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Hardware-intrinsic security primitives employ instance-specific and process-induced variations in 

electronic hardware as a source of cryptographic data. Among various emerging technologies, 

memristors offer unique opportunities in such security applications due to their underlying stochastic 

operation. Here we show that the analogue tuning and nonlinear conductance variations of 

memristors can be used to build a basic building block for implementing physically unclonable 

functions that are resilient, dense, fast, and energy-efficient. Using two vertically integrated 10×10 

metal-oxide memristive crossbar circuits, we experimentally demonstrate a security primitive that 

offers a near ideal 50% average uniformity and diffuseness, as well as a minimum bit error rate of 

around 1.5% ± 1%. Readjustment of the conductances of the devices allows nearly unique security 

instances to be implemented with the same crossbar circuit. 

 

The continuing advance of information technology has stimulated an unprecedented expansion of 

interconnected networks and devices. The significant volume of personal and sensitive information 

continuously carried over shared and remotely accessible networks poses significant security challenges1-3, 

which conventional cryptographic approaches struggle to adequately address. Conventional cryptographic 

approaches typically rely on “secret keys” stored in nonvolatile memories for data encryption and access 

authentication, and these are vulnerable to physical and side-channeling attacks, including direct probing 

and power analysis4,5. As a result, security approaches based on physical hardware roots of trust have 

recently attracted significant attention. Analogous, to a degree, to biometric identifiers, such as retinal and 

fingerprint imprints, hardware roots of trust are physically embedded with their cryptographic processes 

through unique, individual structural properties that are virtually unpredictable and practically 

inimitable2,4,6-10. The cryptographic data should be immediately and reliably available upon interrogation 

and effectively impossible to learn or extrapolate even when challenged by aggressive model-building and 

machine learning attacks6.  

Physical unclonable functions (PUFs) are a class of hardware security primitives that draw their 

cryptographic “keys” from fabrication process variations11-15. Among the wide variety of proposed PUF 

implementations utilizing (within-die) spatial variations in electronic devices3,16-24, those based on crossbar 

architectures with integrated resistive random access memory (ReRAM or memristors, for short) are 

particularly promising. This is due to their simple and relatively low-cost fabrication process, small 

footprint, complimentary metal-oxide-semiconductor (CMOS) circuit integration compatibility25-28, and 

process-induced variations in I-V characteristics pertinent to the mixed electronic-ionic transport and 

memory mechanism25,26,29-33. 
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The most accessible manifestation of process-induced compositional and structural variations in 

ReRAM arrays is the spatial (that is, device-to-device) variations of the effective switching thresholds. One 

example is the voltage at which device conductance is abruptly changed upon application of a ramping bias. 

A related example is spatial variations in the ON and OFF state conductances in the array upon application 

of a large voltage or current bias29-31. The physical source of these variations is arguably the stochastic 

nature of ionic switching arising from compositional inhomogeneity of the switching medium, as well as 

variations in individual device profiles such as electrode imperfections and random variations in surface 

roughness25,26,34.  

These “entropy” sources were typically the foundation for previously proposed memristor-based 

security primitives (see Supplementary Table 3 for a comparison of reported primitives). Many of these 

proposed PUFs require a relatively large number of devices in the crossbar array8,29,30,35 and extensive 

peripheral programming and control circuitry30 to achieve viable operational metrics. Furthermore, a digital 

mode of operation with devices switched to the extreme ON and OFF states is typically utilized, hence 

ignoring one of the main advantages of memristive devices: their nonlinear adjustable I-Vs. Indeed, because 

the device nonlinearity is strongly dependent on the memory state and is correlated with process variations, 

it can serve as a prominent source of the entropy in memristive arrays36. On the other hand, in the digital 

approach, the crossbar array is effectively reduced to a linear resistive network, which greatly simplifies 

input-output mapping. The PUF operation in some of the prior proposals also rely on the write operation37,38, 

which may not be practical, especially for key generation applications, considering the write endurance 

limitations of the memristors. 

In this Article, we first propose a robust hardware-intrinsic security primitive that takes advantage 

of variations in the nonlinear I-V characteristics of memristors; the key novelty of this approach is the 

analogue tuning of the memristors’ conductances to maximize the functional performance of the PUF. We 

then experimentally demonstrate a fully functional implementation of the security primitives based on 

integrated memristive circuits. This, we believe, is an important step in the development of a practical PUF 

network based on the unique features of memristive arrays, and notably extends beyond previous 

demonstrations, which typically relied on post-processing data measured on individual devices and/or using 

a very small portion of the challenge-response space.28,30,31,33,35 

Hardware-intrinsic security primitive 

The basic building block for our security hardware is implemented with a two-level stack of 

monolithically integrated 10×10 memristive arrays (Fig. 1a, b). The fully passive Al2O3/TiO2-x memristor 

crossbars, which have an active device area of ~ 350 × 350 nm2, were fabricated using in situ low-

temperature reactive sputtering deposition, ion milling, and a precise planarization step. The middle 

electrodes are shared between the bottom and top layers (Fig. S1). The fabrication flow ensures a high 

device yield (>95%) and low <175 °C temperature budget, compatible with CMOS back-end-of-line 

integration. (The fabrication steps are similar to those described in our earlier report39 and are explained in 

more detail in Section 1 of Supplementary Information.) The ON/OFF ratio of currents for the devices in 

the top and bottom layers is at least two orders of magnitude, on average, when measured at 0.3 V (Fig. 

S1c). The variations in effective voltage switching thresholds are sufficiently low to permit precise tuning 

of the devices within the array (Fig. 1c), while still substantial enough to be utilized in the considered 

application (see below). The device I-V is nonlinear, especially at higher resistance states (Fig. 1d).  

Figure 2 shows how such an effective M × N = 20 × 10 crossbar circuit with crosspoint device 

conductances 𝐺𝑖𝑗 is utilized to implement basic cryptographic functionality. Similar to previous 

proposals,36,37 a single-bit binary output b is calculated by biasing m selected rows with voltage VB and then 

comparing the currents running into two groups of n/2 selected virtually grounded columns. For simplicity, 

let us assume that one group always comprises the leftmost columns and the other the rightmost so that 
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where SR is a set of indexes of the selected rows, SC
+ and SC

- are sets of indexes of the selected columns in 

the left and right groups, respectively, and 𝐼+ and 𝐼− are their respective currents. The remaining 

(unselected) rows and columns in the array are kept floating. With such a scheme, the maximum number 

of distinct selections is 

         𝐶MAX = (
𝑀
𝑚
) × (

𝑁
𝑛
).          (2) 

Note that this number can be further substantially increased by considering more complex peripheral 

circuitry, e.g., by factor (
𝑛
𝑛/2) by taking into account order permutations in the columns, and, as we show 

later, by a factor NB, the number of different bias voltages utilized in one selection. 

