.9

C
irc

ui
t Y

ie
ld

 Y
 (

%
)

r'=17, r=
 17
 18
 19

r'=10, r=
 10
 11
 12

C
irc

ui
t Y

ie
ld

 Y
 (

%
)

Bad Nanodevice Fraction q

(c)

Figure 11. The final (post-reconfiguration) defect tolerance of
((a), (c)) the 32-bit Kogge–Stone adder and ((b), (c)) the 64-bit full
crossbar for several values of r and r ′. Panel (c) shows the defect
tolerance of the circuits on the log scale, which makes the results
visible for the most interesting (high) values of yield. This panel is
for the same values of r and r ′ which have been used for figure 8
and the performance estimates in section 6.

5.2. Reconfiguration results

Figures 11(b) and (c) show the yield results for the 64-bit
crossbar after its reconfiguration using the same algorithm
(figure 5), for several values of r and r ′. The most important
difference from the adder (figures 11(a), (c)) is that without
the artificial connectivity domain confinement (i.e., at r ′ = r)
the crossbar is substantially less defect-tolerant than the adder.
(This is a result of a larger fraction of long interconnects.)
However, as soon as the difference (r − r ′) is increased by
the confinement, the defect tolerance of the crossbar improves
very quickly, and becomes even better than that of the adder.
For example, for the realistic case r = 12 and r ′ = 10, the
99% yield is actually achieved at ∼25% of bad nanodevices,
slightly higher than ∼22% for the adder (figure 11(c)). Such
rapid improvement is explained by the fact that the lower fan-in

895

D B Strukov and K K Likharev

n

m

inputs

outputs
[(n/2)!]2

worst-case I/O
combinations
of [n!]2 total

S

(c) (a)

1

1

2

2

3

3

(b)

Figure 12. Full crossbar: (a) general configuration of the CMOL
fabric, (b) perfect Manhattan routes used by the ‘greedy’ algorithm,
and (c) the family of worst-case I/O pairs.

of crossbar gates (inverters) ensures larger repair domain size
and hence more room for successful reconfiguration.

6. Performance

In this section, we will describe approximate estimates of
density, speed, and power of CMOL FPGA circuits, using the
following considerations and assumptions.

6.1. Nanodevices

We have assumed that each latching switch is implemented as
a parallel connection of several (D) single-electron devices of
the type shown in figure 2(b)5. The most important parameters
of the devices are the maximum Coulomb blockade threshold
voltage (Vt)max of the single electron transistor (which gives
the scale of the power supply voltage VDD, see figure 2(a)), and
the ratio of its dynamic resistances in the ON and OFF states.
Both these quantities depend on the single-electron addition
energy

Ea = e(Vt)max, (3)

which is generally contributed by both the single-electron
island charging energy Ec and quantum confinement energy
Ek. For the sub-1 nm island size necessary for reliable
room-temperature operation of the switches (see, for example,
figure 13 of [20]), Ek � Ec, so that we can use the formulae
valid for the strong confinement limit [30, 31]

ROFF/RON ≈ min[cosh2(Ea/2kBT), RON/RQ], (4)

where RQ ≡ h̄/e2 ≈ 4.1 k� is the quantum unit of
resistance. The first term in the square brackets of equation (4)
describes the effect of classical thermal fluctuations [30], while
the second one gives a crude estimate for the second-order
quantum effect, elastic co-tunnelling [31]. For our parameters
(see below), equation (4) shows that the minimally acceptable

5 General physical arguments show [20] that estimates for electron
nanodevices using other transport control mechanisms would be of the same
order, while the single-electron option seems most attractive in view of the
possible molecular implementation [21].

3 10 50
0.10

0.20

0.30

0.40

0.50

0.60

Nanowire layer
separation

 2 nm

κ = 39

 3 nm
 4 nm

C
w

ire
/L

 (
fF

/µ
m

)

F
nano

 (nm)

Figure 13. Specific capacitance of a nanowire with Fnano × Fnano

cross-section, in a crossbar with several values of interlayer spacing
(for dielectric constant κ = 3.9).

VDD is of the order of 0.2–0.3 V. This is compatible with
estimates of optimal VDD for most promising CMOS devices,
double-gate SOI MOSFETs [19, 20], especially taking into
account that CMOL circuits do not require the transistors to
reach deep current saturation.

