
A Reconfigurable Architecture for Hybrid
CMOS/Nanodevice Circuits

Dmitri B. Strukov and Konstantin K. Likharev
Stony Brook University

Stony Brook, NY 11794-3800, U.S.A

dstrukov@ic.sunysb.edu, klikharev@cc.notes.sunysb.edu

ABSTRACT
This report describes a preliminary evaluation of perfor-
mance of a cell-FPGA-like architecture for future hybrid
“CMOL” circuits. Such circuits will combine a semiconduc-
tor-transistor (CMOS) stack and a two-level nanowire cross-
bar with molecular-scale two-terminal nanodevices (program-
mable diodes) formed at each crosspoint. Our cell-based
architecture is based on a uniform CMOL fabric of “tiles”.
Each tile consists of 12 four-transistor basic cells and one
(four times larger) latch cell. Due to high density of nan-
odevices, which may be used for both logic and routing func-
tions, CMOL FPGA may be reconfigured around defective
nanodevices to provide high defect tolerance. Using a semi-
custom set of design automation tools we have evaluated
CMOL FPGA performance for the Toronto 20 benchmark
set, so far without optimization of several parameters in-
cluding the power supply voltage and nanowire pitch. The
results show that even without such optimization, CMOL
FPGA circuits may provide a density advantage of more
than two orders of magnitude over the traditional CMOS
FPGA with the same CMOS design rules, at comparable
time delay, acceptable power consumption and potentially
high defect tolerance.

Categories and Subject Descriptors
B.6.1 [Logic Design]: Design styles—logic arrays ; B.7.1
[Integrated Circuits]: Types and Design Styles— advanced
technologies

General Terms
Architecture, Design, Algorithms

Keywords
Programmable logic, integrated hybrid circuits, nanoelec-
tronics, programmable interconnect

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’06, February 22–24, 2006, Monterey, California, USA.
Copyright 2006 ACM 1-59593-292-5/06/0002 ...$5.00.

1. INTRODUCTION
It is now believed that the growing problems with scal-

ing of CMOS technology [12, 20] may be only overcome
by a radical paradigm shift from lithography-based fabri-
cation to the so-called “bottom-up” approach - see, e.g.,
Ref. 33. In this approach, the smallest active devices of in-
tegrated circuits are not defined lithographically but assem-
bled from parts with fundamentally reproducible size and
structure, e.g., few-nm-scale molecules. This procedure may
be rationally envisioned only for two-terminal nanodevices.
Since such devices have limited functionality, most efforts in
the development of nanoelectronic architectures are focus-
ing on hybrid CMOS/nanodevice circuits - see, e.g., Refs.
9, 13, 17, 19, 27, 30, and also recent reviews [10, 16, 21, 28]. In
most of the proposed hybrid circuits, relatively large silicon
MOSFETs are used for signal restoration, long-range com-
munications, I/O, testing/bootstrapping, and some other
critical functions, while a set of dense nanodevices provides
most of information storage and signal processing.

We believe that the most promising species of CMOS/nano-
device hybrids are “CMOL” circuits [20, 21]. As in several
earlier hybrid proposals, in CMOL circuits the two-terminal
nanodevices are formed at each crosspoint of a “crossbar”
array, consisting of two levels of nanowires (Fig. 1). How-
ever, in order to overcome the CMOS/nanodevice interface
problems pertinent to earlier concepts, in CMOL circuits the
interface is provided by sharp-tip pins that are distributed
all over the circuit area, on the top of the CMOS stack.
By activating two pairs of perpendicular CMOS lines, two
pins (and two nanowires they contact) may be connected to
CMOS data lines (Fig. 1b).

If the nanodevices have a sharp current threshold, like
in the usual diodes, such access allows each of them to be
tested. Moreover, if such a diode is programmable, i.e.
may be switched between two internal states, e.g., as the
single-electron latching switch [11, 20], each device may be
turned on or off by applying voltages ±VW to the selected
nanowires, so that voltage V = ±2VW applied to the se-
lected nanodevice exceeds the corresponding switching thresh-
old, while half-selected devices (with V = ±VW) are not
disturbed [21].

As Fig. 1c shows, interface pins of each type (reaching to
the lower and upper nanowire level) are arranged in a square
array with side 2βFCMOS, where FCMOS is the half-pitch of
the CMOS subsystem, and β is a dimensionless factor larger
than 1 that depends on the CMOS cell complexity. Relative
to the CMOS pin array, the nanowire crossbar is rotated
by angle α = arcsin(Fnano/βFCMOS), where Fnano is the

nanodevices

nanowiring
and

nanodevices

interface pins

upper wiring
level of

CMOS stack

selected
nanodevice

selected
nanowire

selected
nanowire

interface pin 1

interface
pin 2CMOS

cell 2

CMOS
cell 1

(a)

(b)

A

2aFnano

 pin 2

2 FCMOS

pin 2’

A

pin 1

2Fnano

(c)

A-A

Figure 1: Low-level structure of the generic CMOL
circuit: (a) schematic side view (A-A cross-section);
(b) the concept of addressing a particular nanode-
vice, and (c) zoom-in on several adjacent pins. The
last panel shows that any nanodevice may be ad-
dressed via the appropriate pin pair (e.g., pins 1
and 2 for the left of the two shown devices, and
pins 1 and 2’ for the right device). On panel (b),
only the activated CMOS lines, cells, and nanowires
are shown, while panel (c) shows only two devices.
(In reality, similar nanodevices are formed at all
nanowire crosspoints.) Also disguised on panel (c)
are CMOS cells and wiring.

nanowiring half-pitch. Figure 1c illustrates the fact that this
approach allows a unique access to any nanodevice, even if
Fnano � FCMOS - see Ref. 21 for a detailed discussion of
this point.1