 The exemplary PUF network based on the discussed circuit is implemented by tuning the 

conductances of the crosspoint devices to specific pre-calculated values using the write-verify algorithm.40 

The goal of the tuning procedure is to enhance the contribution of the devices’ I-V variations to the response 

of the network while at the same time improving its reliability and randomness. This is achieved by selecting 

a specific distribution of device conductances and having a proper balance between two types of currents 

measured at the output - currents via selected devices and sneak path currents passing through the floating 

portion of the array. In particular, the target conductances for a particular PUF instance are found by 

randomly generating C exclusive selections (i.e., C different SR, SC
+, and SC

- sets) and their corresponding 

desired values for the outputs I + and I – and then minimizing the function 
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(3) 

with a natural constraint that all conductances are nonnegative values. Importantly, I + and I – are Gaussian 

distributed, and the absolute difference |I + - I – | for each selection is forced to be larger than a certain value 

(for more details on this algorithm, see Section 2 of Supplementary Information). The described procedure 

for configuring the crossbar circuit results in a narrow distribution of device conductances in which the 

PUF uniformity (UF) and diffusiveness (DF) are improved by eliminating biases in the output currents. At 

the same time, the reliability (BER) of the PUF, in particular its tolerance to the memristors’ current 

fluctuations due to intrinsic noise and potential drift of conductive states29, is strengthened by enforcing the 

current readout margins. Furthermore, the PUF uniqueness (UQ) is facilitated by the random nature of the 

algorithm used to select the conductance distribution. (See the formal definitions of these security metrics 

in Section 3 of Supplementary Information.)  

Different target weight distributions can be precomputed beforehand for a specific memristor 

technology. Precise tuning of the weights is not required; therefore, implementation of specific unique PUF 

instances using the proposed algorithm can be relatively fast and incur minimal circuit overhead. Moreover, 

the same hardware can be programmed to implement different PUF instances, which is another unique 

feature of our approach. A somewhat faster implementation of different unique PUF instances is achieved 

by using the “rattling” strategy, which we also consider in this paper. In this case, the initial (e.g., tuned) 

distribution of the weights is changed (rattled) by applying short voltage pulses of random amplitude and 

polarity.      
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PUF demo and characterization of its security metrics  

Figure 3a-c shows the results of tuning the memristors’ conductance to the values determined by 

the algorithm. As expected, the target and the tuned conductance distributions were Gaussian-shaped (Figs. 

3b and 4a), even when using the rattling scheme (Fig. 4c), with fairly uniform averages along the rows and 

columns of the crossbar array (Fig. S3a).  

The security metrics for the PUF are experimentally characterized using a selection scheme with m 

= 5 rows and n = 2 columns and three different voltages VB: 200 mV, 400 mV, and 600 mV. (According to 

Eq. (2), for this case CMAX = 697,000 for each voltage bias.) Specifically, we evaluate PUF metrics by 

generating response data for 384,000 exclusive random selections, i.e., slightly more than half of the total 

available, at each voltage bias and grouping the single-bit outputs in 64-bit response packets so that there 

is a total of 6,000 64-bit outputs for each voltage bias generated. (In the considered implementation, the 

diffuseness is naturally improved by grouping more bits together.) 

Figure 3d,e shows UF, DF, and BER for the collected data. In particular, the data show that 

increasing the voltage bias from 200 mV to 600 mV improves UF from already decent 49.5 ± 6.25% to 

nearly ideal 50.1 ± 6.26%; another PUF randomness metric, DF, is also close to ideal, being ~50 ± 6.25% 

for all cases. The better PUF metrics at higher voltages are attributed to the stronger nonlinearity in the 

device I-Vs.  

To accelerate testing, the reliability of the network (i.e., its BER) was measured using the worst 

case 16,000 challenges (out of 384,000) that resulted in the smallest current differential readout margins. 

The results show that BER improves substantially at higher biases, from 3.9 ± 1.8% at VB = 200 mV to 1.22 

± 1.0% for VB = 600 mV; this is partially attributed to the improved readout margins. The improvement in 

BER is even more significant, from 16.36 ± 3.1% at 200 mV to 5.93 ± 2.59% at 600 mV, for PUF operation 

under an elevated ambient temperature of 90 ᴼC (inset in Fig. 3e). The latter BER value is comparable to 

that of simulated BER for conventional PUF implementation41 despite being measured for the worst-case 

challenges.  

The PUF uniqueness was evaluated by implementing different instances on the same crossbar 

circuit. First, we measured the uniqueness between pairs of PUF instances that were implemented by 

varying applied voltages VB without re-tuning the device conductances (Fig. 3f). Not surprisingly, the 

maximum UQ of 44.8 ± 6.9% is achieved between the PUFs with the smallest applied voltage (200 mV) 

and the largest one (600 mV). This is quite natural because variations in nonlinear I-Vs, which are more 

prominent at higher biases, result in non-monotonic redistribution of sneak path currents (Figs. 3c and S3b). 

Such a feature is very useful against power side channel attacks and suggests the possibility of using voltage 

bias as one of the independent inputs of the selection scheme.  

In a more general study, we characterized the uniqueness between PUF instances with differently 

programmed crossbar devices by applying 32,000 exclusive random input challenges. Figure 4a,b shows 

the results for 5 different PUF instances, each with a unique tuned conductance distribution according to 

the described algorithm. The UQ was close to the ideal 50% mean for all studied cases (Fig. 4b), with the 

smallest variance, 1.9%, at the largest bias voltage of 600 mV. In another experiment, we characterized 10 

different PUF instances obtained by the “rattling” strategy, which was applied over the initially tuned 

distribution (Fig. 4c). In particular, in each case the conductance for each device in the crossbar was rattled 

by a single 10-μs reset pulse whose amplitude was randomly assigned a value between 0.9 V and 1.6 V, 

voltages that roughly correspond to 40% and 70%, respectively, of the average reset switching threshold 

for the studied crossbars. (Such conservative pulse amplitudes were chosen to avoid excessive stress, which 

may lead to permanent failure of the devices.) Once again, the UQ significantly improved when higher 

voltages were applied – from 24.8 ± 6.3% for 200 mV to near ideal 50.07 ± 2.1% for 600 mV (Fig. 4d). 

