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The memristor, the fourth passive circuit element, was predicted theoreti-

cally nearly 40 years ago, but we just recently demonstrated both an

intentional material system and an analytical model that exhibited the

properties of such a device. Here we provide a more physical model based

on numerical solutions of coupled drift-diffusion equations for electrons

and ions with appropriate boundary conditions. We simulate the dynamics

of a two-terminal memristive device based on a semiconductor thin filmwith

mobile dopants that are partially compensated by a small amount of

immobile acceptors. We examine the mobile ion distributions, zero-bias

potentials, and current–voltage characteristics of the model for both

steady-state bias conditions and for dynamical switching to obtain physical

insight into the transport processes responsible for memristive behavior in

semiconductor films.
1. Introduction

In 1971, Leon Chua proposed the existence of a fourth

fundamental electronic circuit element, the memristor, to

complement and complete the set of previously known passive

devices (capacitor, resistor, and inductor).[1] The primary

characteristic of this element that made it remarkable was its

‘‘pinched hysteresis loop’’, that is, when energized by a

sinusoidal voltage, the resulting current–voltage (i–v) char-

acteristic was a Lissajous curve that could not be duplicated

with any network of the other fundamental passive devices. In

1976, Chua and Kang[2] generalized this concept to a

specialized set of dynamical devices they called memristive

systems, the primary characteristic of which was again the

pinched hysteresis loop, or the fact that such devices cannot

store energy and therefore, the current flowing through them

must be zero when the applied voltage is zero. However,

memristors and memristive devices ‘‘remember’’ the total
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charge that flows through them by changing their resistance.

These properties arise from the defining equations for

memristive systems,

v¼Rðw; iÞi (1a)

and

dw=dt¼f ðw; iÞ (1b)

in which v is the voltage, i the current, R the instantaneous

resistance, and w is a state variable (or variables), and for

‘‘pure’’ memristors neither R nor f are explicit functions of i.

These devices were primarily intellectual curiosities until

this year, when we showed that both memristance and

memristive behavior arise naturally in thin film semiconductor

systems for which the equations of motion for current carriers

(electrons and holes) and for mobile charged dopants are

coupled in the presence of an applied field.[3] In that paper, we

presented a simple analytical model to show how variable

resistors in series, one representing a region of highly doped

semiconductor and the other undoped material, could be

constructed to satisfy Equations 1a and b. The state variable w

corresponded to the position of a sharp dividing line between

the doped and undoped semiconductor, and was bounded

between two limits, 0 and L, that corresponded to the positions
g GmbH & Co. KGaA, Weinheim small 2009, 5, No. 9, 1058–1063
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Figure 1. Stationary resistance states for different positive voltages

applied to the right-hand electrode (x¼ L): a) mobile ion concentration,

b) zero-bias potential, and c) frozen configuration i–v characteristics for

positive (solid lines) and negative (dashed lines) voltage sweeps. The

top schematic illustrates the cross section of the device. In panel (a),

the black dotted, solid, dashed, and dot-dashed lines correspond to the

equilibrium concentration profiles for ND(x) under zero bias with ND
�/

ND0 ratios equal to 0.01, 0.1, 1, and 10, while the concentration of

immobile acceptors is always NA/ND0¼0.01. In panels (a–c) the

colored lines represent the steady-state profiles of the corresponding

property for several applied voltages and ND
�/ND0¼0.1. All axes are

dimensionless with the thermal voltage v0¼ kBT/e, E0¼V0/L, and

J0¼ eND0meE0, and with EG/(ev0)¼ 120. These, for example, correspond

to v0¼ 26mV, EG¼3 eV, ND
�¼ 5�1019 cm�3, ND0¼5�1020 cm�3,

E0¼5 kV cm�1, and J0¼400 A cm�2 for T¼ 300K, L¼ 50nm, e¼10,

me¼1V s cm�2, and NA� 8ee0EG/(eL)
2¼5� 1018 cm�3.
of the metal contacts at either side of a semiconductor film. For

the first time, we were able to write an equation expressing the

memristance, M(q), of a device in terms of its physical

properties and geometrical structure, which revealed that the

magnitude of the charge (q)-dependent term, which is

responsible for the hysteresis, is inversely proportional to the

thickness of the device L. Thus, memristance and memristive

behavior are much stronger at the nanometer scale than at the

micrometer scale and have emerged in importance with the

shrinking of electronic device feature sizes. Another realization

to come out of our work was the importance of the boundary

conditions asw approached 0 orL on the i–v characteristics of a

device; a semiconductor memristor driven hard or long enough

will become a memristive system when w approaches a

boundary, and different boundary conditions produce drama-

tically different i–v curves that replicate many anomalous

results that have been reported in the past.[3]