Earlier we have shown that CMOL circuits may be used
to build several types of highly defect-tolerant circuits in-
cluding terabit-scale memories [21, 29, 31] and mixed-signal
neuromorphic circuits capable of advanced information pro-
cessing, e.g. fast classification of large patterns such as few-
megapixel images [18, 34]. However, the most important
application of CMOL technology may be in reconfigurable
Boolean logic circuits [30] whose structure resembles the so-
called cell-based FPGAs [24]. In these “CMOL FPGA” cir-
cuits (Fig. 2a,b) the basic cell includes two pass transistors
and one inverter, and is connected to the nanowire/ nanode-
vice crossbar via two pins. During the configuration process
the inverters are turned off, and the pass transistors may be
used for setting the binary state of each molecular device,
just as in CMOL memories [21, 29, 30]. By turning pro-
grammable diodes ON or OFF, each pin of a basic cell may
be connected through a nanowire-nanodevice-nanowire link
to each of M = a2−2 other cells within a near square-shaped
“connectivity domain” (painted light-gray in Fig. 2a). Fig-
ures 3 and 4 show how such fabric may be configured for
the implementation of NOR gates. This is already sufficient
to implement any logic function, though other gates (e.g.,
NAND) are clearly possible.

In our previous work [30] we analyzed defect tolerance and
performance of two combinational (latch-free) logic circuits
which were manually mapped on a simple CMOL FPGA
fabric: a 32-bit Kogge-Stone adder and a 64-bit full cross-
bar. The results implied that CMOL FPGA may provide
area-delay advantage beyond two orders of magnitude over
purely CMOS FPGA circuits, at manageable power con-
sumption, simultaneously with high defect tolerance (above
20% of bad nanodevices). Later, an almost similar density
advantage was reported for CMOL FPGA implementation
of an advanced encryption algorithm [22]. However, these
results were still insufficient to evaluate the benefits of the
CMOL FPGA concept for general-purpose computing. The
goal of this report is to describe our next step in this direc-
tion: an analysis of CMOL FPGA performance for all cir-
cuits of the Toronto 20 benchmark set [2]. For this purpose,
we have developed semi-custom software for an automated
CMOL FPGA circuit design.

1For this work, we have made two changes in the CMOL
geometry. First (and most importantly), in the initial ver-
sion of CMOL circuits [21], interface pins leading to the
upper nanowire level would pass between nanowires of the
lower level. This had restricted the maximum CMOL cir-
cuit yield (without nanoscale alignment) to 50%. This work
is based on an improved version of CMOL, with insulator-
covered pins intentionally interrupting the lower nanowires
- see Fig. 1a. While keeping our prior results on CMOL
FPGA [30] valid, this modification improves the circuit yield
substantially, raising its theoretical upper bound to 100%.
Second, in this paper the nanowire crossbar is not rotated by
the additional angle of 45◦, which was convenient for man-
ual circuit mapping in Ref. 30. In this case angle α is given
by tanα ≡ 1/a, where a is an integer defining the range of
cell interaction (Fig. 2a). For fixed fabrication technology
parameters FCMOS, Fnano and βmin, the lower bound on a

is given by equation amin =
√

(βminFCMOS/Fnano)2 − 1.

(b)(a)

CMOS
row 2

input
nanowire

CMOS
row 1

output
nanowire

CMOS
column 2

CMOS
inverter

CMOS
column 1

VDD

2 FCMOS 2 FCMOS a

Figure 2: CMOL FPGA: (a) the general structure of the circuit (for the particular case a = 4) and (b) the
basic cell. In panel (a), output pins of M = a2 − 2 = 14 cells painted light-gray may be connected to the input
pin of a specific cell (shown dark-gray) via a nanowire-nanodevice-nanowire links. For the sake of clarity,
panel (b) shows only the two nanowires which are contacted by interface pins of the given cell.

H

 A B

CMOS
inverter

nanodevices

pass
transistor

A
H

RON

Rpass
Cwire

B

A

H

(b)(a)

B

Figure 3: Fan-in-two NOR gate: (a) equivalent
circuit and (b) physical implementation in CMOL.
Note that in panel (b) only two (shown) nanodevices
on the input nanowire of cell H are set to the ON
state, while others (not shown) are set to the OFF
state. For the sake of clarity panel (b) shows only
the nanowires used for the gate.

B

A

H

E

D G

F

C

A
B
C
D
E
F
G

H

Figure 4: Example of CMOL implementation of a 7-
input NOR gate. Just as in Fig. 3, only the engaged
nanowires and nanodevices are shown.

2. HARDWARE ARCHITECTURE
A genuine optimization of CMOL FPGA circuit archi-

tectures would require a completely new set of CAD tools,
whose development is a challenging task. At this prelimi-
nary stage, our choice was instead to get as much leverage
as possible from the existing software used for mapping and
architecture exploration of semiconductor logic, in particu-
lar, from the design automation tools for island-type CMOS
FPGAs [5].

In order to use these tools, we have restricted our design
to a specific, simple two-cell-species CMOL fabric. (Though
such fabric is a generalization of the single-cell CMOL FPGA
structure considered in Ref. 30, it is still a small subset of all
possible CMOL architectures, so that the results described
below may be certainly improved in future.) The fabric is
a uniform mesh of square-shaped “tiles” (Fig. 5a). Each
tile consists of a shell of T basic cells (Fig. 2b) surround-
ing a single “latch” cell (Fig. 5b). The latter cell is just a
level-sensitive latch implemented in the CMOS subsystem,
connected to 8 interface pins, plus two pass transistors used
for circuit configuration. Note that all four pins of each (ei-
ther input or output) group are always connected, so that
the nanowires they contact always carry the same signal.
This means that at configuration, groups of four nanode-
vices sitting on these wires may be turned on or off only
together. A simple analysis shows that this does not impose
any restrictions on the CMOL FPGA fabric functionality.