The robustness of the rattling strategy is further highlighted in the implementation of larger two-layer PUF 

architectures in which the basic building blocks of the network were realized using multiple rattled 
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configurations of the same array distribution on the same crossbar circuit (Section 6 of Supplementary 

Information). 

Performance, robustness, and potentials for improvement 

The demonstrated functionality of the model device is a proof of concept for the exciting potential 

of memristors in cryptography. In particular, the experimentally measured data for uniformity, diffuseness, 

and uniqueness are very close to the ideal values, which correspond to random binary vectors (Section 3 of 

Supplementary Information). Although the bit error rate is not negligible, we believe that there are many 

reserves for its improvement, e.g., increasing the size of the crossbar, averaging over several measurements 

(Fig. S9), using more sophisticated mapping to avoid defective (e.g., noisy) memristors, and/or using error-

correcting codes. Furthermore, our preliminary results regarding the robustness of the demonstrated 

hardware against modelling attacks are also very encouraging. The output data appear to be very weakly 

correlated (see Fig. S6 and its discussion), and this is further supported by the successful passing of the 

NIST randomness test suite. The results of our initial attempt at predicting challenge-to-response function 

using machine learning techniques, which are becoming mainstream tools for attacking security primitives, 

8,41,42 also show very strong resilience to modelling attacks (Section 7A of Supplementary Information). 

Finally, although we have not measured speed and power consumption directly, in part due to the limitations 

of the experimental setup, crude estimates show that these metrics can be significantly better for the 

proposed hardware (Section 5 of Supplementary Information) than those of state-of-the-art 

implementations based on CMOS circuits at similar feature sizes (Table S3).  

One drawback of the demonstrated circuit is the small total number of challenge-response pairs 

(CMAX). This problem can be readily corrected by increasing the effective crossbar circuit dimensions. For 

example, scaling up the crossbar to M = N = 100 should be relatively straightforward for the considered 

PUF circuits 43,44 given that the requirements for the memristors, especially the requirement for device-to-

device variation, are more relaxed than those for digital or analogue computing applications. (Note that the 

three-dimensional structure of the crossbar is not essential but is beneficial for PUF robustness because of 

the smaller voltage drops on the crossbar lines.) For such a larger crossbar circuit, CMAX > 1040, e.g., when 

using m = 20 and n = 20. Furthermore, to increase throughput, multiple bits can be generated simultaneously 

using the single block by performing several comparisons in parallel.  

A more complex approach that might further improve the robustness of PUF primitives against 

model-building attacks is the implementation of multilayer PUF networks.45 For example, Figure S5a shows 

a two-layer implementation36 in which the first layer, comprising several basic blocks, generates a hidden 

challenge (a bit vector), which is then applied to the second layer of the network. With NL1 primitives in 

the first layer and with each block biased with unique voltage (out of NB total), the total number of unique 

selections increases exponentially with NL1 and according to Eq. (2) is larger than 1050 even for the 

considered M = 20, N = 10, and practical m = 10, n = 4, NB = 8, and NL1 = 6. As discussed earlier, the 

outputs from different selections can be grouped to make the hidden challenge sufficiently long to feed 

multiple blocks in the next layer and to produce practically large PUF output. The length of the output 

vector in a basic primitive can be further increased by considering multiple column selections for the same 

set of selected rows and/or by generating multiple bits based on the applied voltage biases (see the 

discussion of quaternary PUF in Section 6 of Supplementary Information). Our initial experimental results 

for the 2-layer architecture, which has so far been implemented using the inferior rattling reconfiguration 

strategy, show no evident obstacles towards building practically useful multilayer PUF networks (Fig. S5). 

 Let us stress again that, unlike previous proposals, our approach takes advantage of memristors’ I-

V nonlinearity, its variations from device to device, and the ability to perform analogue tuning of 

memristors’ I-Vs. The use of I-V nonlinearity naturally increases the complexity of the hardware primitive, 

making modelling and replication of such a system more challenging compared to purely linear systems. 

This conclusion is partially supported by the results in Fig. S7, which show higher robustness against 

modelling attacks at larger voltage biases at which the nonlinearity is the strongest. Analogue tuning is 
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essential for reducing the correlations between different input-output responses and optimizing the readout 

margins to improve the bit error rate. In principle, purely digital operation could also be utilized, i.e., only 

setting memristors to the extreme ON and OFF states, although in this case the response is likely to be 

dominated by a relatively small number of highly conductive devices, which in turn would create unwanted 

correlations. Finally, even if an adversary can fully characterize the I-Vs of all devices, the PUF 

functionality should be impossible to practically reproduce in hardware because of I-V nonlinearity and its 

unique device-to-device variations. This fact is especially valuable for authentication applications. With 

moderate scaling of the crossbar circuit to enable a large total number of challenge-response pairs and given 

its very promising speed and power efficiency, the proposed hardware should also be suitable for key 

generation. 

Conclusions 

We have reported the design of a basic building block for hardware-intrinsic security primitives 

based on two-level stacks of monolithically integrated 10×10 ReRAM arrays and successfully verified its 

functionality by measuring key security metrics. The security primitives exhibit near ideal diffuseness, 

uniformity, and uniqueness, as well as a low bit error rate and robustness to machine learning attacks that 

is encouraging for a prototype. Uniquely, our PUFs make use of the nonlinearities and analogue tuning 

properties of the integrated memristors. In addition to robust functional performance, the approach offers a 

number of advantages over previous systems, including configurability, low cost due to the high integration 

density of its passive memristive crossbar circuits, and suitability for monolithical back-end-of-the-line 

integration with traditional CMOS circuits. The approach also provides a high-speed and low-energy 

operation. As a result, such hardware should be appropriate for both authentication and key generation 

applications. 
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Fig. 1. 3D ReRAM crossbar 

array. (a) Cartoon of the 

fabricated circuit. (b) I-V curves 

for all 2×10×10 devices; two 

representative curves are 

highlighted for comparison. (c) 

Tuning of the top and bottom 

devices to 16 different 

conductive states that are 

equally spaced from 2 µS to 32 

µS. (d) Nonlinearity factor 

calculated as a ratio of |1- 

G0/G(VB)| for all 200 devices, 

which were tuned to G0 = 4.5 ± 

~1 µS at 200 mV. For 

convenience, the curves are 

coloured according to the 

observed nonlinearity at the 

highest voltage bias.  
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Fig. 2. Memristor-based basic building block for 

cryptographic hardware. One-bit output is generated by 

applying a voltage bias to m rows (of M total) and then 

comparing the total currents running into the two selected 

groups comprised of n columns (of N total). In the simplest 

implementation, the unselected rows and columns in the array 

are kept floating.  

