
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

Received 2 March 2020; revised 27 April 2020; accepted 11 May 2020.
Date of publication 3 June 2020; date of current version 6 July 2020.

Digital Object Identifier 10.1109/JXCDC.2020.2999581

aCortex: An Energy-Efficient Multipurpose
Mixed-Signal Inference Accelerator

MOHAMMAD BAVANDPOUR ,
MOHAMMAD R. MAHMOODI (Graduate Student Member, IEEE),

and DMITRI B. STRUKOV (Senior Member, IEEE)
Department of Electrical and Computer Engineering, University of California at Santa Barbara, Santa Barbara, CA 93117 USA

CORRESPONDING AUTHOR: M. BAVANDPOUR (mbavandpour@ece.ucsb.edu)

This article has supplementary downloadable material available at http://ieeexplore.ieee.org, provided by the authors.

ABSTRACT We introduce ‘‘aCortex,’’ an extremely energy-efficient, fast, compact, and versatile neuro-
morphic processor architecture suitable for the acceleration of a wide range of neural network inference
models. The most important feature of our processor is a configurable mixed-signal computing array of
vector-by-matrix multiplier (VMM) blocks utilizing embedded nonvolatile memory arrays for storing weight
matrices. Analog peripheral circuitry for data conversion and high-voltage programming are shared among
a large array of VMM blocks to facilitate compact and energy-efficient analog-domain VMM operation of
different types of neural network layers. Other unique features of aCortex include configurable chain of
buffers and data buses, simple and efficient instruction set architecture and its corresponding multiagent
controller, programmable quantization range, and a customized refresh-free embedded dynamic random
access memory. The energy-optimal aCortex with 4-bit analog computing precision was designed in a 55-nm
process with embedded NOR flash memory. Its physical performance was evaluated using experimental
data from testing individual circuit elements and physical layout of key components for several common
benchmarks, namely, Inception-v1 and ResNet-152, two state-of-the-art deep feedforward networks for
image classification, and GNTM, Google’s deep recurrent network for language translation. The system-level
simulation results for these benchmarks show the energy efficiency of 97, 106, and 336 TOp/J, respectively,
combined with up to 15 TOp/s computing throughput and 0.27-MB/mm2 storage efficiency. Such estimated
performance results compare favorably with those of previously reported mixed-signal accelerators based on
much less mature aggressively scaled resistive switching memories.

INDEX TERMS Artificial neural networks, floating-gate memory, machine learning, mixed-signal circuits,
neuromorphic inference accelerator, nonvolatile memory (NVM).

I. INTRODUCTION

THE rapidly growing range of applications of machine
learning for image classification, speech recognition,

and natural language processing along with maturing of the
neural network algorithms, especially for deep learning, led to
an urgent need in specialized neuromorphic hardware [1]–[3].
At least, for the next several years, the demand for fast,
low-precision inference accelerators will remain higher than
for higher-precision systems for network training, as pro-
jected by NVidia Corporation, a leading company in the
machine learning hardware [4].

The vast majority of the proposed neuromorphic acceler-
ators from industry and academia are digital [5]–[8]—see
also an extensive review of various proposals in [2]. The
most natural approaches, however, are based on analog and
mixed-signal circuits [9]–[30]. Though the core principles of
analog computing had been developed almost four decades

ago [9], [10], its efficient implementations were enabled only
recently [14]–[30] due to the emergence of novel continuous-
state, nonvolatile, memory devices [31], [32]. Such mem-
ories enable very dense implementation of weights and
in-memory computing for vector-by-matrix multiplication,
the most common operation in machine learning. Among dif-
ferent candidates, the resistive switchingmemories, including
phase change and conductive bridge memories, and metal-
oxide memristors (also known as ReRAM or RRAM [31])
are perhaps the most promising due to their excellent scal-
ing prospects. Their technology, however, is still in need of
improvement, which is less of a problem for another excellent
candidate, floating gate (FG) memories, e.g., those based
on redesigned commercial-grade-embedded NOR flash [22],
[32], [33]. Though planar FG cells are less dense than
passively integrated memristors, their main advantage is FG
cell amplification, which simplifies and reduces the overhead

98
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 6, NO. 1, JUNE 2020

https://orcid.org/0000-0001-6425-9087
https://orcid.org/0000-0002-5318-2413
https://orcid.org/0000-0002-4526-4347

Bavandpour et al.: aCortex: Energy-Efficient Multipurpose Mixed-Signal Inference Accelerator

of peripheral circuitry. It is worth noting that the limited
endurance of memristors and FG memories is less of an
issue for inference applications since theweights are typically
reprogrammed infrequently.