CMOS layout estimates assuming a compact layout from,
e.g., Ref. 14 have shown that the latch cell requires an
area approximately four times larger than that of the basic
cell. As a result, for this analysis we have accepted T =
12, so that the total tile area is T + 4 = 16 = 4 × 4 basic
cells (Fig. 5a). This provides a latch/logic resource ratio
comparable to those of the conventional FPGAs. In fact, the

SIS
Technology
(NOR gate and
latch) mapping

Input circuit,
blif format

T-VPack
Clustering into
N NOR gates
and one latch

Initial value of N

net
format

VPR
Placement
with modified
cost function

Custom
(global)
router

vpr
format

Decrease N

Exit
with

success

Increase N
countmax < T-N -

countmax > T-N

N = 0
Exit without success

otherwise
blif
format

Figure 6: CMOL FPGA design flow used in this work.

(a)

(b)

 CMOS latch

in out

latch cell tile basic cell

4×A×2 FCMOS

4×2 FCMOS

Figure 5: (a) Latched CMOL FPGA fabric and (b)
latch cell structure. On panel (a), the tile connec-
tivity domain with linear size A = 5 is painted light
gray. Any cell in this domain can be connected to
any cell of the central tile (shown dark-gray) via a
single nanowire-nanodevice-nanowire link.

4-input parity function (the worst-case Boolean function of 4
inputs) can be implemented with 14 four-input NOR gates,
while an average 4-input Boolean function requires much
less (6 to 8) of such gates. Hence each CMOL tile is crudely
similar in functionality to the basic logic element consisting
of a four-input LUT and one latch [5].

3. DESIGN AUTOMATION

3.1 Technology Mapping and Clustering
The convenience of the proposed CMOL hardware struc-

ture is that, from the design point of view, the CMOL tile
can be treated in the same way as that of the island-type
CMOS FPGA. Indeed, consider the design flow shown in
Fig. 6. Using the SIS package [26], we first map the origi-
nal pre-optimized logic circuit onto a network of NOR gates
(with a certain maximum fan-in) and latches (if any), to
produce a netlist in blif format. Next, we reserve a certain
number (N) of basic cells inside each tile to perform logic
operations, while the rest (T − N) basic cells are left for
routing. The netlist of NOR gates is then partitioned into
logic clusters of N gates with the help of the T-VPack pro-
gram [5]. This code, while originally written to pack LUTs,
can work as well for NOR gates, since the representations
in the blif format for both gate libraries are the same, and
any CMOL NOR gate occupies exactly one basic cell regard-
less of its fan-in [21, 30]. The only modification which has
been made to T-VPack is the addition of a latch counter to
prevent packing of more than one latch into one cluster.

3.2 Cluster Placement
The logic clusters are then mapped on the CMOL tile fab-

ric (one cluster per tile) using VPR tool [4,5]. However, the
original linear congestion cost function [4] is modified, since
it was not adequate for CMOL FPGA where connections
within the connectivity domain are not limited by CMOS
resources. More specifically, the cost function for some clus-
ter (tile), located in position x0, y0, whose outputs are con-
nected to Nclusters other clusters, is calculated as

Cost =

Nclusters∑

i=1

�2(max(|x0 − xi|, |y0 − yi|) − 1)

A− 1
�, (1)

O1

O2

O3I
6 7 8 9 101 2 3 4 5

9
10

8
7

6

4
5

3

2
1

tile

4
4

2

Figure 7: Cost function calculation example. As-
suming the linear size of the tile connectivity domain
A = 5, the cost function of the connections between
cluster I and clusters O1, O2 and O3 is 10. The num-
bers shown in red are the contributions of specific
connections to the cost function. In this particular
example, these numbers also give parameters Hopmin

used in the global routing procedure (see Sec. 3.3
below).

where x, y is the position of a cluster inside the array (de-
fined exactly as in Ref. 5), while A = 2�a/8�−1 is the linear
size of the “tile connectivity domain”. This domain is such
a set of tiles that any cell from each tile of the domain can
be connected to any cell of the initial tile directly, i.e. via
one nanowire-nanodevice-nanowire link. For instance, Fig.
5a shows a tile connectivity domain for the case A = 5. (In
more realistic cases a = βFCMOS/Fnano ≈ 40, i.e. A ≈ 9.)
Figure 7 gives an example of placement cost calculation for
A = 5. In this example, one input (I) and three output (O1,
O2, and O3) clusters are located in tiles with positions (1,
1), (6, 10), (10, 6), and (7, 1), correspondingly. Hence, ac-
cording to Eq. (1) the cost function is Cost = 4+4+2 = 10.

Using the new cost function, VPR tries to place connected
logic clusters close to each other, ideally within each other’s
tile connectivity domains.

3.3 Global Routing
The next step, global routing2, which is required to in-

terconnect clusters located outside of each other’s tile con-
nectivity domain, is performed using a custom tool. This
tool views the whole routing as a set of “nets”, where each
net is a set of connections between a particular output of a
certain cluster (or an input pad) and all its recipient clus-
ters (and/or output pads). Each net is routed by adding an
even number of routing inverters by configuring logic-free
basic cells (there are at least T − N of them in each tile)
into one-input NOR gates, which are further called routing
inverters (cells). Each pair of adjacent components in the
net, i.e. any connection between the input cluster and the
first routing inverter, a routing inverter and the next rout-
ing inverter, or the last routing inverter and output cluster,
should be within the tile connectivity domain of each other
(e.g., see the last step of Fig. 9).

2At the global routing stage, the specific location of basic
cells inside the tile is not defined. For a perfect CMOL
fabric with no defective nanodevices any placement inside
the tile may be implemented; otherwise one can use the
defect tolerance procedure described in Ref. 30.