 

 

 

 

Fig. 3. Experimental results for tuning and security performance. (a) Conductance map (G0). (b) Corresponding 

histogram. (c) Nonlinearity factor for two values of VB for all 200 devices after tuning. In panel b, the dashed line is a 

guide showing a Gaussian distribution. (d) Uniformity and (e) diffusiveness and bit error rate calculated according to 

Eqs. S1a, S2a, and S4a. The bit-error rates are calculated by monitoring 16,000 representative challenge-response 

pairs over a 30-day window in 10-day intervals. To account for ageing and environmental factors, the voltage bias at 

each measurement was randomly selected from the range [0.8, 1.2]×VB , which is representative of up to 20% noise 

on the power supply. The inset shows the bit error rate relative to room temperature for 4,800 challenge-response pairs 

at 90◦C at three different biases. The bars show the 5-95 percentile. The temperature was slowly ramped up to the 

target value and was kept constant for a period of 30 minutes before measurement was performed over a period of 3 

hours. (f) Contour map of the uniqueness between the responses generated using the same challenges at different 

voltage biases, calculated according to Eq. S3c. (More detailed results for several specific biases are shown in Fig. 

S3d.) 
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Fig. 4. Experimental results for PUF 

uniqueness. (a) Conductance distributions 

after tuning for 5 different PUF instances and 

(b) the corresponding uniqueness. The 

measured average and standard deviation are 

49.95 ± 2.65%, 49.94 ± 1.75%, and 49.96 ± 

0.9% for VB = 200 mV, 400 mV, and 600 mV 

voltage biases, respectively. The inset shows 

a zoom-in view of the data. (c) The 

conductance distributions after rattling for 10 

different PUF instances and (d) their 

corresponding uniqueness. The measured 

average and standard deviation are 24.8 ± 

6.3%, 38.2 ± 3.3%, and 50.07 ± 2.1% for VB = 

200 mV, 400 mV, and 600 mV voltage biases, 

respectively. All data for uniqueness are 

calculated according to Eq. S3b.  
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 Supplementary Information   

1.  Memristive crossbar fabrication and characterization 

All fabrication was performed at UCSB’s nanofabrication facility 

(https://www.nanotech.ucsb.edu/). Two-layer monolithically integrated fully passive TiO2-x 

memristor crossbar circuits with an active device area of ~350 × 350 nm2 and with the middle 

metal lines shared between the top and bottom crossbars were fabricated using in situ low- 

temperature reactive sputtering deposition, DUV lithography, ion milling and a precise 

planarization step (Figure S1). The stoichiometry of the switching TiO2-x layer was precisely 

controlled by optimizing the reactive DC sputtering parameters.1 The Al2O3 barrier, the active 

TiO2-x layer, and the TiN and Pt layers were deposited in situ in the sputtering chamber and 

patterned through Ar ion beam etching (IBE). To provide a lower electrode slope, the incident ion 

beam and the substrate were partially tilted (with initial and secondary substrate tilt angles of 0 

and 40°). The bottom layer was then planarized with fast chemical mechanical polishing (CMP), 

utilizing an ~750-nm SiO2 sacrificial layer to achieve global planarization. The middle electrode 

was then partially exposed in a controlled fashion, and the remaining SiO2 layer was removed in a 

CHF3 atmosphere in an inductively coupled plasma (ICP) chamber. Finally, the top crossbar layer 

was deposited and patterned using a process similar to that used for the bottom layer. The top 

electrode was patterned to be a few nanometres wider than the other layers to ensure complete 

coverage of the exposed middle electrode.  

The completed crossbar circuits were wire-bonded and mounted on a custom-printed 

circuit board controlled by Agilent measurement tools. All of the electrical testing was performed 

using an Agilent B1500A semiconductor device parameter analyser, an Agilent B1530A 

waveform generator/fast measurement unit, and a low-leakage Agilent E5250A switch matrix. The 

distribution of the ON and OFF resistances for all devices is shown in Figure S1c.  

 

2. Algorithm for selecting optimal crosspoint conductances  

The algorithm used to find the optimal crosspoint conductances is shown in Figure S2. It 

involves the following steps: 

Step 1:  The very first step is to generate S random sets of row and column selections; these 

are denoted SR and SC
±, respectively. Each selection comprises indexes of the selected 5 rows and 

2 columns, and each set of indexes is unique. The typical value of S is 10,000. The values of μI, σI, 

and ΔI, which are used in the next step, are initialized to the empirically found values of 5 µA, 0.5 

µA, and 50 nA, respectively. 

Step 2:  In this step, S values of I+ and I-, i.e., pairs of desired currents for the selections, 

are randomly generated. For each selection, this is achieved by first randomly choosing (with 0.5 

probability) which current of the differential pair will be directly generated and then sampling its 

value I from a Gaussian distribution with specific μI and σI. Next, the other value of a current pair 

is sampled from I + ΔI + 4.5 [µA] × Beta(2, 25), where Beta() is a beta distribution of the first kind 

with shape parameters α = 2 and β = 25. 

Step 3:   The non-negative least squares optimization problem defined by Equation (3) in 

the  main text is solved with the help of Matlab software.   
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Step 4:  The conductances (Gs) are checked to determine that they fall within the desired, 

highly nonlinear range, which is approximately 2.5 μS to 4.5 μS at 300 mV. If the condition is not 

satisfied, the algorithm proceeds to step 5. 

Step 5:  The σI is adjusted manually, after which the steps for generating new distributions 

of desirable I+ and I– and solving the optimization problem are repeated. It should be noted that 

with optimal μI, σI, and ΔI, which are empirically found during fine-tuning of the algorithm, the 

adjustment step was rather rare in all experiments.  

  

Supplementary Figure 1.  (a) Top-view SEM image of the 3D ReRAM crossbar and (b) its device stack 

material layers and thicknesses. (c) Cumulative histogram for the top (blue) and bottom (red) devices’ ON 

and OFF state resistances measured at 0.3 V. 
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Supplementary Figure 2. An algorithm for selecting crosspoint device conductances. 

3. Security metrics for PUF primitives 

The most common operational metrics in security primitives are based on Hamming weight 

and on the inter- and intra-instance Hamming distance among output vectors. Uniformity (UF) and 

diffuseness (DF) are used to assess the randomness of a single PUF instance. In particular, UF is 

a measure of a balance in the PUF response. The uniformity of the K-bit-long binary response 

(vector B) is simply defined as a normalized Hamming weight 

 UF(𝐵𝑖) ≡  
1

𝐾
∑ 𝑏𝑘𝑖
𝐾
𝑘=1 ,  (S1a) 

where bki
  is a k-th bit of the i-th response Bi. The average uniformity is  

 〈UF〉 ≡  
1

𝐶
∑ UF(𝐵𝑖)
𝐶
𝑖=1 ,  (S1b) 

where C is the total number of challenge-response pairs. The ideal value of UF is 0.5, which 

represents a perfect balance between the possible responses, i.e., the same number of “0”s and “1”s 

in the case of a binary response. 