In this article, we present a multipurpose inference
accelerator, dubbed ‘‘aCortex,’’ which is designed to capital-
ize on in-memory mixed-signal computing with nonvolatile
memories. Though the idea of employing a mixed-signal
vector-by-matrix multiplier (VMM) based on nonvolatile
memories for multipurpose inference accelerators is not
new [23]–[27], our work is novel in several aspects. Its key
advantage is more extensive use of analog computing not only
for VMM computation but also for data transfer. Such an
approach minimizes the area/energy/delay overhead of the
sensing and data conversion peripheries that are key factors
limiting the efficiency of the mixed-signal neural acceler-
ators [23]–[30]. A more compact design, in turn, reduces
communication overhead due to shorter distances for data
transfer. Moreover, data transfer overhead is further reduced
by using a configurable chain of buffers exploiting the data
reuse for convolution operation, programmable data buses
that can be efficiently tailored on the fly to a particular utiliza-
tion of mixed-signal array, and a custom-designed refresh-
free embedded dynamic random access memory (eDRAM)
tailored to meet the retention time requirement. We also
propose a simple and efficient instruction set architec-
ture (ISA) along with a multiagent controller, which takes
advantage of the eligible time-overlap between consecutive
micro-operations while minimizing the instruction memory
(IM) requirement. Finally, we developed a system-level esti-
mator that imports the target network’s computational graph
along with experimental and circuit-level simulation results
for different architecture components, including digital-
to-analog converters (DACs), analog-to-digital converters
(ADCs), sense amplifiers, memory cells, digital blocks,
and buses, maps the weight kernels onto the 2-D array of
nonvolatile memory (NVM) blocks, and finally produces a
comprehensive performance report considering various non-
idealities, such as leakages and line parasitics. Using such a
simulator, we perform a detailed performance analysis based
on the actual layout in the 55-nm process with embedded
NOR flash memory. Note that unlike many proposals based
on emerging memory technologies, core components have
been previously taped out using commercial processes and
successfully tested, and we used such experimental data in
our analysis.

In Section S.I in the Supplementary Material, we introduce
today’s major neural layer types and present their hardware-
friendly rearrangement targeting a weight-stationary imple-
mentation. The overall aCortex architecture and operation
scheme, as well as the internal structure of its main com-
ponents, are presented in Section II. This section also intro-
duces the proposed ISA alongwith the controller architecture.
More details on the ISA are provided in Section S.II in the
Supplementary Material. The general framework for map-
ping applications into aCortex and our case study for three
representative neural network inference tasks are provided in
Section III. In Section IV, we provide the circuit diagram and
experimental/simulation results for the FG-based implemen-
tation of aCortex’s core computing units in a 55-nm technol-
ogy node. We then perform a design space exploration for

architectural parameters and provide a detailed system-level
report for a semioptimal design point. Related prior works are
discussed and compared with aCortex in Section S.III in the
Supplementary Material.

II. aCortex ARCHITECTURE
A. TOP-LEVEL ARCHITECTURE
As shown in Fig. 1(a), the major processor’s components
are auxiliary unit (AUX), microcontroller, main memory, and
two mixed-signal processing units (MSPUs). Each MSPU
includes a configurable chain of input digital buffer blocks
(DBBs), a flexible 2-D array of VMM blocks, and an array
of output neuron blocks. The architecture can be loosely char-
acterized as Harvard weight-major type [2]. The instructions
are stored in a microcontroller’s dedicated SRAM-based IM.
All frequently changing data, i.e., input, output, and tempo-
rary data, are kept in eDRAM-based main memory, while
fixed weights, which would be typically precomputed at
ex-situ training, are stored in NVM arrays of MSPU’s VMM
blocks.

The inference task is specified by a program code based
on custom instructions and the corresponding set of neural
layer weight matrices. Assuming that the code is loaded and
all weights are set up accordingly, the inference is computed
by loading input data to the main memory, executing code to
perform the inference task, and storing the computed results
back in the main memory. In particular, the stationary weight
matrices corresponding to various network layers are packed
in the 2-D array of VMMblocks [see Fig. 1(b)], and the infer-
ence is performed in a layer-by-layer manner by sequentially
reading the layer input from the main memory into the DBBs,
activating the appropriate VMM and neuron blocks to per-
form the target neural layer, and then temporarily storing the
intermediate results in the main memory for computing the
next layer. Note that some of the neural layers, such as CNV
and LSTM, require multiple VMM operations with various
input data on the same weight matrix to complete. In this
case, the corresponding VMM/neuron blocks are activated
multiple times during the execution of each neural network
layer—more details on that are provided in Section III and
Section S.I in the Supplementary Material.

Flexible activation of VMM/neuron blocks enables the
compact implementation of a set of neural network layers
with various VMM sizes while maximizing the energy effi-
ciency (EE) by cutting off the active power consumption
of unutilized VMM/neuron blocks. Moreover, aCortex min-
imizes the energy overhead of data transfer by cutting off
the unutilized portion of data buses and effectively reducing
their length via disabling further data propagation. For exam-
ple, Fig. 1(c) shows the active blocks and buses when the
processor is computing the first layer of the neural network
shown in Fig. 1(b).