INPUT:
A) description of cluster connections (T-VPack format)
B) mapping of clusters to tiles (VPR format)

START:
1: Generate input_netlist from input data.
2: Initialize counter (count) of unused basic cells for each tile.
3: Create sorted_netlist by sorting input_netlist by the number of outputs
 (largest first) while sorting entries with the same number of outputs by
 the cost function (lowest first)
4: For each net (curnet) from the sorted_netlist
5: RouteNet(input, outputlist, count, true),
 where input, outputlist are the coordinates of an input and
 output clusters of curnet, respectively
6: If there are any congestions (for some tiles count > T - N) {
7: For each tile (curtile) with count {
8: Sort all nets (tile_sorted_netllist) which are routed using basic
 cells from curtile by the number of outputs while sorting entries
 with the same number of outputs by cost function (lowest first)
9: For each net (curnet) from the tile_sorted_netlist {
10: if (RouteNet(curnet_input_cluster,
 curnet_outputlist_clusters, count, false) false
11: Exit without success }
12: }} Exit with success

Function RouteNet(input, outputlist, count, congallowed)

INPUT:
A) input (input cluster coordinates)
B) outputlist (list of coordinates for output clusters)
C) count (array of tile counters, each with the number of unused basic cells)
D) congallowed (Boolean value specifying whether the function should terminate
 (false) or not (true) if for some tile count > T-N)

START:
1: For each tile (curtile) from input’s connectivity domain {

curtileoutputcount = 0
curtileoutputlist = Ø

2: For each output (curoutput) from outputlist {
3: If(Hop(curtile, curoutput) + 1 = Hop(input, curoutput)) {
4: curtileoutputcount ++
5: Add curoutput to curtileoutputlist }
6: Among tiles with largest curtileoutputcount choose the tile
 which has the largest count and increment count for this tile
7: If (count > T-N && congallowed is false)
8: return false
9: For each output (curoutput) from curtileoutputlist
10 If(Hop (curtile, curoutput)=0)
11 Delete curoutput from curtileoutputlist
12: If(curtileoutputlist != Ø)
13: if RouteNet(curtile, curtileoutputlist, count, congallowed) is false
14: return false
15: outputlist = outputlist - curtileoutputlist
16: If(outputlist != Ø)
17: if RouteNet(input, outputlist, count, congallowed) is false
18: return false
19: } return true

(a)

(b)

Figure 8: The global routing pseudocode: (a) the
whole algorithm and (b) the subroutine used to
route a single net.

The formal description of the algorithm is presented in
Fig. 8. Its general idea is that the nets are processed one
at a time, and each one is routed with the minimal num-
ber of hops physically possible for a given placement, there-
fore ensuring the smallest number of routing cells for the
successful circuit mapping. Moreover, if the net has more
than one “output” cluster, the program tries to minimize
the total number of routing cells by sharing them among
different connections. Such problem is equivalent to finding
the shortest-path Steiner tree [15], and, consequently, its
exact solution is exponentially hard. In a context of VLSI
design, several (both exact and heuristic) algorithms had
been suggested for finding shortest path Steiner tree [7, 25].
Our method (formally presented in Fig. 8b) is close to the
so-called RSA heuristic algorithm [25]. It is based on the
recursive function (RouteNet) which, in a single iteration,
finds the quasi-optimal position for the routing inverter in
the connectivity domain of the input cluster (input) for the
given set of output clusters (outputlist).

The algorithm can be best explained using the example
shown on Fig. 9. Let us consider the case A = 5 and sup-
pose that the algorithm needs to route input cluster I to
three output clusters O1, O2, and O3 (corresponding to the
tiles colored yellow and cyan, respectively, in Fig. 9). At
first, for each pair of input and output clusters from out-
putlist , the algorithm determines the minimal even number
Hopmin of routing inverters required for routing. For the
case shown in Fig. 9, these numbers are shown in red in
Fig. 7. Then RouteNet function ranks all tiles of the input
tile connectivity domain (step I in Fig. 9). The rank of a
tile shows how many output clusters from outputlist can
be routed to the input cluster with the minimal path, i.e.
with Hopmin inverters, using a routing cell in the given tile.
In the new iteration, the routing cell tile location (R1), cho-
sen randomly (“greedily”) among the tiles with maximum
rank, is considered as new input tile and the set of out-
put clusters, which contributes to the rank (for R1 in step
II of Fig. 9, clusters O1 and O2) becomes new outputlist ,
etc. Once these outputs have been routed (steps III, IV in
Fig. 9) they are not considered during the ranking of the
rest of output clusters, e.g., cluster O3 (step V in Fig. 9).

Note that at this stage some congestion is possible, i.e.
the number of routing cells assigned to a tile may be larger
than the one physically available. Our algorithm tries to
avoid the congestion by keeping an occupation counter of
the total number of routing cells (count) requested by the
algorithm in each tile. At the start of the routing proce-
dure, the counter value is set to either zero (if the cluster,
assigned to the given tile, is fully packed by T-VPack) or
to the corresponding negative number in the opposite case
(i.e. if the cluster has less than N logic cells). If for a cer-
tain iteration there are several tiles with the same rank, the
preference is given to the tiles with the least utilized routing
cells. Also, routing nets in a specific order, i.e. nets having
fewer outputs and larger cost last, helps assigning routing
cells more evenly throughout the tile array.

After processing all the nets, the algorithm makes the
second step: it identifies the nets which were routed using
tiles with the maximum number of requested routing cells
(countmax) and tries to reroute them by using the same algo-
rithm as used at the first step, starting with the longest nets
(in a hope that those nets have more paths to choose from,
and hence may be rerouted around the congestion). This

step yields a more even spread of routing resources and thus
improves countmax.