6.2. Nanowires

The specific capacitance Cwire/L of nanowires has been
calculated using the well-known FASTCAP code [32] for the
crossbar structure (figure 1(a)) in which both the width and the
thickness of the nanowire, as well as the horizontal distance
between the wires, were assumed to be all equal to Fnano, while
the vertical distance between two layers was varied from 2 to
4 nm.6 The insulator between and around the wires is assumed
to have a dielectric constant of 3.9 (corresponding to SiO2); the
use of a low-κ dielectric would give the corresponding increase
of the circuit operation speed cited below. The result of the
calculation is shown in figure 13.

In order to calculate the specific resistance Rwire/L of
a metallic nanowire with the assumed square-shaped cross-
section Fnano × Fnano, the usual formula ρ/(Fnano)

2 has to
be generalized to include the increase of resistivity ρ due to
possible diffusive surface scattering of electrons. (This effect
becomes substantial when Fnano is decreased below the electron
mean free path l due to scattering on phonons.) A reasonable
approximation for ρ is given by the Matthiessen rule [33] in
the form

ρ ≈ ρ0 × (1 + l/Fnano), (5)

where ρ0 is the table (bulk) resistivity. We will accept values
ρ0 = 2 µ� cm and l = 10 nm which are typical for good
metals at room temperature7.

6 This is the length range for single-electron latching switches designed
for room-temperature operation; see, for example, figure 1(c) of [21]. For
practical estimates we took the most plausible value of 3 nm.
7 A more precise estimate of Rwire is unnecessary, since it gives a noticeable
effect on our results only at the extreme (and rather artificial) combination of
the largest FCMOS with smallest Fnano. However, the use of semiconductor
or molecular nanowires would change the situation dramatically and severely
suppress the performance of CMOL FPGAs (or any other realistic hybrid
nanoelectronic circuit).

896

CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices

nanodevice

1/4Rwire 1/4Rwire

Cwire

input
nanowire

1/4Rwire 1/4Rwire

Cwire

output
nanowire

RON/D Cin

CMOS
inverter

Rpass

CMOS pass
transistor

ROFF/D

M closed switches
in parallel
(with leakage
resistance ROFF/D
each)

open switch

Vin

Figure 14. The equivalent circuit of a CMOL logic stage with unit
fan-in and fan-out.

Applying these formulae, one should remember that while
charged capacitance always corresponds to the full nanowire
segment length L = 2β2 F2

CMOS/Fnano, only a part of the
fragment (from the crosspoint nanodevice to the interface
pin) contributes to its resistance Rwire. In order to keep our
estimates on the conservative side, we have assumed the worst
configuration case when the length of this part is largest (L/2).

6.3. Circuit

In order to speed up the CMOL FPGA circuit, it is beneficial
to reduce the signal swing of CMOS inverter’s input voltage
Vin by decreasing the effective parallel resistance Rpar defined
as (figure 14)

1

Rpar
≡ 1

Rpass
+

M

ROFF/D
. (6)

The limit to this reduction is set up by the requirement for the
swing Vin to be larger than the possible total noise swing at the
inverter input. Two most important components of the noise
are the thermal fluctuations and digital noise of other gates.

At M � 1, the thermal noise is typically Gaussian, with
the rms value

VT = (kBT/Cwire)
1/2, (7)

which is of the order of a few millivolts for our parameters
(see below). With the very strict requirement for the bit error
rate to be below qgate = 10−28 (corresponding, for example,
to a mean time between failures of at least 10 000 h [4] for a
CMOL FPGA chip with as many as 1010 gates operating with
a 0.1 ns clock cycle), the maximum swing �VT of this noise,
calculated from the equation 1 − erf(�VT/2

√
2VT) = 2qgate,

is close to 23 VT.
The digital noise is created mostly by coupling of output

signals of M other gates (with swing equal to VDD each)
through the M parallel resistances of latching switches turned
OFF (figure 14). Though for M � 1 the statistics of this
noise is usually also close to Gaussian, one cannot exclude
the possibility of strong correlation of signals processed by
neighbouring gates. To play it safe, we have assumed the
worst case scenario when all digital noise sources are fully
correlated, resulting in the maximum swing MVDD/(ROFF/D)

of the current flowing to the inverter input.
Summing these two noise contributions, we get the

following condition on Vin:

Vin > �VT + MVDD
Rpass

ROFF/D
, (8)

where the simplification is due to the fact that for all considered
cases Rpass � ROFF/(DM), i.e., Rpar ≈ Rpass, and VDD � Vin.

