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Abstract---We demonstrate an analog neuro-optimization 
hardware, suitable for solving a large number of combinatorial 
optimization problems, based on a crossbar circuit with 4096 
passively-integrated analog-grade memristors. The proposed 
hardware supports a variety of metaheuristic techniques for 
improving optimization performance, such as stochastic and 
chaotic simulated annealing, and novel “exponential” 
annealing. The hardware operation is successfully tested by 
experimentally solving weighted graph partitioning, maximum 
clique, vertex cover, and independent set problems, and 
observing good agreement with simulation results.   

I.   Introduction 

Combinatorial optimization has broad applications in 
various fields of science and technology [1,2] (Fig. 1a). One 
promising approach for solving optimization problems is by 
finding a solution for an equivalent Ising model, which was 
originally introduced as a mathematical model of 
ferromagnetism. Recently, Ising solvers based on CMOS [2], 
superconductor [4], nanomagnet [5], and photonic [1] 
technology have been investigated. The best optimization 
performance is typically obtained with the aid of metaheuristic 
techniques, such as stochastic simulated annealing (SSA) [7], 
chaotic simulated annealing (CSA) [8], which helps avoiding 
getting stuck in a local minimum (Fig. 1c).  

Another approach for solving combinatorial optimization 
problems, closely related to Ising models, is to use generalized 
Hopfield neural networks [3] (Fig. 1b). With properly selected 
synaptic weights, the network converges (in the ideal case) to 
its minimum energy state, which corresponds to the solution of 
the optimization problem. Similar to Ising solvers, annealing 
techniques are commonly used to improve performance, e.g. 
by probabilistically updating neuron states.  

The goal of this work is to develop energy-efficient, fast, 
and versatile (i.e., supporting different annealing techniques) 
hardware for solving optimization problems using neural 
network approach. Achieving this goal requires finding 
efficient solutions for (1) computing dot-product operations 
with dense adjustable weights, the most common operation in 
Hopfield neural network, and (2) implementing stochastic 
neurons to support metaheuristic techniques. The first 
requirement can be addressed by utilizing analog or mixed-
signal circuits based on adjustable resistive switching devices 
(such as metal-oxide memristor) [9, 10]. Stochastic operation, 
and even stochastic annealing in few-device networks, was 
experimentally demonstrated with magnetic devices [11-13]. 
Unfortunately, none of these works seemed to have an efficient 

solution to address both challenges. The main contribution of 
this work is the development of such efficient neuro-
optimization hardware based on passive analog-grade metal-
oxide memristor circuits with the largest (to the best of our 
knowledge) complexity. We also propose novel “exponential” 
annealing (EA), which is especially suitable for the proposed 
hardware. 

II.    ReRAM Crossbar Circuits 

Passive (“0T1R”) memristors are very promising analog 
nonvolatile memories for implementing synapses in analog 
neuromorphic circuits due to their excellent density prospects. 
On the other hand, using such technology in analog computing 
applications is much more challenging compared to active 
(“1T1R”) memories, due to much stricter requirement for 
devices’ I-V uniformity, needed for precise adjustment of 
conductance states. 

In this work, we utilize passive crossbar circuits with 4K 
analog-grade memristors (Fig. 2), based on etch-down 
pattering process [14]. The new fabrication process allowed for 
very uniform device characteristics, with ~99% device yield 
and ~26% switching threshold voltage variations in the whole 
crossbar (Fig. 4), which is sufficient for programming 
crosspoint device conductances with <3.5% average tuning 
precision (> ~5 bits of precision) [14]. The typical I-V 
characteristics for as-fabricated and formed crossbar devices 
are shown in Fig. 3. Crossbar circuits were packaged and 
integrated in the experimental setup, which was used for all 
measurements (Fig. 24). In all experiments, the crossbar output 
currents with hw-injected noise were measured 
experimentally, while the neuron functionality was emulated 
in the software.  

III.   Neuro-Optimization Hardware 

Fig. 5 shows the main idea of the proposed mixed-signal 
discrete-time/state stochastic Hopfield neural network circuits 
which support SSA, CSA, and EA. The stochastic dot-product 
computation with adjustable annealing schedule is 
implemented by controlling the signal-to-noise ratio (SNR) of 
the read-out current. Specifically, the output referred current 
noise on each differential line ( 𝚤 , ) is the sum of current 
noises generated by the memory cells and that of peripheral 
circuits. For the practical operational frequencies (>100 MHz), 
such noise is predominantly thermal.   Comparator circuit of a 
neuron implements the step function on a sampled current so 
that the probability of latching a digital ‘1’ value is 0.5(1 +

erf 〈𝐼〉 √2𝜎)⁄ , where 𝜎 is the standard deviation of the output 



current. The error function matches closely, with relative error 
always within 2% across the whole range of normalized 
currents, probabilistic neuron transfer function 1/(1+exp[-y/T]) 
commonly used in stochastic Hopfield neural networks, in 
which y is the pre-activation value and T is the temperature.   

Because 𝚤 ,  is independent of the applied voltages and 
is contributed by all differential line memristors and the 
sensing circuit, the effective temperature is inversely 
proportional to the peak signal-to-noise ratio, i.e. SNRmax = 
Imax/σ. This is verified in Fig. 6, which shows experimentally 
measured SNRmax for a 20-input/single-ended dot-product 
computation with randomly initialized (between 0 and 1) 
weights. In turn, such design enables very compact SSA 
implementation (Fig. 7), in which the temperature can be 
controlled by altering VON (and hence modulating Imax and 
SNRmax), which is the amplitude of the applied ‘on’ voltage to 
the inputs of the crossbar circuit during the operation (Fig. 5).  