Finally, when countmax can be no longer improved, it
is compared with (T − N), and if countmax is larger, the
whole design flow (starting from the T-VPack stage) is re-
peated with a reduced value of N (Fig. 6).3 Alternatively, if
countmax < T −N −∆, where ∆ is a small integer (set to 2
in our calculations), the cycle is repeated with an increased
value of N . In case if T − N − ∆ ≤ countmax ≤ T − N , the
algorithm stops successfully.

4. PERFORMANCE CALCULATION
Generally, our performance analysis follows that described

in detail in Ref. 30, with some simplifications. In particular,
at this stage we have not yet optimized the nanowire pitch,
but rather have simply calculated the performance for case
FCMOS = 45 nm, Fnano = 4.5 nm which seems techno-
logically plausible at the initial stage of CMOL technology
development [21]. Neither was the power supply voltage op-
timized; we have just accepted the value VDD = 0.3 V, which
is in the ballpark of the results of VDD optimization for the
two circuits analyzed in Ref. 30 for these values of FCMOS

and Fnano.

4.1 Area
We will show below that the typical current through molec-

ular devices in the ON state is of the order of 1 µA. With
a saturation current density of 1 mA/µm, typical for the
long term CMOS projections [1], such current may be pro-
vided with a MOSFET channel as narrow as 1 nm. Hence,
we can safely assume that all four transistors of the ba-
sic cell are of the minimum width.4 Using SCMOS design
rules [23], we estimate the smallest basic cell area to be
about Acell = 64(FCMOS)2, i.e., βmin ≈ 4. The additional
area overhead associated with auxiliary circuitry such as
clock buffers, peripheral logic for reconfiguration, etc. has
not been taken into account at this stage, but is probably
negligible5.

4.2 Nanowires and Nanodevices
Even taking into account the additional diffusive scatter-

ing at nanowire surface [30], the estimated resistance be-
tween the center and the end of a nanowire fragment, of the
length (βFCMOS)2/Fnano = 7.2 µm, is about 20 KΩ. This
resistance is negligible, because it is connected in series with
that of a crosspoint device (Fig. 10), which is an order of
magnitude larger, even in the ON state - see Section 5 be-
low. With the wire capacitance per unit length, which was
calculated earlier [30], to be close to 0.2 fF/µm, capacitance
Cwire of the full nanowire fragment is about 3 fF.

3In some cases, e.g., for very large circuits with rich connec-
tivity, countmax may be larger than (T −N) even for N = 1,
though this has never happened for any of the circuits from
the considered benchmark set. Such situation would require
a change in hardware parameters - say, a reduction of Fnano

to increase a and hence the tile connectivity domain.
4The minimum-width CMOS inverter in the cell can provide
a very large (> 20) fan-out without any latency degradation.
5For example, using results from our previous work [31], the
overhead associated with peripheral logic for reconfiguration
for 50 × 50 CMOL FPGA array of tiles should be less than
20%, while the shift-register reconfiguration circuitry which
is discussed in Ref. 30, will make this overhead even much
smaller.

O1

O2

O3

1 2 3
1 2 3
I 2 2

O1

O2

O3

0 0 1 2 2
1 1 1 2 2

0 0 R1 1 2
0 0 0 1 2
I 0 0 1 2

1
1
0
0

1 1 1 1
O1

1 1 2 1
0 R3 1 1
0 0 1 1 O2

0 0 1 1

O3

R2

R1

I

1 1 1
1 1 1

O1

2 2
2 2 O2

1 1
1 1

1 1

O3

0 0 0
0 0 R2

R1 0 0

I

O1

R4

R3

O2

O3

0 0 0 0 0
0 0 0 0 R2

0 0 R1 0 1
0 0 0 0 1
I 0 0 0 1

O1

R4

R3

O2

O3

R2

R1 R5

I

I II III

VI IVV

Figure 9: Example of global routing for a single net for the case A = 5.

As in our previous calculations, the smallest acceptable re-
sistance RON of a single molecular device in ON state is lim-
ited by the maximum manageable power density pmax = 200
W/cm2 [1]. For our estimates we have taken into account
only the static power dissipated in nanodevices turned ON.
(See Fig. 15a of Ref. 30 and its discussion for a justification
of this assumption.) Hence, RON can be found from

RON =
DNcell(VDD)2

2Acellpmax
, (2)

where Ncell is the average number of crosspoint nanodevices
turned ON per one basic cell, while D is the number of paral-
lel molecules in each nanodevice. Based on the experimental
data for self-assembled monolayers (see, e.g., Ref. 35), the
footprint of a single molecule may be estimated as 0.25 nm2;
so for D we have used the value F 2

nano/(0.25 nm2) ≈ 80.
Though we have not optimized VDD, we have checked that

the ratio of resistances in the OFF and ON states provided
by the second-order quantum effect of elastic cotunneling
(ROFF/RON ≈ RON/RQ) is less than the maximum value of
this ratio, which is limited by the classical thermal activation
(ROFF/RON ≤ cosh2(VDD/2kBT)), where RQ ≡ �/e2 ≈ 4.1
kΩ is the quantum unit of resistance. Hence, for our param-
eters the cotunneling effect may be safely ignored.

4.3 Delay
In order to decrease the NOR gate delay τ0 we minimize

the signal voltage swing at the input of the CMOS inverter
Vin by choosing an appropriate resistance of the pass transis-
tor Rpass � Vin/VDD × RON/D (Fig. 10). More specifically,
we use for Vin a condition similar to that used in Ref. 30, i.e.