Indeed, with the parameters considered below, this
condition allows one to reduce Vin well below 100 mV, i.e.,
make it much lower than VDD. This means that the CMOL
FPGA circuit speed is limited by the relatively slow recharging
of a few-fF ‘input’ (post-latch) nanowire capacitance Cwire

shunted by a relatively low parallel resistance Rpass given by
equation (6), through a much higher series resistance Rser ∼
RON/D + 2Rwire .8 This is why the full equivalent circuit of
one logic stage (figure 14) yields the elementary formula for
the signal delay per logic stage:

τ0 ≈ log(2I)RpassCwire, (9)

where I is the gate fan-in, while the necessary value of Rpass

may be calculated as

Rpass = Vin/DION. (10)

The ON current of the nanodevice should be generally
calculated from the I–V curve (figure 2(a)), with D parallel
nanodevices connected in series with the Ohmic resistance
Rwire, driven by voltage VDD. However, since the only lower
bound on the suppressed Coulomb blockade threshold Vt is
to be larger than Vin (in order to prevent current leakage
through ON-state nanodevices fed by 0-level output of CMOS
inverters), Vt may be substantially less than VDD. Hence, we
may consider the nanodevice I–V curve linear, and find ION

as

ION ≈ VDD

Rser
= VDD

RON/D + 2Rwire
. (11)

6.4. Power

The average total power consumption of a CMOL gate may be
estimated as a sum of the static power PON due to currents ION,
static power Pleak due to current leakage through nanodevices
in their OFF state, and dynamic power Pdyn due to recharging of
nanowire capacitances. The above estimate Vin � VDD allows
one to calculate these contributions using simple formulae:

PON ≈ V 2
DD

2Rser
, Pleak = MV 2

DD

2ROFF/D
,

Pdyn = Cwire V 2
DD

4τ
,

(12)

where τ is the total circuit delay, taken to be the product of
the delay τ0 per logic stage (with I = Imax) by the logic depth
of the circuit (figure 9). The factors 1/2 reflect the natural
assumption that on average there is an equal number of CMOS
inverters with Boolean 1 and 0; the dynamic power has an
additional factor 1/2 describing the energy loss at capacitance
recharging.

8 The output dynamic impedance of the CMOL inverter and its input
capacitance Cin give negligible contributions to τ0. For example, Cin of the
22 nm minimum-width inverter is of the order of 0.02 fF, i.e., much less than
Cwire.

897

D B Strukov and K K Likharev

6.5. Area

To estimate the circuit density, we need parameter β , the
linear size of the CMOS cell in units of CMOS pitch 2FCMOS

(figure 3). We will show below that at acceptable power
density the ON current necessary for driving one nanodevice
is of the order of 1 µA. With a linear current density of the
order of 1000 µA µm−1, typical for the long-term CMOS
projections [4], such current may be provided with a MOSFET
channel as narrow as 1 nm. Hence, we can assume that all four
transistors of the CMOS cell are of the minimum width. Using
the SCMOS design rules [34], we may estimate the cell area
Acell as 64(FCMOS)

2, i.e., β ≈ 4. For each combination of
FCMOS and Fnano, we have selected a β larger than, but closest
to, βmin = 4 from the possible spectrum given by equation (1),
giving us the corresponding value of the connectivity radius
r . This rule leads to jumps of r (and hence r ′ and all circuit
parameters) as a function of Fnano; see figure 15 below. (We
have accepted a modest connectivity domain confinement,
r − r ′ = 2, which is sufficient for high defect tolerance; see
figure 11.)

6.6. Optimization

In order to evaluate the CMOL FPGA performance, we have
limited the total power P = PON + Pleak + Pdyn per unit circuit
area at the level P/A = 200 W cm−2 planned by the ITRS [4]
for the next decade. With the sum fixed, the power supply
voltage VDD may be optimized to minimize the total logic delay
τ = dτ0 of the circuit.