To implement CSA, the neuron self-feedback weights are 
initially set to some large values (as compared to other weights 
in the network), which results in chaotic dynamics of the 
network. These weights are then exponentially decreased to 
zero during the operation so that the network slowly transitions 
from chaotic to periodic regime, eventually settling in a stable 
equilibrium. The weight adjustment is performed again by 
scaling the applied voltages. Because the voltages cannot be 
scaled for only diagonal devices, without affecting other 
devices on the same columns, CSA approach requires doubling 
the number of columns, and setting all but diagonal weights to 
zero in the additional crossbar array.  The neuron switching 
activity (firing rate) for SSA, CSA, and baseline (i.e., with no 
annealing) approaches was studied using 10-node weighted 
graph partitioning problem with randomly initialized weights.  
The experimental results show that the neuron firing rates were 
initially above 5% for both SSA and CSA, corroborating the 
random switching of neurons, but eventually reduced to zero 
when the network stabilized.  

Furthermore, we propose novel exponential annealing 
(EA), a deterministic approach in which the initial weights are 
modified to ensure funnel-shape energy landscape of the 
network and quick convergence to the global optimum. 
Specifically, the weights are defined as Wij(t)= Tij(1-exp[-t/τ]), 
where t is epoch (i.e., one neuron update) number, τ is the 
annealing factor, and Tij is the predetermined weight matrix 
corresponding the problem in question. The network weights 
are then slowly modified to the baseline ones, with the goal of 
always keeping the network in the ground state during the 
transition. Such behavior of EA approach is experimentally 
confirmed on 10-node partitioning problem (Fig. 9) using the 
same (as in Fig. 8 experiment) weights.  

Fig. 10 shows the final average energy of the network for 
all studies techniques on the same problem, in particular 
showing >2× higher convergence rate to top 5 solutions for EA 
over naive baseline approach. The experimental results also 
confirm that the weight scaling error due to I-V nonlinearity 
(which could lead to varying relative weights when changing 
VON) is negligible.  

VI.  Solving Combinatorial Optimization Problems 

To further demonstrate the effectiveness of the proposed 
hardware, we solved experimentally four common 
combinatorial optimization problems.  

For the first, 5-node weighted maximum-clique 
problems we used 10 random configurations of graph weights, 
corresponding to 10 kΩ to 150 kΩ range, programmed with 
<5% tuning error. The annealing parameter was exponentially 
scaled from 1 to 0.01 for SSA and from 20 to 0.1 for CSA, 
while τ = 20 for EA. All three annealing techniques performed 
much better than the baseline with good agreement between 
simulations and experiment (Figs. 12-14). The simulation 
results for larger number (200) of random configurations 
clearly indicate better EA performance. 

Figs. 16-18 show the results for the weighted vertex 
cover problem. The performance of annealing approaches, 
measured on various size graph problems, were always better 
compared to the baseline. The simulation results for various 
sizes problems with 200 random configurations further 
indicate superior EA performance. 

The impact of annealing schedule was studied by solving 
10-node independent set problem. The results are presented 
in Fig. 19 which shows a significant improvement for the 
average energy when using slower annealing.    

Finally, we considered solving graph partitioning 
optimization problem for a fully-connected weighted 6-node 
graph (Fig. 20a), with the corresponding baseline synaptic 
conductances in the hardware implementation shown in Fig. 
20b. As discussed earlier, the synaptic weights are first 
increased for EA approach, by voltage scaling (Fig. 21). Fig. 
22 shows the final experimental results and its comparison to 
simulations, further validating the proposed hardware 
functionality, and >20% improvements in the success rate over 
the baseline approach.    

V.    Summary 

In summary, we first proposed and experimentally 
verified an efficient implementation of stochastic dot-product 
circuits, with adjustable temperature, based on 64×64 crossbar 
circuits with passively integrated analog-grade metal-oxide 
memristors. We then used such circuits to implement 
stochastic and chaotic simulated annealing, and a novel 
exponential annealing. The performance of all techniques was 
experimentally verified by solving four common 
combinatorial optimization problems. The experimental 
results showed improved performance for all annealing 
techniques over the baseline approach, and superior 
performance of exponential annealing compared to stochastic 
and chaotic annealing.  
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Fig. 13: The success rate of different
annealing techniques on 10 5-node
weighted maximum clique problems.

Fig. 16: Experimental (30 runs) versus
simulation (300 runs) results of solving a 12-
node minimum-weighted vertex cover. Inset is
the zoomed-in view.

Fig. 17: Experimental results: (a) the
success rate and (b) the energy gap on
various sizes of minimum-weighted vertex
cover problem.

Fig. 18: Statistics of the neuro-optimizer
solving minimum-weight vertex cover problem
of different sizes. For each size, 200 random
weighted graphs are considered.

Fig. 22: The average energy (300 and 30 cases for simulation
and experiment, respectively) of the neuro-optimizer when
solving the 10-node graph partitioning problem.
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Fig. 15: Simulation results of 200 randomly
chosen weighted maximum clique problems.
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Fig. 12: The measured evolution of the
average energy for a 5-node maximum-
weighted clique problem. The inset shows
the zoomed-in view of the figure.

Fig. 19: The measured average energy (over 30
runs) when solving a 10-node maximum-weight
independent set problem with three different
annealing schedules.
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Fig. 23: The measurement
setup of the RRAM-based
neuro-optimizer.
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Fig. 21: Synaptic weight evolution
during the exponential annealing.
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Fig. 20: (a) A 6-node weighted graph
partitioning problem and (b) its
corresponding synaptic weights mapped to
the neuro-optimizer to implement EA.
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Fig. 14: The energy gap (the average energy of
solution minus the ground state) for all 5-node
weighted maximum clique problems.
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