¼Rwire

input
nanowire

¼Rwire

output
nanowire

RON/D
Cin

CMOS
inverter

Rpass

CMOS
pass

transistor

ROFF/D

M closed switches (with leakage
resistance ROFF/D each)

open
switch

Vin¼Rwire¼Rwire

CwireCwire

Figure 10: The equivalent circuit of a CMOL logic
stage.

require a bit error rate of one gate less than 10−28. (This
corresponds to the mean time between failures of the whole
VLSI circuit of about 10 000 hours [1].) For this, Vin has to
be substantially larger than the r.m.s. of the sum of thermal
noise (mostly contributed by the pass resistor) and the shot
noise:

Vin ≥ ∆VT = 23
√

kB(T + Tef)/Cwire ≈ 40 mV, (3)

where Tef ≈ (eVin/2kB) × coth(eVDD/2kBT) ≈ 250K is the
effective temperature contributed by the shot noise. The
digital noise resulting from the galvanic coupling of the in-
put of basic cell to output of others basic cells through nan-
odevices turned OFF may be neglected since it is much less
than the thermal and shot noise - for details, see Eq. (8) of
Ref. 30.

Finally, for our set of parameters we could use the follow-
ing simplified formula for gate delay:

τ0 ≈ ln(2I) × (CwireRON/D) × (Vin/VDD), (4)

where I is the circuit fan-in [30].

5. RESULTS AND DISCUSSION
We have applied our methods to analyze possible CMOL

FPGA implementation of the Toronto 20 benchmark circuit
set [2]. The largest value of the average nanodevice utiliza-
tion factors among all circuits of the set has turned out to
be about 1.5 nanodevices turned ON per basic cell. Plug-
ging Ncell into Eq. (2), we find that RON = 21 MΩ6 and the
ON resistance of a crosspoint nanodevice is RON/D = 260
KΩ. These values justify the simplifications described in the
previous sections.

Since most of the circuits benefited from mapping on NOR
gates with large fan-in, we have chosen the maximum value
allowed by T-VPack, I = 7. According to Eq. (4), the delay
of a 1-input NOR gate turns out to be about 70 ps. The
full delay of the considered circuits was calculated from the
critical path, which had been found after circuit placement
and global routing.

Table 1 summarizes the performance results for the bench-
mark circuits. Note that in contrast with earlier nanoelec-
tronics work, the results for different circuits are obtained
for the CMOL FPGA fabric with exactly the same oper-
ating conditions and physical structure for all the circuits,
thus enabling a fair comparison with CMOS FPGA. For
this comparison, the same benchmark circuits have been
synthesized into cluster-based island-type logic block archi-
tecture [5]. This was done with the original T-VPack and
VPR tools using the architecture designed for the optimal
area-delay product, specifically the cluster size of 4, 4-input
LUTs [3], and the VPR’s default architecture file (4x4lut-
sanitized.arch) with technology parameters corresponding to
the 0.3 µm CMOS process. We had first found the worst
case segment width required to route every circuit success-
fully, which has turned out to be 70 for pdc.blif circuit.
Then, using an architecture with such segment width we
have mapped and routed all circuits, and then extracted
their delay and area (for the optimistic case of buffer shar-
ing). Assuming the 1/s scaling for the delay and assuming
the area of the minimum-width transistor to be 25(FCMOS)2,
we have obtained the results shown in the left part of Table
1. (As a sanity check, the delays before scaling are close to
those obtained in Ref. 5 for CMOS FPGA with a similar
architecture.)

Table 1 shows very clearly that CMOL FPGA circuits may
be much denser than the purely CMOS FPGA circuits fab-
ricated with the same CMOS design rules. The benchmark
circuit area for CMOL FPGA also favorably compares with
that implemented using the nanoPLA concept [9], taking
into account the fact that the latter results had been cal-
culated assuming a smaller nanowire half-pitch Fnano = 2.5
nm.7 Concerning speed performance, the delays calculated

6Such resistances, well above RQ, may be readily imple-
mented in molecular electronics - see, e.g., Ref. 33.
7Also, the nanoPLA results might be worse if all circuits
had been mapped on a hardware fabric of fixed geometry,
as we did for the CMOL architecture. Finally, the fabri-
cation technology assumed in the nanoPLA architecture is

in this work for all benchmark circuits are comparable to
those of their CMOS FPGA counterparts.

It is safe to expect that the improvement in area will be
even larger if CMOL FPGA is used for much larger circuits,
because the area of CMOS FPGA is always determined by
the worst-case routing requirement. On the other hand, a
distinctive feature of the CMOL FPGA fabric suggested in
this work is that the same resources, basic cells, are used
to perform both logic and interconnect functions.8 Using
the proposed CAD flow, the resources can be allocated flex-
ibly according to the specific logic-to-routing ratio of the
circuit. For example, in order to synthesize the relatively
large pdc.blif circuit, only about 15% of the cells have been
allocated for logic operation, while this number is about 60%
for the smaller dsip.blif (Table 1).

Another evident resource for improvement is the optimiza-
tion of Fnano and VDD. Next, an optimization of the maxi-
mum fan-in for each circuit may also give substantial results.
For example, the area of the s298.blif circuit would be one
half its current size, and its pre-mapped depth by 30% lower,
if the maximum fan-in was 16 (rather that 7). Finally, our
routing may be evidently improved further using better al-
gorithm, e.g., described in Ref. 7. For instance, five routing
cells is the best solution in the example shown in Fig. 9,
while this number could be seven in a worst case, provided
that the greedy algorithm picks different highest ranked tiles
at each step.

While we have not performed a defect tolerance analysis
in this work, the fact that the NOR gate locations inside
the tiles are not fixed gives the gate placement the freedom
similar to that employed in our first work to ensure high
defect tolerance. In this analogy, the linear size of the tile
has to be compared with the difference (r − r′) [30], where
r and r′ are physical and artificially confined connectivity
radiuses, respectively. (For a � 1, r is related to our current
parameter a as r = a/

√
2.) In Ref. 30 we have shown that

even a modest difference r−r′ = 2 allows the defect tolerance
above 20% (for defects similar to “stuck-on-open” faults).
Since in our current architecture the linear size of the tile
is 4, equivalent to r − r′ ≈ 3, we may expect the defect
tolerance of these circuits to be even higher. A verification
of this hypothesis is one of our next goals.