In order to do this, for each pair of FCMOL and Fnano (and
hence for parameters β , r, r ′, L , Cwire, and Rwire calculated
as described above), we vary VDD, each time adjusting
the ratio RON/D (and hence the product DION calculated
from equation (11)) so that the total power calculated from
equation (12) equalled the specified level. At this procedure,
ROFF is also adjusted to keep the thermal stability requirement,
expressed by the left part of equation (4), satisfied9.

6.7. Results

Figure 15 shows the results of such optimization for three long-
term CMOS technology nodes specified by the ITRS [4]. First
of all, figure 15(a) indicates that the largest contribution to
power consumption is given by PON; this is very typical for
diode-logic circuits like ours. Static power is not too sensitive
to Fnano, but the dynamic power drops with increased nanowire
pitch, together with VDD.

Figure 15(b) shows that the nanowire segment capacitance
Cwire increases if the nanodevice pitch is scaled down, due
to the increase of the segment length L = 2β2 F2

CMOS/Fnano.
However, the circuit delay follows this trend only at lower
values of Fnano, because at larger values of the nanowire pitch
(and hence lower L) the connectivity domain radius r decreases
and results in an increase of the logic depth d of the circuit
(figure 9) and hence of the circuit delay τ = dτ0. The same

9 The quantum-fluctuation part of that requirement is only used to check
that the minimum number of elementary devices in each crosspoint, Dmin ≈
RQ(ROFF/D)/(RON/D)2, is above one. Within the range of parameters
shown in figure 15, Dmin varies between 7 and 100, numbers which are very
convenient for the molecular self-assembly [6, 7] of such devices.

3 5 10 15 20 25 30
0.4

0.5

1

1.5

2

2.5

3
3.5

4

0.1

1

10

3 5 10 15 20 25 30
3

10

100

500

3 5 10 15 20 25 30
5

10

100

200

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F
CMOS

(nm)

 22
 32
 45

C
irc

ui
t D

el
ay

 (
ns

)

 C
w

ir
e (

fF
)

 F
nano

 (nm)

F
CMOS

(nm)

 22
 32
 45

A
re

a-
de

la
y

pr
od

uc
t (

µm
2 ×

ns
)

64-bit crossbar

32-bit adder

P
ow

er
 D

is
si

pa
tio

n
(W

/c
m

2)

 Static power due to ON current
 Dynamic power
 Static power due to leakage

Optimized V
DD

 V
D

D
 (

V
ol

t)

(a)

(b)

(c)

Figure 15. CMOL FPGA optimization results as functions of
nanowire half-pitch Fnano: (a) three components of the total power
(fixed at 200 W cm−2), and the optimum value of the power supply
voltageVDD, for the 32-bit adder with FCMOS = 45 nm; (b) nanowire
segment capacitance (thin lines) and the total logic delay of the
circuit (bold lines); and (c) area-delay product Aτ of the two CMOL
FPGA circuits under analysis, for three ITRS long-term CMOS
technology nodes. The (formal) jump of the Aτ product to infinity
at some (Fnano)max reflects the fact that our procedure of initial
circuit mapping may only be implemented for Fnano below this
value; see figure 9 and its discussion. The finite sharp jumps of the
curves are due to the transfers between adjacent integer values of r
that would satisfy equations (1) and provide the smallest
β > βmin = 4. All results are for r ′ = r − 2.

effect is clearly visible in figure 15(c), which shows our results
for a popular figure-of-merit of integrated circuits, the circuit
area-by-delay product Aτ .10 This product increases both at
very small Fnano (due to the increase of Cwire) and at larger Fnano

10 The growth of Aτtotal with Fnano is expressed even more strongly in the
crossbar where d grows approximately as n2/(r − 2) starting already from
low values of the connectivity domain radius; see figure 10 and section 5.1
above.

898

CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices

(due to the growing d). As a result, the area-delay product as a
function of Fnano features a minimum, indicating the existence
of the optimum nanotechnology for each FCMOS. Note that for
the most realistic values of FCMOS (45 and 32 nm), the optimum
value of Fnano is not very low, at least for the integer adder.

Finally, as could be expected, the best performance
improves with better CMOS subsystem technology, though
not too quickly: (Aτtotal)min is approximately proportional to
FCMOS.