In this paper, we provide a more physical model of

memristive behavior based on numerical solutions of coupled

drift-diffusion equations for electrons, holes, and ions to

simulate the dynamics of two-terminal devices based on a

metal/semiconductor/metal structure. The model contains

enough physics to enable us to see details of the dynamics

but is still simple enough to allow us to obtain significant

insight into the behavior. It can be applied to materials that act

as solid-state electrolytes as well as nonstoichiometric

compounds with mobile defects, for example, oxygen

vacancies. The results of our present investigation validate

some of the assumptions of our analytical model and provide

further insight into such issues as the nature of the boundary

conditions and other limitations on the motion of dopants that

were not previously evident. Most importantly, the model

provides a foundation from which we can construct more

quantitative simulations of real devices.

Previous research on the modeling of mixed ionic/

electronic conductors focused on their stationary or/and static

i–v characteristics.[4–7] The results of dynamic simulations of a

system with Schottky-type contacts have been discussed,[8] but

details of the simulation approach have not yet been

published. Detailed transient dynamics have been exam-

ined,[9] but only the displacement electronic current was

considered. More recently, the impact of oxygen vacancy drift

on the drain current of a field effect transistor in the context of

gas sensors was simulated,[10] however, the model geometry

was significantly different from the one considered in this

paper, that is, it was a three-terminal device in which ion drift

was mostly perpendicular to the electronic current.

2. Model

We consider a 1D model of the device with a semiconductor

thin film that contains charged mobile n-type dopants with a

concentration distributionND(x) confined by electrodes at x¼ 0

and x¼L (Figure 1). The dimensions of the device along the y-

andz-directions are assumed to be much larger thanL, which isa

reasonable approximation for thin film structures even if the

active region is the gap between a conducting channel in a much

thicker layer of semiconductor and one of the electrodes. The
small 2009, 5, No. 9, 1058–1063 � 2009 Wiley-VCH Verlag Gmb
active layer is partially compensated by a small amount of

immobile and uniformly distributed p-type dopants with

concentration NA � N�
D, the average concentration of mobile

dopants (N�
D ¼

R
NDðxÞ=Ldx). In the discussion that follows,

all quantities that are explicitly denoted as functions of x are

also functions of time and will be examined after certain time

intervals have elapsed.

For simplicity, we assume that both donors and acceptors

are shallow, and thus their energy levels coincide with the

corresponding conduction EC and valence EV band edges. In

this case, one can neglect thermal generation and recombination

currents for relatively large band gap materials. Moreover,

the goal of this paper is to study the dynamics on the ion-drift

time scale. Since the electron-lattice relaxation is much
H & Co. KGaA, Weinheim www.small-journal.com 1059
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faster, electron n(x) and hole p(x) concentrations can be

approximated with Fermi–Dirac statistics, that is, with

the separate quasi-Fermi potentials wn(x) and wp(x),

respectively.[11] Thus, the steady-state currents from the

drift-diffusion approximation for electrons and holes are

determined from

r � ð�enðxÞmnr’nðxÞÞ ¼ 0 (2)

and

r�ðepðxÞmpr’pðxÞÞ ¼ 0 (3)

while the Poisson equation for the active layer with uniform

permittivity ee0 is

� ""0D’ðxÞ

¼ eðpðxÞ � nðxÞ þ fDðxÞNDðxÞ � fAðxÞNAÞ (4)

Here, e is the unit charge, w(x) the electrostatic potential,

and mn (mp) is the electron (hole) mobility, which is assumed to

be independent of the field. fD(x) and fA(x) are ionization

factors for donors and acceptors, correspondingly, which are

found from the population statistics[11] and typically equal to

unity for the considered simulation parameters.