To summarize, we believe that even the preliminary re-
sults presented in this report show a possible dramatic im-
pact of the FPGA circuit transfer from CMOS to CMOL
technology.

6. ACKNOWLEDGMENTS
The authors would like to thank Alan Mishchenko and

Deming Chen for providing a pre-optimized benchmark set,

much more demanding than CMOL, requiring (besides pro-
grammable diodes at crosspoints) nanoscale field-effect tran-
sistors, which are inherently irreproducible [21].
8For CMOS technology, similar ideas have been developed in
several works. For example, Triptych FPGA architecture [6]
is based on the universal cell which is used both for routing
and logic operations. The authors of Refs. 8, 32 suggested
to avoid the worst-case routing limitation in CMOS FPGA
during mapping by deliberately underusing logic resources.
However, both in Triptych FPGA (in which the universal
cell has physically different CMOS hardware for routing and
logic operations), and in the latter approach the CMOS cir-
cuitry utilization suffers. On the contrary, in CMOL FPGA,
the CMOS subsystem utilization may be close to 100%.

CMOS FPGA
(FCMOS = 45 nm)

CMOL FPGA
(FCMOS = 45 nm, Fnano = 4.5 nm, max fan-in = 7) Comparison

Circuit
Depth LUTs

Array
size

(clusters)

 Area
(µm2)

Delay
(ns) Depth

Array
size

(clusters)
N Nano-

devices
 Area
(µm2)

Delay
(ns)

ACMOS
/ACMOL

AnanoPLA
/ACMOL

alu4 7 1274 19×19 137700 5.1 23 22×22 5 9788 1004 4.0 137 0.28
apex2 8 1602 21×21 166050 6.0 26 21×21 6 11365 914 4.6 182 3.09
apex4 6 1147 34×34 414619 5.5 19 18×18 6 7781 672 3.6 617 0.58
bigkey 3 1810 22×22 193388 3.1 20 20×20 6 10207 829 2.7 233 1.82
clma 16 6779 42×42 623194 13.1 75 67×67 2 48746 9308 10.2 67 1.74
des 6 1263 19×19 148331 4.2 28 23×23 6 12610 1097 4.5 135 3.21

diffeq 14 987 16×16 100238 6.0 73 24×24 6 10799 1194 10.4 84 2.27
dsip 3 1362 19×19 148331 3.2 26 20×20 7 9905 829 3.4 179 1.63

elliptic 18 2142 24×24 213638 8.6 81 47×47 4 25415 4581 12.7 47 1.63
ex1010 8 4050 33×33 391331 9.0 43 41×41 3 28746 3486 5.7 112 0.28
ex5p 7 950 16×16 100238 5.1 27 20×20 4 6875 829 4.3 121 0.19
frisc 23 2320 25×25 230850 11.3 114 45×45 4 25869 4199 17.6 55 2.64

misex3 7 1178 18×18 124538 5.3 24 22×22 4 9211 1004 3.6 124 0.56
pdc 9 3901 32×32 369056 9.6 54 49×49 2 14841 4979 6.8 74 0.15
s298 15 1682 21×21 166050 10.7 45 20×20 4 10161 829 8.1 200 1.33

s38417 11 4773 36×36 462713 7.3 52 67×67 3 53156 9308 7.2 50 1.24
s38584 9 4422 35×35 438413 4.8 64 69×69 3 50275 9872 8.8 44 -

seq 7 1427 20×20 151369 5.4 23 25×25 4 11027 1296 4.0 117 1.15
spla 8 3331 30×30 326025 7.3 40 38×38 3 24808 2994 5.8 109 0.12

tseng 13 781 14×14 78469 6.3 75 24×24 6 4918 1194 11.5 66 2.48

Table 1: Performance results for Toronto 20 benchmark set.

as well as Jacob Barhen, Shamik Das, Andre DeHon, Dan
Hammerstrom, Ramesh Karri, Phil Kuekes, Alex Orailoglu,
Greg Snider, Mircea Stan, and Stan Willams for valuable
discussions. Suggestions of anonymous Referee #4 have
been also extremely useful. This work was supported in
part by AFOSR, DTO, and NSF.

7. REFERENCES
[1] International Technology Roadmap for

Semiconductors. 2003 Edition, 2004 Update. Available
online at http://public.itrs.net/.

[2] FPGA place-and-route challenge. 1999. Available
online at
http://www.eecg.toronto.edu/∼vaughn/challenge/
challenge.html/.

[3] E. Ahmed and J. Rose. The effect of LUT and cluster
size on deep-submicron FPGA performance and
density. IEEE Trans. on VLSI, 12(3):288–298, 2004.

[4] V. Betz and J. Rose. VPR: A new packing, placement
and routing tool for FPGA research. In Proc. of 7th

Int. Work. on Field-Programmable Logic and App.,
pages 213–222, London, UK, September 1997.

[5] V. Betz, J. Rose, and A. Marquardt. Architecture and
CAD for deep-submicron FPGAs. Kluwer Int. Series
in Eng. and Comp. Science 497. Kluwer Academic,
Boston; London, 1999.

[6] G. Borriello, C. Ebeling, S. A. Hauck, and S. Burns.
The Triptych FPGA architecture. IEEE Trans. on
VLSI, 3(4):491–501, 1995.

[7] J. Cong, A. B. Kahng, and K. S. Leung. Efficient
algorithms for the minimum shortest path Steiner
arborescence problem with applications to VLSI
physical design. IEEE Trans. on Computer-Aided
Design, 17(1):24–39, 1998.