7. Discussion

The reader has to agree that the absolute numbers shown in
figure 15 are very impressive. For example, for the apparently
realistic values FCMOS = 32 nm and Fnano = 8 nm, the 32-bit
CMOL FPGA adder could have an area about 110 µm2 and
total logic delay 1.3 ns, at acceptable power dissipation. (The
64-bit crossbar performance is an order of magnitude better.)

In order to compare these numbers with purely CMOS
FPGAs, we have used the Xilinx ISE WebPack package (see
www.xilinx.com) to simulate the similar 32-bit Kogge–Stone
adder for the commercially available 90 nm Xilinx Spartan-
3 technology. (The basic unit of such an FPGA is a slice
consisting of two 4-input LUTs.) The total delay of the adder,
excluding the pin-to-slice propagation delay, has turned out to
be about 5.1 ns. Assuming the 1/s delay scaling [28], this
corresponds to 1.7 ns for the 32 nm technology. The circuit
area of the CMOS circuit could be calculated from the known
number of its cells (‘tiles’), equal to 139, and the tile area
estimate of approximately 2100 µm2, which follows from
the data cited in [35]. With the usual 1/s2 area scaling, for
FCMOS = 32 nm this gives a 280 µm2 tile area, i.e., a total
adder area of about 39 000 µm2. (This estimate is close to the
one given by DeHon [36].) Thus the delay-area product would
be about 70 000 ns µm2, i.e., about 500 times larger than in a
CMOL FPGA with the same FCMOS.

Though the performance advantage of CMOLs, obtained
using our (very conservative) estimates, seems overwhelming,
we need to make the following two reservations. First, the
estimated CMOL circuits did not include latches (besides
the relatively slowly switching nanodevices used for circuit
mapping and reconfiguration), while a typical CMOS FPGA
has flip-flops after each logic stage, which allows pipelined
design for operation at clock frequencies of the order of
1/2τ0. In CMOL FPGAs, pipelining may be readily achieved
by interleaving CMOL arrays with clocked CMOS registers
(figure 16(a)). Since each CMOL array may be configured
in its own way, such interleaved structures may be used to
accommodate complex hierarchical computing structures. For
example, figure 16(b) shows a possible implementation of the
PLASMA chip [15], the fundamental unit of the Teramac
computer [5]. A crude estimate11 has shown that even
accounting for the latches, and sufficient block redundancy
(see footnote 4), the whole computer could be mapped on a
CMOL chip (with FCMOS = 32 nm and Fnano = 8 nm) with
area well below 1 cm2.
11 For this estimate we have assumed that a 16×16 CMOL array is functionally
close to the Teramac ‘hextant’ block with 16 [6:2] LUTs. Also, in the CMOL
implementation the crossbar sizes have been adjusted to keep the hierarchy
and the Rent rule exponent of 2/3 of the original Teramac.

Figure 16. (a) A macro-array of CMOL FPGA arrays interleaved
with CMOS registers, and (b) its use for implementation of the
PLASMA chip architecture [15].

The additional power consumption of CMOS registers
will certainly increase power consumption of the circuit as
a whole. On the other hand, it would also increase its
area, so it is not quite clear whether the circuit performance
(at fixed power management limitations) would increase or
decrease. However, the number of the register cells may
be low (of the order of 2n per array with n × n cells),
so that any change should be relatively small. More exact
evaluation may be carried out only after a substantial number of
various functional units and other circuits necessary for digital
signal processing and/or general-purpose computing have been
mapped on the CMOL fabric. (This will probably require
a modification of existing CAD tools.) Eventually, CMOL
FPGA systems should be evaluated on generally accepted
computing benchmarks. However, we believe that even the
preliminary estimates described in this paper give a strong
evidence that the CMOL FPGA approach may far outperform
CMOS FPGAs in virtually all areas of their application.

899

http://www.xilinx.com

D B Strukov and K K Likharev

The comparison between CMOL FPGA and custom
CMOS chips is a more complex issue12. Indeed, in our
current design each CMOS cell uses just a few nanodevices
for actual operation, while most nanodevices are used just
for circuit reconfiguration. However, the functional density
of our approach can be substantially improved if gates with
higher fan-in are allowed. (Note that the current hardware
implementation is already suited for such gates.) Multi-fan-
in-gate implementation may allow CMOL FPGAs to compete
with custom CMOS chips while hopefully decreasing only
slightly the defect tolerance13. Exploring these advanced
capabilities of CMOL FPGAs is our next goal.