The non-equilibrium mobile ion distribution and ion flux

JION(x) can also be found from drift-diffusion theory (in this

paper we are neglecting nonlinear drift in high electric

fields[12]) and the continuity equation, that is, for singly

charged positive ions,

JIONðxÞ ¼ �eDirNDðxÞ � eNDðxÞuir’ðxÞ (5)

and

e@NDðxÞ
@t

¼ �r � JIONðxÞ (6)

where Di and mi are the ion diffusion constant and mobility,

respectively, which are related via the Einstein–Nernst

equation.

In this study we consider only bulk-limited transport, and

the interfaces are assumed to be purely ohmic for electrons.

This, for example, might correspond to either metal electrodes

with adjacent D-doped semiconductor interfacial layers or

heavily doped semiconductor electrodes with a band gap

similar to that of the transport layer. The electron and hole

concentrations are fixed to their equilibrium levels defined by

the Fermi potential at the interface, such that for an applied

bias v the boundary conditions are

’nð0Þ ¼’pð0Þ (7)

and

’nðLÞ ¼’pðLÞ ¼’nð0Þþv (8)
www.small-journal.com � 2009 Wiley-VCH Verlag Gm
The interfaces are assumed to be trap free and completely

blocking for mobile ions, so that the total number of mobile

dopants, LND� is constant, that is,

JIONð0Þ ¼JIONðLÞ ¼ 0 (9)

In this study, we neglect Joule heating and explicit

temperature effects.

3. Simulation Results

Equations 2–6 with boundary conditions 7–9 are solved

numerically using an iterative procedure to achieve self-

consistency. More specifically, starting from initially defined

mobileND(x) and fixedNA ion distributions, the potentialsw(x),

wn(x), and wp(x) are determined from Equations 2–4 using a

modified Newton–Raphson method.[13] After that, a newND(x)

is calculated using a backward difference approximation for the

time derivative with the time step limited by the Courant

condition.[14] These two steps are repeated throughout the

simulation until some specified goal is reached. Fast i–v

measurements to characterize the resistance state of the system

at a particular time are simulated by freezing ND(x) and

calculating the current as a function of voltage for that

configuration of mobile dopants. All stationary profiles are

calculated by starting with a uniform concentration, that is,

NDðxÞ ¼ N�
D, and then relaxing the system by simulating

sufficiently large times so that no significant changes occur

between iterations. As a sanity check, we compare the relaxed

profile to onecalculatedfrom a stationary model withJION¼ 0 in

Equation 5 to make sure that they are consistent.

We first simulate the ground state of the system, with zero

voltage applied, in order to examine the equilibrium distribution

ND(x). An analytical solution of the Poisson–Boltzmann

equation predicts that a 1D system with charged mobile ions

confined between electrodes with compensating charge will

settle into a U-shaped distribution.[15] This intuitive result comes

from the condition that the electrostatic attraction of ions to the

image charge on both electrodes is the strongest near the

interfaces, and hence a large ionic concentration gradient is

required to compensate it. The two decreasing dopant

concentrations from each interface meet in the center of the

film with a slope of zero, which produces the U-shape.

When the semiconductor band gap and Fermi level pinning

at the electrodes are included in the model, the simple

analytical treatment is no longer appropriate. The equilibrium

profile from the numerical calculation still has an approximate

U-shape, as shown in Figure 1a, but depending on the specific

conditions the U may be flattened or even inverted. For

example, when the depletion width is smaller than the device

length L, only ions near the interfaces will be affected and thus

the profile is flat in the middle of the device. The orientation of

the U, that is, either normal or inverted, depends on the

alignment of the Fermi potentials between the electrodes and

the semiconductor film. For the simulations reported here, the

electrode Fermi potential was chosen such that it corresponds

to the potential of appropriate semiconductor layers at each
bH & Co. KGaA, Weinheim small 2009, 5, No. 9, 1058–1063
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electrode doped with ND0 donors and NA acceptors

(Figure 1a). There are three qualitatively different equilibrium

profiles, given by the conditions N�
D > ND0;N

�
D ¼ ND0, and

N�
D < ND0. The simulation results are reported for the latter,

the most representative case with N�
D ¼ 0:1ND0 ¼ 10NA. In

this case the equilibrium ion distribution has an upside-down

U-shape with a flattened center (Figure 1a).