Diffuseness (DF) is a measure of the extractable unique information in a given PUF 

instance.2 This metric is used to evaluate the dissimilarity among response vectors corresponding 

to different challenge vectors from the same PUF instance. The diffuseness between the i-th and 

the j-th responses is defined as the intra-PUF normalized Hamming distance d 

 DF(𝐵𝑖 , 𝐵𝑗) ≡
1

𝐾
d(𝐵𝑖 , 𝐵𝑗). (S2a) 
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The average diffuseness accounting for all possible pairwise comparisons is therefore  

〈DF〉 ≡
2

𝐶(𝐶−1)
∑ ∑ d(𝐵𝑖 , 𝐵𝑗)

𝐶
𝑗=𝑖+1

𝐶
𝑖=1 .                                  (S2b) 

Another important metric is uniqueness (UQ), a measure of dissimilarity between response 

vectors from different PUF instances to the same input challenge. Uniqueness between two 

response vectors to the same i-th challenge from the l-th and p-th PUF instances is defined as the 

inter-PUF normalized Hamming distance:  

 UQ(𝐵𝑖
𝑝
, 𝐵𝑖
𝑙) ≡

1

𝐾
d(𝐵𝑖

𝑝
, 𝐵𝑖
𝑙). (S3a) 

The uniqueness for the i-th challenge averaged over all possible pairwise comparison of PUF 

instances is 

 〈UQ(𝐵𝑖)〉 ≡
2

𝑃(𝑃−1)
∑ ∑ UQ(𝐵𝑖

𝑝
, 𝐵𝑖

𝑙)𝑃
𝑙=𝑝+1

𝑃
𝑝=1 , (S3b) 

whereas uniqueness averaged over all responses is  

 〈UQ〉 ≡
1

𝐶
∑ 〈UQ(𝐵𝑖)〉
𝐶
𝑖=1 , (S3c) 

where P is the total number of PUF instances. In many security applications, the responses to the 

same challenge from different PUF instances should be highly dissimilar; thus, the ideal value for 

UQ is 0.5.      

Bit-error-rate (BER) is the measure of PUF reliability and is defined as the normalized 

intra-trial Hamming distance between responses from the same PUF instance to the same input 

challenge vectors over different trials. PUF reliability is often evaluated by including additional 

external factors such as variation in the external temperature or the power supply voltage with 

time. A typical way of measuring BER is with respect to the initial sample, say at time t = 0, i.e.,  

 BER(𝐵𝑖) ≡
1

𝑇
∑

1

𝐾
d(𝐵𝑖(𝑡), 𝐵𝑖(0))

𝑇
𝑡=1 , (S4a) 

where T is the total number of samples. The averaged bit-error-rate over all responses is therefore  

      〈BER〉 ≡
1

𝐶
∑ BER(𝐵𝑖)
𝐶
𝑖=1 ,                                             (S4b) 

It is useful to note that if the responses are completely uncorrelated random binary vectors 

of length K, whose bits are generated with 0.5 probability, UF, DF, and UQ follow normal 

distributions with 0.5 average and √0.25/𝐾 standard deviation (i.e., 0.0625 for K = 64).  

The diffuseness is sometimes reported for averaged Hamming distances between a given 

response and all other responses, i.e.,  

 〈DF(𝐵𝑖)〉 ≡
1

𝐶
∑ DF(𝐵𝑖 , 𝐵𝑗)
𝐶
𝑗=1  (S5) 

It is easy to show that, for random binary vectors the average value of <DF(Bi)> over all responses 

is still 0.5, whereas its standard deviation is  √0.25/(𝐶𝐾), i.e., the standard deviation is much 
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lower than that reported for DF(Bi, Bj). Similarly, the average and standard deviation for < UF(Bi)> 

defined by Eq. S3b are 0.5 and  √0.5/(𝐾𝑃(𝑃 − 1)), respectively.  

4. Supplementary results for PUF characterization 

Figure S3a-c shows additional results for the tuning experiment shown in Fig. 3 of the main 

text. For example, Figure S3c clearly shows that both the median and the standard deviation of the 

nonlinearity of individual devices increase with increasing bias. Figure S3d shows the distribution 

of Hamming distances (i.e., the uniqueness) between responses to the same challenges without 

retuning the weights; the responses were measured at 200 mV and at the specified voltage bias. 

This figure highlights the value of nonlinearity as an additional source of entropy in the PUF 

design. (Note that the results shown in Figure S3d are essentially more detailed statistics calculated 

according to Eq. S3b, though for only a few pairs of voltages, compared to the results shown in 

Figure 3f of the main text, which represent only the averages of the HD distributions calculated 

using Eq. S3c.) To evaluate the stability of the conductance distribution, the device conductances 

were re-measured in a bit-error-rate experiment after a 30-day period of thermal stress at 90 ᴼC.  

 

 Supplementary Figure 3. (a) The average conductances (measured at 300 mV) for the devices in a specific 

row and column after the tuning procedure. (b) Figure 3c data (nonlinearity factor) shown as a linear plot. 

(c) Box plots of devices’ nonlinearity for all 200 memristors in the crossbar. Here, boxes show the 25-75 

percentile area, while the bars signify the 10-90 percentile range.  (d) Distributions of intra-bias responses’ 

uniqueness (UQ) between responses to the same challenges without re-tuning of the weights, measured at 

200 mV and the specified voltage bias. 
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Supplementary Figure 4. (a) Maps and (b) histograms of relative changes in conductance measured at 200 

and 600 mV (top and bottom panels, respectively) after a 30-day period following the thermal stress tests 

at 90 ᴼC. 

5.  Performance and energy efficiency estimates 

The demonstrated resistive crossbar circuit has fairly large feature sizes, much larger than 

those of recent state-of-the-art CMOS work implementations (Table S3). To conduct a meaningful 

comparison with prior work, we have estimated the performance and energy efficiency of the 

proposed security primitive assuming 55-nm lateral dimensions of the memristors. Note that much 

smaller, ~10-nm metal-oxide memristors based on similar material stacks have been demonstrated 

to have excellent retention and analogue properties,3 and, in fact, some of the device properties 

actually improve upon scaling. For example, the dynamic range (ON/OFF current ratio) is typically 

inversely proportional to the device area for filamentary devices due to the reduction in leakage 

current. Furthermore, in our comparison, we consider a more practical basic building block with 

M = N = 100 and m = n = 20 and assume that 10 response bits are generated in parallel.    