Acknowledgments

Useful discussions with V Beiu, S Das, J Ellenbogen, and
M Stan are gratefully acknowledged. The work has been
supported by the AFOSR and NSF.

References

[1] Brown S D et al 1992 Field-Programmable Gate Arrays
(Norwell, MA: Kluwer)

[2] Tessier R and Schmit H (ed) 2004 FPGA 2004: Proc.
ACM/SIGDA 12th Int. Symp. on Field Programmable Gate
Arrays (Monterey, CA, USA, Feb. 2004)

[3] FCCM 2004: Proc. 12th IEEE Symp. on Field-Programmable
Custom Computing Machines (Napa, CA, April 2004)
(Piscataway, NJ: IEEE)

[4] International Technology Roadmap for Semiconductors
(ITRS), 2004 Update available online at public.itrs.net/

[5] Heath J R, Kuekes P J, Snider G S and Williams R S 1998
A defect-tolerant computer architecture: Opportunities for
nanotechnology Science 280 1716–21

[6] Tour J 2003 Molecular Electronics (Singapore: World
Scientific)

[7] Reimers J R, Picconnatto C A, Ellenbogen J C and
Shashidhar R (ed) 2003 Molecular Electronics III; Ann.
New York Acad. Sci. 1006 1–33

[8] Stan M et al 2003 Molecular electronics: from devices and
interconnect to circuits and architecture Proc. IEEE 91
1940–57

[9] von Neuman J 1956 Probabilistic logics and the synthesis of
reliable organisms from unreliable components Automata
Studies ed C E Shannon and J McCarthy (Princeton, NJ:
Princeton University Press) pp 43–98

[10] Nikolic K, Sadek A and Forshaw M 2002 Fault-tolerant
techniques for nanocomputers Nanotechnology 13 357–62

[11] Roy S and Beiu V 2005 Multiplexing schemes for cost
effective fault-tolerance IEEE-NANO’04 (Munich,
Germany, Aug. 2004); IEEE Trans. Nanotechnol. at press

[12] DeHon A 2005 Design of programmable interconnect for
sublithographic programmable logic arrays Proc. FPGA’05
(Monterey, CA, Feb. 2005) pp 127–37

[13] Snider G et al 2004 CMOS-like logic in defective, nanoscale
crossbars Nanotechnology 15 881–91

[14] Rose J et al 1990 Architecture of field-programmable gate
arrays—the effect of logic block functionality and
efficiency IEEE J. Solid-State Circuits 25 1217

12 Forgetting for a minute that the FPGA approach helps to bypass the present-
day IC design bottleneck.
13 Indeed, our preliminary estimates for several benchmark circuits [38] have
shown that the increase of maximum gate fan-in from 2 to 4 would allow one
to decrease the area-delay product by approximately twice at the same power
density. The further fan-in increase (especially above 6) does not lead to
noticeable performance increase. Thus, the optimal fan-in for CMOL FPGAs
seems to be close to that for the traditional LUT-based FPGAs [14].

[15] Amerson R et al 1996 Plasma: an FPGA for million gate
systems Proc. FPGA’96 (Monterey, CA, Feb. 1996) pp 10–6

[16] Strukov D and Likharev K 2005 Prospects for terabit-scale
nanoelectronic memories Nanotechnology 16 137–48

[17] Ahmed E and Rose J 2004 The effect of LUT and cluster size
on deep-submicron FPGA performance and density IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 12 288–98

[18] Kouloheris J and Gamal A E 1992 PLA-based FPGA versus
cell granularity Proc. Custom Integrated Circuits Conf.
(Piscataway, NJ: IEEE) pp 4.3.1–4

[19] Sverdlov V A, Walls T J and Likharev K K 2003 Nanoscale
silicon MOSFETs: a theoretical study IEEE Trans. Electron
Devices 50 1926–33

[20] Likharev K 2003 Electronics below 10 nm Nano and Giga
Challenges in Microelectronics ed J Greer et al
(Amsterdam: Elsevier) pp 27–68