For these concentrations of mobile and fixed ions, we also

show (with colored lines) the quasi-equilibrium characteristics

for the ion distribution (Figure 1a) and the zero-bias potential

(Figure 1b) resulting from a series of positive voltages

applied to the right-hand side of the device (x¼L) after
Figure 2. Dynamical resistance states for a fixed voltage (positive or negative) applied to the

right-hand electrode (x¼ L) examined after different time intervals: a), f) mobile ion concen-

trations, b), g) zero-field electrical potentials, c), h) electric field, and the corresponding i–v

plots shown with linear d), i) and logarithmic e), j) scales, respectively. Panels (a–e) and (f–j)

show ‘‘ON to OFF’’ and ‘‘OFF to ON’’ transitions for constant biases v/v0¼120 and v/v0¼�120,

respectively. The diagrams just below panels (a) and (f) show the equivalent circuit for the

memristor analytical model [3] and how it corresponds to the numerical simulations. The color

of a line corresponds to a particular time, which is shown on a log scale in the insets of panels

b and g, and given in units of t0¼ L2/Di, while the initial state is always shown with a black

solid line. Also, insets in panels a and f show the corresponding movement of the ion profile

front, which is defined at point x/L¼w/L such that ND(w)¼NA. The red arrows are a guide

for the eye to indicate the time evolution of the changes. Note that for the considered geometry,

t0 can be as low as few microseconds for superionic conductors. [23] A similar speed can

be achieved even for slow ionic species, like oxygen vacancies in metal oxides, with the help of

elevated temperatures and/or high electric field effects. [12]
holding each bias for a long enough time to

reach steady state, as well as the i–v curves

used to characterize each state. These

steady-state characteristics are attained

when JION(x)¼ 0, or from Equation 5,

NDðxÞmir’ðxÞ ¼ �DirNDðxÞ, that is,

when the field and the concentration

gradient are oppositely directed and the

drift is exactly compensated by the diffu-

sion. The initial application of an external

voltage causes positive mobile ions to drift

and results in effectively complete mobile

ion depletion from one side of the device

(the right-hand side for the applied bias at

x¼L, represented in Figure 1). Once the

concentration of mobile donors in this

region falls below that of the fixed

acceptors, the device doping profile goes

from nþ–n–nþ to nþ–n–p–nþ. The p-type

region produces a potential barrier for

electrons (Figure 1b) with the maximum

height mostly depending on the particular

choice ofNA and the built-in voltage of the

induced p–nþ junction, which for the

parameters chosen is close to the bandgap

value EG/e. To induce a significant barrier

height modulation, we chose NA such that

the depletion width associated with it was

half of the device length L.

The device has only one equilibrium

state, for which the i–v curve is essentially

linear and has the lowest resistance

possible for the system. This is defined

as the ON state (Figure 1c) and represents

one of the boundaries for the resistance

variation of the device. On the other hand,

device states formed by increasing the bias

voltage have increasingly nonlinear (and

slightly asymmetric) i–v curves with cor-

respondingly increasing values of the zero-

bias resistance (Figure. 1c). There exists

one limiting OFF state corresponding to

the i–v with the highest resistance possible

for a device with given parameters, which

is the other boundary for the resistance.

This state can in principle be reached by

applying a large positive external bias
small 2009, 5, No. 9, 1058–1063 � 2009 Wiley-VCH Verlag Gmb
voltage so that all the mobile ions are pushed into a narrow

region near one interface of the device and the potential

barrier height reaches its maximum value EG/e; applying a

larger bias voltage will not increase the resistance of the

device. In practice, we do not attempt to simulate a system for

which the applied voltage might yield an unphysically high

concentration of mobile dopants within the present model.