According to our previous work on mixed-signal vector-by-matrix multipliers,4 the area, 

maximum settling time and power consumption of a single differential sensing circuit 

implemented in a 55-nm process are 10 µm2, 4 ns, and 2.5 µW, respectively, assuming that the 

maximum and minimum input currents are 1 µA / 100 nA. The current assumptions are justified 
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since the minimum OFF current is reduced by a factor of ~40 upon scaling and because half of the 

read current would be contributed by approximately 20 selected devices and the other half by 

unselected devices and also given that the device conductances are balanced according to the 

optimization algorithm. (Additionally, note that the sensing circuit for the mixed-signal vector-by-

matrix multiplier, which was implemented in a conveyor-like style, has much stricter requirements 

for output nonlinearity and driving capabilities; hence, there are some reserves for further 

optimization.) The dynamic energy for the charging/discharging crossbar circuit is estimated 

assuming a rather pessimistic 1 fF/ 1 µm crossbar line capacitance,5  which results in ~10 fJ per 

bit. Neglecting the contributions from other circuitry, the total area, latency, and energy 

consumption for generating one output bit are ~20 µm2, < 5 ns, and ~20 fJ, respectively, 

significantly better than the values achieved by state-of-the-art CMOS implementations, even at 

more aggressive CMOS nodes (Table S3).  

6.  Multilayer PUF network 

Figure S5a shows the general architecture of the proposed 2-level PUF circuit. The 

challenge specifies all selections that are applied to the PUF input, potentially in several steps  (see 

below) to generate a K-bit output response.  In particular, selections are first applied to NL1 

primitive security blocks in the first layer of the PUF. The output of these blocks is used to generate 

a feed-forward (hidden) challenge that essentially consists of scrambling the data by passing it via 

a nonlinear transfer function with the goal of increasing resilience against reverse-engineering of 

the PUF circuit. The feed-forward challenge then specifies selections to the second layer with NL2 

blocks, which in turn produces the PUF output. To increase the number of bits in the feed-forward 

challenge (and the output), its data can be generated in several steps, e.g., by sequentially applying 

a number of selections, as discussed in the main text. (The scrambling can also be performed at 

the input and output to further strengthen the PUF’s resilience. Additionally, the PUF circuit may 

contain dummy blocks that do not contribute to the PUF response and only scramble the network’s 

power profile.) 

As a specific example, let us consider single-bit-output primitive blocks with M = 20, N = 

10, m = 10, n = 4, and NB = 4 that are used in 2-level PUF with NL1 = NL2 = 8, and K = 64. Row 

and column selections can be specified with bit vectors, so that M + N + log2NB = 32 bit input is 

sufficient to specify a unique selection for a single block (assuming there are no permutations in 

the columns). Let us also assume that unique selections are applied to the first-layer blocks and 

that the selections are the same for the second-layer blocks, i.e., the same feed-forward challenge 

is applied to all blocks at once. In this case, K / NL2
 = 8 steps are required to generate all 64 output 

bits, which would require precomputing (M + N + log2NB) K /NL2 bits of feed-forward challenge. 

Because NL1 bits of feed-forward challenge are generated at once, the total number of sequential 

steps to be performed in the first layer is (M + N + log2NB) K / (NL1 NL2) = 32. The effective length 

of the PUF input, comprising all selections that are applied sequentially, each of which is (M + N 

+ log2NB) NL1 bits long, is therefore (M + N + log2NB)2 K / NL2 = 8,192 bits. (Note that the described 

example is not intended to be optimal but is rather introduced as a means of presenting the details 

of the key operations that would be performed in a more complex PUF design. For example, PUF 

architecture can be optimized by generating multiple bits at once from one block. Evaluating these 

techniques and understanding the trade-offs between robustness to various attacks and the 

complexity of the PUF circuit are very important future goals.) 
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Supplementary Figure 5. More practical memristor PUF architectures. (a) Top-level architecture. In the 

most general case, the inputs, feed-forward challenge, and outputs can be subject to “scrambling”, i.e., 

certain nonlinear transfer functions, to improve the robustness and security of the PUF. (b) Measured 

security metrics for the PUF architecture with NL1 = 10, NL2 = 1 and NB = 8 multi-bias selection scheme. 

(c-d) PUF (NL1 = 10, NL2 = 1) with quaternary response. Panel (c) shows an example of one hundred 64-

element-long quaternary response keys; (d) shows the experimentally measured results. 

Finally, to verify the operation of such an architecture, we have experimentally 

demonstrated the functionality of a simplified 2-level PUF network. Two slightly different 

implementations were considered. In both cases, M = 20, N = 10, m = 5, n = 2, NL1 = 10, NL2 = 1, 

and a 64×10-bit feed-forward challenge was used. The locations of the selected rows are binary 

encoded by pairs of bits in a 10-bit portion of a feed-forward challenge such that the first two bits 

determine the location of the first selected row among the first four rows of the crossbar, the second 

pair determines the location of the second selected row among the next four rows of the crossbar, 

and so on. One column is always selected in the left half of the crossbar, and another column is 

selected from the right half. The particular locations are calculated by adding the five least 

significant bits of the 10-bit portion of the hidden challenge for the first column and the five most 

significant bits for the second one.  
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Figure S5b-d shows the experimental results for uniformity and bit error rate for the two 

considered cases, measured by collecting 500 64-bit and 500 128-bit responses, respectively, for 

randomly selected mutually exclusive challenges. In the first case, a sequence of 64 selections with 

each input selection applied simultaneously to all 10 first-layer blocks was used to generate a 64-

bit response. Eight different voltages (NB = 8) between 200 mV and 600 mV were used to bias the 

blocks; in particular, one randomly selected voltage level was used to bias all blocks in the first 

layer, and another randomly selected voltage level was used to bias the second-layer blocks. The 

selected voltages were unique for each input challenge. The only difference in the second 

considered case is that for each 10-bit portion of a hidden challenge, two output bits were generated 

by the second-layer block by first measuring an output at 200 mV and then at 600 mV.  