[8] A. DeHon. Balancing interconnect and computation in
a reconfigurable computing array (or, why you don’t
really want 100% LUT utilization). In Proc. of 7th Int.
Symp. on FPGAs, pages 69–78, Monterey, CA,
Febrary 1999.

[9] A. DeHon. Design of programmable interconnect for
sublithographic programmable logic arrays. In Proc. of
13th Int. Symp. on FPGAs, pages 127–137, Monterey,
CA, Febrary 2005.

[10] A. DeHon and K. Likharev. Hybrid
CMOS/nanoelectronics digital circuits: Devices,
architectures, and design automation. In Proc. of Int.
Conf. on Computer-Aided Design, pages 375–382, San
Jose, CA, November 2005.

[11] S. Fölling, Ö. Türel, and K. K. Likharev.
Single-electron latching switches as nanoscale
synapses. In Proc. of Int. Joint Conf. on Neural
Networks, pages 216–221, Washington, DC, July 2001.

[12] D. J. Frank, R. H. Dennard, E. Nowak, P. M.
Solomon, Y. Taur, and H. S. P. Wong. Device scaling
limits of Si MOSFETs and their application
dependencies. Proc. of the IEEE, 89(3):259–288, 2001.

[13] S. C. Goldstein and M. Budiu. NanoFabrics: Spatial
computing using molecular electronics. In Proc. of

28th Int. Symp. on Computer Architecture, pages
178–191, Götenberg, Sweden, July 2001.

[14] S. Heo, R. Krashinsky, and K. Asanović.
Activity-sensitive flip-flop and latch selection for
reduced energy. In Proc. of 19th Conf. on Advanced
Research in VLSI, Salt Lake City, UT, March 2001.

[15] F. K. Hwang, D. S. Richards, and P. Winter. The
Steiner tree problem. Annals of discrete mathematics;
53. North-Holland, Amsterdam; London, 1992.

[16] P. J. Kuekes, G. S. Snider, and R. S. Williams.
Crossbar nanocomputers. Scientific American,
293(5):72–76, 2005.

[17] P. J. Kuekes, D. R. Stewart, and R. S. Williams. The
crossbar latch: Logic value storage, restoration, and
inversion in crossbar circuits. J. Appl. Phys.,
97(3):034301, 2005.

[18] J. H. Lee and K. K. Likharev. CMOL CrossNets as
pattern classifiers. In Proc. of 8th Int.
Work-Conference on Artificial Neural Networks, pages
446–454, Barcelona, Spain, June 2005.

[19] K. Likharev, A. Mayr, I. Muckra, and O. Turel.
Crossnets - high-performance neuromorphic
architectures for CMOL circuits. Ann. NY Acad. Sci.,
1006:146–163, 2003.

[20] K. K. Likharev. Electronics below 10 nm. In Nano and
Giga Challenges in Microelectronics, pages 27–68.
Elsevier, Amsterdam, 2003.

[21] K. K. Likharev and D. B. Strukov. CMOL: Devices,
circuits, and architectures. In G. Cuniberti, G. Fagas,
and K. Richter, editors, Introducing Molecular
Electronics, pages 447–478. Springer, Berlin, 2005.

[22] M. Masoumi, F. Raissi, M. Ahmadian, and
P. Keshavarzi. Design and evaluation of basic standart
encryption algorithm modules using nanosized
complementary metal-oxide-semiconductor-molecular
circuits. Nanotechnology, 17:89–99, 2006.

[23] C. Mead and L. Conway. Introduction to VLSI
systems. Addison-Wesley, Reading, MA; London, 1980.

[24] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic.
Digital integrated circuits: A design perspective.
Pearson Education, Upper Saddle River, NJ, 2nd
edition, 2003.

[25] S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W.
Shor. The rectilinear steiner arborescence problem.
Algorithmica, 7(2-3):277–288, 1992.

[26] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan,
R. K. Brayton, and A. Sangiovanni-Vincentelli. SIS: A
system for sequential circuit synthesis. Technical
report, 1992.

[27] G. Snider, P. Kuekes, and R. S. Williams. CMOS-like
logic in defective, nanoscale crossbars.
Nanotechnology, 15(8):881–891, 2004.

[28] M. R. Stan, P. D. Franzon, S. C. Goldstein, J. C.
Lach, and M. M. Ziegler. Molecular electronics: From
devices and interconnect to circuits and architecture.
Proc. of the IEEE, 91(11):1940–1957, 2003.

[29] D. B. Strukov and K. K. Likharev. Architectures for
defect-tolerant CMOL memories. Paper in
preparation, 2006.

[30] D. B. Strukov and K. K. Likharev. CMOL FPGA: A
cell-based, reconfigurable architecture for hybrid
digital circuits using two-terminal nanodevices.
Nanotechnology, 16:888–900, 2005.

[31] D. B. Strukov and K. K. Likharev. Prospects for
terabit-scale nanoelectronic memories.
Nanotechnology, 16:137–148, 2005.

[32] M. Tom and G. Lemieux. Logic block clustering of
large designs for channel-width constrained FPGAs.
In Proc. of 42nd Design Automation Conference, pages
726–731, San Diego, CA, June 2005.

[33] J. Tour. Molecular Electronics. World Scientific,
Singapore, 2003.

[34] O. Türel, J. H. Lee, X. L. Ma, and K. K. Likharev.
Neuromorphic architectures for nanoetectronic
circuits. Int. J. Circ. Theory App., 32(5):277–302,
2004.

[35] N. Zhitenev, W. Jiang, A. Evbe, Z. Bao, E. Garfunkel,
D. M. Tennant, and R. Cirelli. Control of topography,
stress, and diffusion of molecule-metal interface.
Preprint, 2005.