[21] Likharev K and Strukov D 2005 CMOL: devices, circuits, and
architectures Introducing Molecular Electronics
ed G Cuniberti et al (Berlin: Springer) at press
(preprint available online at http://rsfq1.physics.sunysb.edu/
∼likharev/nano/Springer04.pdf)

[22] Fölling S, Türel Ö and Likharev K K 2001 Single-electron
latching switches as nanoscale synapses Proc. 2001 Int.
Joint Conf. on Neural Networks (Washington, DC, July
2001) pp 216–21

[23] Jensen K L 1999 Field emitter arrays for plasma and
microwave source applications Phys. Plasmas 6 2241–53

[24] Zankovych S et al 2001 Nanoimprint lithography: challenges
and prospects Nanotechnology 12 91–5

[25] Brueck S R J et al 2002 There are no limits to optical
lithography International Trends in Optics (Bellingham,
WA: SPIE Press) pp 85–109

[26] Türel Ö, Lee J H, Ma X and Likharev K 2004 Neuromorphic
architectures for nanoelectronic circuits Int. J. Circuit
Theory Appl. 32 277–302

[27] Betz V et al 1999 Architecture and CAD for Deep-Submicron
FPGAs (Dordrecht: Kluwer)

[28] Rabaey J, Chandrakasan A and Nikolic B 2002 Digital
Integrated Circuits 2nd edn (Upper Saddle River, NJ:
Prentice-Hall)

[29] Sentovich E M et al 1992 SIS: A system for sequential circuit
synthesis UCB/ERL Report #M92/41 University of
California, Berkley (available online at
ftp://ic.eecs.berkeley.edu)

[30] Averin D V, Korotkov A N and Likharev K K 1991 Theory of
single-electron charging of quantum wells and dots Phys.
Rev. B 44 6199–211

[31] Glazman L I and Matveev K A 1990 Residual quantum
conductivity under Coulomb blockade conditions JETP
Lett. 51 484–7

[32] Nabors K, Kim S and White J 1992 Fast capacitance extraction
of general three-dimensional structures IEEE Trans.
Microw. Theory Tech. 40 1496–506

[33] Kittel C 1995 Introduction to Solid State Physics 7th edn (New
York: Wiley)

[34] Mead C and Conway L 1980 Introduction to VLSI Systems
(Reading, MA: Addison-Wesley)

[35] Padalia K et al 2003 Automatic transistor and physical design
of FPGA tiles from an architectural specification Proc.
FPGA’03 (Monterey, CA, Feb. 2003) pp 164–72

[36] DeHon A 1996 Reconfigurable architectures for
general-purpose computing AI Technical Report 1586 MIT
Artificial Intelligence Laboratory

[37] Kogge P M and Stone H S 1973 Parallel algorithm for efficient
solution of a general class of recurrence equations IEEE
Trans. Comput. 22 786–93

[38] Betz V and Rose J 1999 FPGA place-and-route challenge
U. Toronto (available online at http://www.eecg.toronto.
edu/∼vaughn/challenge/challenge.html)

[39] Naeimi H and DeHon A 2004 A greedy algorithm for
tolerating defective crosspoints in NanoPLA design Proc.
ICFPT’2004 (Brisbane, Australia, Dec. 2004) pp 49–56

900

public.itrs.net/
public.itrs.net/
public.itrs.net/
http://rsfq1.physics.sunysb.edu/~likharev/nano/Springer04.pdf
http://rsfq1.physics.sunysb.edu/~likharev/nano/Springer04.pdf
http://rsfq1.physics.sunysb.edu/~likharev/nano/Springer04.pdf
http://rsfq1.physics.sunysb.edu/~likharev/nano/Springer04.pdf
http://rsfq1.physics.sunysb.edu/~likharev/nano/Springer04.pdf
http://rsfq1.physics.sunysb.edu/~likharev/nano/Springer04.pdf
http://rsfq1.physics.sunysb.edu/~likharev/nano/Springer04.pdf
http://rsfq1.physics.sunysb.edu/~likharev/nano/Springer04.pdf
http://rsfq1.physics.sunysb.edu/~likharev/nano/Springer04.pdf
ftp://ic.eecs.berkeley.edu
ftp://ic.eecs.berkeley.edu
ftp://ic.eecs.berkeley.edu
ftp://ic.eecs.berkeley.edu
ftp://ic.eecs.berkeley.edu
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html