7.  Predictability and robustness to machine learning attacks 

To investigate the robustness of the demonstrated basic building block with respect to  

modelling attacks, we have performed a series of additional tests using two sets of data. The first 

set of data corresponds to one of the tuned distributions discussed in the main text; the second, 

which is representative of a suboptimally tuned PUF, represents data that we collected at the earlier 

stages of our project. The two data sets consist of, respectively, 354,000 and 76,800 measured 

responses to random unique challenges. For simplicity, in all of these tests we have assumed that 

each challenge is encoded by 30 bits. “1” bit values encode the positions of five selected rows in 

the upper 20 bits and two selected columns in the lower 10 bits. (Obviously, such a format is 

sparse, and not all 30-bit numbers correspond to a valid challenge.  A dense encoding would 

require only ceiling[ log2CMAX ]= 20 bits.)  

A. Correlations  

 In our first test, we probed for possible bias in the output by checking the uniformity of the 

response when a particular bit of the challenge bit vector is fixed (Fig. S6a). The uniformity is 

close to the ideal (50%) for both experiments, though the results are visibly somewhat worse for 

the second data set (Fig. S6b). These results, however, do not exclude the possibility of more 

complex correlations involving multiple input bits. Such correlations can be better captured by 

modelling PUF with binary classifiers based on a feed-forward neural network. Figure S7 shows 

the preliminary results of such modelling using a multilayer perceptron with 30 inputs, 1 output, 

and two 250-neuron hidden layers. The network was trained using a random sample of measured 

input-output data of specified size and then checked against 6,000 (mutually exclusive) randomly 

selected challenge response pairs. The results show that the output of the near-optimal PUF is 

difficult to predict even when the training data represent more than 10% of the total number of 

challenge response pairs. On the other hand, the classification accuracy of the test data for the 

suboptimal PUF improves significantly when the size of the training set is increased. However, 

even for the suboptimal PUF, using such a large training set for a more practical PUF network 

(e.g., with much larger CMAX as discussed earlier in Sections 5 and 6) would be completely 

unfeasible. Indeed, it is natural to expect that, for a more realistic scenario in which only a very 

small fraction of the challenge-response pairs is used as the training data, the classification 

accuracy would be close to the ideal 50% (Fig. S7b). Additionally, note that the results confirm 

that nonlinearity improves robustness slightly; we expect that the improvement will be more 

pronounced for more complex PUFs. 
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Supplementary Figure 6. The distribution of response uniformity when a specific bit of the challenge is 

fixed to a value of either “1” (selected) or “0” (unselected) for two sets of measured data (at 0.2 V voltage 

bias), corresponding to (a) near-optimal and (b) suboptimal PUF instances. For example, the first black/red 

column shows the fraction of the total number of “1” responses with respect to the total number of responses 

for all measured challenges in which the first bit is set to “0”/ “1”. 

  

B. Output randomness 

We further evaluated the randomness of the near-optimal PUF using an NIST statistical 

test suite6 and a long short-term memory (LSTM) neural network model.7  In particular, for the 

first test, the output bits were partitioned into 7000-bit sequences and used to run 15 different NIST 

benchmarks, each of which was repeated 50 times. (“Universal”, “Random excursions”, and 

“Random excursions variant” tests were excluded due to insufficient data.) The results, which are 

shown in Table S1, confirm that the generated responses successfully pass NIST randomness tests, 

i.e., that the probability value (P-value) exceeds 0.01 and that the uniformity is greater than 

0.0001.6 

 

a

b
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Supplementary Figure 7. Robustness to machine learning attacks for (a) near-optimal and (b) suboptimal 

PUF simulated utilizing a 30×250×250×1 multilayer perceptron classifier. The markers denote the average 

classification accuracy over 10 runs; the thickness of the lines for the test data specifies two standard 

deviations. All simulation results were obtained with the Matlab module “traingdx” using a hyperbolic tanh 

activation function in all layers with momentum and adaptive learning rate and the following parameters: 

0.01 learning rate, 1.05 / 0.85 ratio to increase/decrease learning rate, 0.9 momentum constant, 1e-10 

minimum performance gradient, 1e-20 performance goal, 2500 training epochs, 10% validation ratio, and 

10 maximum validation failures. For each training run, the network weights in all layers were randomly 

initialized to values between -1 and 1. 

Supplementary Table 1. Results of the NIST randomness test 

a b

 200 mV 400 mV 600 mV 

Pass rate 

(%) 

Uniformity 

of P-value 

Pass rate 

(%) 

Uniformity 

of P-value 

Pass rate 

(%) 

Uniformity 

of P-value 

Frequency 96 0.935716 98 0.040108 98 0.040108 

Block frequency 100 0.350485 96 0.011791 96 0.011791 

Runs 100 0.971699 100 0.816537 100 0.816537 

Longest run 100 0.779188 100 0.350485 100 0.350485 

FFT 98 0.350485 100 0.851383 98 0.851383 

Non-overlapping 

template 
97.30 

All ≥ 

0.0001 
95.95 

All ≥ 

0.0001 
100 

All ≥ 

0.0001 

Overlapping 

template 
98 0.616305 100 0.013569 96 0.013569 

Linear 

complexity 
96 0.816537 96 0.534146 100 0.534146 

Serial 100 0.289667 98 0.851383 96 0.851383 

Serial 100 0.137282 100 0.616305 96 0.616305 

Approximate 

entropy 
100 0.289667 98 0.699313 100 0.699313 

Cumulative sums 

- forward 
96 0.494392 96 0.383827 100 0.383827 

Cumulative sums 

- backward 
96 0.739918 98 0.534146 100 0.534146 
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We then evaluated the response predictability for the near-optimal data set using the LSTM 

architecture proposed by Graves7 (Fig. S8), which is a special case of a recurrent neural network 

that is capable of handling long-range dependencies in general-purpose sequence modelling tasks. 

The implemented network is based on two LSTM layers and ReLU as an activation function. 

Features with size of 128 extracted by the two LSTM layers are fed into two fully connected layers 

with sigmoid and softmax functions, respectively, as activation functions. We employed the model 

in Keras 2.0.6 with Tensorflow 1.1.0 backend. Three network configurations were used to evaluate 

the response sequence (Table S2). The measured response data were tested in such a way that N 

adjacent bits were considered as input, and the immediately following bit was treated as the label 

(Fig. S8a). The input samples were shifted by S = 3 bit positions.   

 The near-ideal unpredictability of the output sequence for the three training sets and the 

output dimensions configurations further point to the suitability of the proposed approach for 

implementing highly secure and resilient architectures. Nevertheless, further investigation of PUF 

circuits’ vulnerabilities to advanced deep-learning algorithms is important future work. 