Figure 2 illustrates the dynamical switching properties of

our model. Initially, we apply a fixed positive voltage vþ (we

choose vþ¼ 120v0, such that from Figure 1a the maximum

concentration ND(x) is less than ND0 but the resistance

modulation is still significant) that was only capable of turning
H & Co. KGaA, Weinheim www.small-journal.com 1061



full papers D. B. Strukov et al.

Figure 3. Dynamical i–v plots for one period of a sinusoidal applied

voltage v/v0¼�120 sin[2p(t/t0)/0.01] showing the pinched hysteresis

loops for the numerical (initially set to quasi-static OFF state with the

bias v/v0¼ 400) and analytical models. The inset in the bottom right

quadrant shows the corresponding dimensionless charge-flux plots in

units q0¼ J0t0 and f0¼ v0t0. The solid curves are the results from the

numerical simulations of the model of this paper, and the dashed

curves are for the analytical model originally used to identify memristive

behavior in Reference [3].

1062
the device partially OFF to the right hand side of the device

(x¼L), and we then determined the mobile dopant distribu-

tion, the zero-bias potential, and the electric field, along with

corresponding i–v sweeps to characterize each state at various

time intervals, as shown in Figure 2a–e, respectively. We see

that the dopant distribution was pushed to the left (toward

x¼ 0) with an extremely abrupt front between low and high

ion concentrations. We define an effective vertical boundary

for a particular time by the point x¼w, such that ND(w)¼NA,

and plotw/L versus time in the inset of Figure 2a; the boundary

initially moves rapidly, but decelerates significantly as it

approaches the steady-state limit at x/L� 0.58 for v¼ vþ. This

behavior can be understood from Figure 2c by analyzing the

evolution of the electric field at w: the field is essentially

constant for x<w and equal to E(w), and is nearly linear for

x>w with a slope –eNA/(ee0) since ND(x) is very small, with

the result that E(w)� vþ/L� e(L–w)2NA/(2Lee0). The rate of

change in w is related to E(w) via the simple drift law dw/dt¼ –

mi E(w), which on integration can be approximated by w(t) /
tanh[t], that is, exponential deceleration. The movement of the

boundary causes the growth of the potential barrier in the gap

(which is approximately eNA(L–w)2/(2ee0)) by exposing more

of the fixed acceptors. Consequently, the electrical resistance

increases until the steady-state condition is reached.

Next, the bias voltage polarity is reversed (Figure 2f–j),

with a negative voltage (v¼�vþ) applied at x¼L. As can be

seen from Figure 2f for different time intervals, the ion

concentration moves back toward its initial equilibrium

distribution. However, this evolution of the distribution for

switching back to the ON state is not the time-reversed image

of the OFF-switching motion. The speed of the distribution

front (defined as before and shown in the inset of Figure 2f)

between high and low concentrations is much faster for the

ON-switching case, and a new front appears at the left-hand

side of the device, near x¼ 0, as the negative bias at x¼L

attracts ions that had been at the opposite metal contact

toward the center of the device. By applying the negative bias

voltage for a long enough time, the device could be switched

OFF again by attracting the dopants away from the left-hand

contact and thus forming a potential barrier at that side; the

beginning of this process can be observed in Figure 2f–h. It is

unclear if the boundary speed decelerates as it approaches the

ON state since the dynamics are much more complex than for

the transition toward the OFF state. Although the internal

state of the device is significantly different from the

equilibrium state, as shown by the final plots of both ND(x)

and w(x) in Figure 2f and g, respectively, the resistance of the

device in the final state is only slightly larger than that of the

equilibrium state.

When a sinusoidal voltage is applied to the device, as

shown in Figure 3, it displays the pinched hysteresis loop of a

memristor or memristive device. However, if we plot the

integral of the voltage as a function of the integral of the

current density, as in the inset of Figure 3, we see that the result

is not a single curve, as it must be for a memristor,[1] and thus

this model more properly represents a memristive device. This

is because the rate of the ON and OFF transitions is different,

and thus the hysteresis loops in the positive and negative

quadrants of the i–v plots are not symmetric. Figure 3 also
www.small-journal.com � 2009 Wiley-VCH Verlag Gm
shows the results of the analytical model introduced in