 

Supplementary Figure 8. Modelling with long short-term memory neural network. (a) Input data 

preparation and (b) LSTM architecture. The Python code utilized for LSTM simulations is available at 

https://github.com/RMITnano/PUF-LSTM. 

8.  Experimental characterizations and test data 

All the evaluated experimental datasets have been uploaded to 

https://www.ece.ucsb.edu/~strukov/papers/2018/PUFdata/  for public access. Therein, the data are 

categorized with respect to the corresponding evaluation metrics, along with instructions for 

extraction and evaluation. 

a

b

https://www.ece.ucsb.edu/~strukov/papers/2018/PUFdata/
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Supplementary Table 2. Machine learning attack results using the LSTM-Dropout-LSTM-Dense-Dense-

Softmax network. 
 

  

 

 

 

9. Prospects for improving BER 

Key generation applications require very repeatable and reliable PUF operation, and hence 

various BER boosting techniques are typically employed to improve raw BER of PUF’s basic 

building blocks [22].  For example, a three-step approach involving temporal majority voting, 

burn-in hardening and dark-bit masking was utilized to reduce the BER from 25% to 0.98% in 

CMOS-based PUFs [23].  

The high density, low latency, and high throughput of our approach should allow for a wide 

range of options for improving BER. For instance, Figure S9 shows the preliminary results for two 

majority voting approaches. In the first case, the same challenge is applied three times and the 

output bit is determined by the majority among three bits. This approach would help against 

occasional errors. In the second approach, which could tolerate completely unreliable challenges, 

3 bits are first computed by applying different challenges. A single output bit is then determined 

by majority voting.  The results show that even the most rudimentary error correcting techniques 

can reduce the BER significantly. We expect that more advanced error correcting codes, which 

could be applied to larger groups of bits, and other techniques such as masking of bad memory 

cells and remapping around them, would enable sufficiently low BER for secret key generation 

applications.  

 

Supplementary Figure 9. Comparison between the original and improved BER results for the worst-case 

16 kb data (Fig. 3e of the main text) using simple temporal and spatial majority voting techniques.  

Training sequence length Output dimensions Predictability (%) 

301 LSTM: 128, Dense: 128, 2 50.41 

101 LSTM: 128, Dense: 128, 2 50.52 

64 LSTM: 256, Dense: 256, 2 50.28 
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10.  Comparison with prior work  
 

Supplementary Table 3. Comparison of reported PUF primitives based on different technologies. 

 
 

              SIM: Simulation only; S&E:  Simulation based on measured device data; EXP: Experiment; TR: Temperature range; VR: Voltage range 

              * Estimates assuming 55 nm process and 100×100 array with 10 output bits generated in parallel 

 



H. Nili et al., “Programmable Hardware Security Primitives Enabled by Memristors” 
 

Page 15 of 15 
 

References 

1 Hoskins, B. D. & Strukov, D. B. Maximizing stoichiometry control in reactive sputter deposition 

of TiO2. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 35, 020606 

(2017). 

2 Hori, Y., Yoshida, T., Katashita, T. & Satoh, A. in IEEE International Conference on 

Reconfigurable Computing and FPGAs  298-303 (2010). 

3 Govoreanu, B. et al. in IEEE International Electron Devices Meeting 2013 10.12. 11-10.12. 14 

(2013). 

4 Mahmoodi, M. R. & Strukov, D. B. An ultra-low-energy current-mode sensing circuit enabling 

POps/J analog computing. in preparation (2017). 

5 Strukov, D. B. & Likharev, K. K. CMOL FPGA: a reconfigurable architecture for hybrid digital 

circuits with two-terminal nanodevices. Nanotechnology 16, 888 (2005). 

6 Rukhin, A. et al. Statistical test suite for random and pseudorandom number generators for 

cryptographic applications, NIST special publication.  (2010). 

7 Graves, A. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 

(2013). 

8 Roel, M. Physically unclonable functions: Constructions, properties and applications. PhD 

Thesie, University of KU Leuven (2012). 

9 Mathew, S., Satpathy, S., Suresh, V. & Krishnamurthy, R. K. in IEEE Custom Integrated Circuits 

Conference 1-4 (2017). 

10 Zhang, L., Fong, X., Chang, C.-H., Kong, Z. H. & Roy, K. in IEEE International Symposium on 

Circuits and Systems (2014).  

11 Das, J., Scott, K., Rajaram, S., Burgett, D. & Bhanja, S. MRAM PUF: A novel geometry based 

magnetic PUF with integrated CMOS. IEEE Trans. Nanotechnology 14, 436-443 (2015). 

12 Majzoobi, M., Ghiaasi, G., Koushanfar, F. & Nassif, S. R. in IEEE International Symposium on 

Circuits and Systems 2071-2074 (2011). 

13 Konigsmark, S. C., Hwang, L. K., Chen, D. & Wong, M. D. in IEEE Asia and South Pacific 

Design Automation Conference 73-78 (2014). 

14 Rajendran, J. et al. Nano meets security: Exploring nanoelectronic devices for security 

applications. Procs. IEEE 103, 829-849 (2015). 

15 Chen, P. Y. et al. in IEEE International Symposium on Hardware Oriented Security and Trust 

26-31 (2015). 

16 Hu, Z. et al. Physically unclonable cryptographic primitives using self-assembled carbon 

nanotubes. Nature Nanotechnology 11, 559-565 (2016). 

17 Kim, J. et al. A Physical Unclonable Function with Redox-based Nanoionic Resistive Memory. 

IEEE Trans. Information Forensics and Security (2017). 

18 Rose, G. S. & Meade, C. A. in IEEE Design Automation Conference 1-6 (2015).  

19 Uddin, M., Majumder, M. B. & Rose, G. S. Robustness Analysis of a Memristive Crossbar PUF 

Against Modeling Attacks. IEEE Trans. Nanotechnology 16, 396-405 (2017). 

20 Uddin, M. et al. in IEEE Computer Society Annual Symposium on VLSI  212-217 (2016). 

21 Mazady, A., Rahman, M. T., Forte, D. & Anwar, M. Memristor PUF - A Security Primitive: 

Theory and Experiment. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 

5, 222-229 (2015). 

22 Kaiyuan, Y., Blaauw, D. & Sylvester D. Hardware Designs for Security in Ultra-Low- Power IoT 

Systems: An Overview and Survey. IEEE Micro 37, 72-89 (2017). 

23   Mathew, S. K., et al. in IEEE International Solid-State Circuits Conference Digest of Technical 

Papers (ISSCC) 278-279 (2014). 
  

 

 


	PUF main text final 020418 single.pdf
	PUF SI  020418