Reference [3], that is, using the equivalent circuit shown below

panels a and f in Figure 2:

vðtÞ ¼ RONwðtÞ
L

þ ROFF 1� wðtÞ
L

� �� �
iðtÞ (10a)

and

dwðtÞ
dt

¼ �miRONiðtÞ
L

(10b)

For this calculation, we use the same sinusoidal external

bias, mi, and RON as used in the numerical simulations, but the

value of ROFF¼ 5RON to avoid hard boundary conditions. The

simple analytical model is a memristor, with the charge a

single-valued function of the flux as shown in the inset of

Figure 3. This comparison clearly reveals the two major

differences between the numerical model for a semiconductor

thin film memristive device and a pure memristor: the

asymmetry in the hysteresis loops caused by the different

rates of ON and OFF switching and the highly nonlinear i–v

characteristic of the OFF state of the device. (Note that in the

pure memristor model the ionic diffusion component was

neglected.[3]).

4. Discussion and Summary

The model presented here with drift-diffusion equations

for current carriers (Equations 2 and 3) and charged mobile
bH & Co. KGaA, Weinheim small 2009, 5, No. 9, 1058–1063
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dopants (Equations 5 and 6), coupled by the Poisson equation

(Equation 4), both justifies and significantly extends the earlier

analytical model for memristive behavior in a metal/

semiconductor-film/metal device with mobile dopants.[3]

The observation of the abrupt front between the high and

low concentration regions of the mobile dopant distribution is

a partial confirmation of the central assumption of the earlier

model. However, we see that in fact there is not a single state

variable that describes the dynamical evolution of the

resistance of the system, but rather a state function that

evolves in time, which can be taken to be either the mobile

dopant concentration distribution ND(x) or the potential w(x)

for 0� x�L in the semiconductor. We also see that the

boundary conditions for the potential and the ion flux

(Equation 7–9) lead to a set of soft boundary conditions for

the resistance states of the system, that is, the front retreats

from the limiting ON with a constant speed but decelerates

significantly when approaching the OFF state.

The present model also makes several predictions about

the behavior of a thin film semiconductor memristive device.

First, the ON and nearby low-resistance states have ohmic i–v

characteristics, but as the zero-bias resistance of the device

increases toward the OFF state, the i–v curves become

increasingly nonlinear because of the n–p–n potential barrier

that develops in the semiconductor. Second, for a voltage bias

polarity that increases the resistance state of the device, the

ultimate OFF state may be approached in a series of steps. The

resistance will increase with time for a particular constant

applied voltage magnitude until it saturates when the system

achieves a steady state corresponding to the condition

JION(x)¼ 0 in Equation 5. After that, increasing the magnitude

of the voltage will increase the resistance further, until finally

the maximum resistance OFF state of the system is attained. A

corollary to this prediction is that for the same magnitude but

opposite polarity of applied voltage, the speed of switching

ON will be significantly faster than switching OFF. This is

again related to Equation 5: the electric field and the dopant

concentration gradients point in the same direction for

switching ON but in opposite directions for switching OFF.

A final prediction of this model is that it is possible to invert

the switching polarity of a device; for example, applying an

ON-switching voltage for a long enough time will eventually

cause ions from the grounded side of the device to drift toward

the center of the film, thus turning the device OFF. In fact, this

effect has long been the basis for determining the mobility of

mobile ions by measuring the peak position of the transient

electronic current that is associated with the transition through

the ON state.[8,16]

The model is quite general, and our choice of n-type

mobile species is arbitrary. If the mobile species have p-type

character,[7] the same qualitative results will be obtained from

the model. Moreover, similar dynamics will occur if one of the

interfaces is transparent to the ions,[17,18] such as when mobile

species can completely escape from or be injected into the

transport layer.
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The model presented here is a foundation for performing

more complete simulations. It can be extended to include the

generation and recombination currents for both ions and

electrons (which was necessary to accurately simulate electron

transport for phase change material systems[19]); interface

ionic traps;[20] nonlinear drift of electrons and ions, including

both the effects of Joule heating and high electric fields;[12] and

the presence of both neutral and ionized mobile dopants.[21]

By extending the model to higher dimensions, it can capture

conductance channel formation[18,22] and other localized

effects.
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