All inference data, i.e., inputs and outputs of the MSPU’s
VMM blocks, as well as effective weight precision, are p bit.
A set of p bits is defined as one data word. We specifically
consider p = 4, which is typically sufficient for running
state-of-the-art image classification inference without loss of
functional performance [34], [35]. Blocks and buses are sized
according to a global architecture parameter K , defined as
the granularity of neural computation and data transfer on
aCortex.

VOLUME 6, NO. 1, JUNE 2020 99

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

FIGURE 1. (a) aCortex top-level architecture. The location of the components crudely corresponds to the actual layout and is chosen
to reduce data transfer overhead. For clarity, the architecture is shown for N = M = 4, and most of the control lines and the circuitry
for testing/weight tuning are omitted. (b) Example of a weight kernel mapping on aCortex VMM blocks, layer-by-layer operation
scheduling, and corresponding content of main memory over time. (c) aCortex active blocks/bus portions during the execution of
layer #1 of the neural network shown in (b).

B. MAIN MEMORY
Main memory is implemented with eDRAM technology,
whose retention time is tailored for a refresh-free operation.
In particular, it is organized as an array of eDRAM blocks,
each with a Kp-bit I/O data port. The multibanked structure
allows us to read and write K data words simultaneously,
i.e., to supply data to one DBB and receive data from one
neuron block. The requiredmemory capacity and its retention
time are calculated bymonitoring thememory content and the
longest lifetime of intermediate data for the inference of the
target neural networks [see Fig. 1(b)].

C. MIXED-SIGNAL PROCESSING UNIT: ARRAY OF VMM
BLOCKS
Each MSPU is comprised of two N -by-M arrays (quadrants)
of VMM circuit blocks located on each side of a column
with N neuron blocks. Each VMM block features K -by-
2K array of NVM cells, which is suitable for implementing
analog-mode differential K -by-K VMM operation; Kp-bit
front-end DACs; and 2K back-end local sensing circuitry
[see Fig. 2(a)]. The data to a single column of VMM block
array are fed via Kp-bit wide digital programmable ‘‘VMM
input’’ bus from the corresponding distributed memory buffer
block. The VMM block outputs are connected via analog
‘‘VMM output’’ buses, which are 2K lines wide, to the
corresponding neuron blocks. More circuit details on the
data conversion and sensing/summation for the considered
VMM design based on 2-D-NOR flash memory technology
are provided in Section IV-A.

Column/row enable lines (denotes as CE/RE) span the
MSPU quadrants in vertical/horizontal directions and are
used to activate the desired VMM blocks at each processing
step. Specifically, a given VMM block is activated only if its
compute enable signal (CoE = CE ∧ RE) is equal to ‘‘1’’ [see
Fig. 2(b)]. These control lines allow us to flexibly implement
a wide range of VMM sizes (from K × K to 2MK × NK)
while cutting off the active power consumption of unuti-
lized VMM/neuron blocks. Moreover, a Kp-bit wide VMM
input bus repeater with horizontally shared enable control
line (RBE) is integrated into each VMM block [see Fig. 2(a)]

FIGURE 2. (a) Schematic of mixed-signal VMM and neuron
blocks, including their connectivity and required control signals
(blue). Neuron block includes four stages, namely, global
sensing, rescaling unit, activation function, and ADC.
(b) Control circuitry that facilitates flexible activation of the
target VMM/neuron block and cuts unutilized portions of the
VMM input and store buses. Square labeled with ‘‘c’’ denotes
comparator for selecting a specific neuron. For clarity, some of
the details, e.g., circuitry for setting up enable bits and some
neuron control circuitry, are not shown.

to speed up data propagation as well as to minimize its energy
overhead by cutting the unutilized portion of the VMM input
bus. The logic circuitry and single-bit registers producing CE
and RE/RBE control lines are integrated into the digital buffer
and neuron blocks, respectively.

The programming/erasure circuitry consists of decoders
and level-shifters that are shared by NVM arrays of VMM

100 VOLUME 6, NO. 1, JUNE 2020

Bavandpour et al.: aCortex: Energy-Efficient Multipurpose Mixed-Signal Inference Accelerator

blocks and are placed at the outer margins of the VMM block
arrays [see Fig. 1(a)] and row/column access switches, placed
at the periphery of each VMM block, controlling the applied
signals.

D. MIXED-SIGNAL PROCESSING UNIT: NEURON BLOCK
A neuron block includes K identical neuron units. All units
perform in parallel summation/integration of the analog data
supplied from the corresponding VMM output lines, rescale
the integrated data (if needed), apply the selected activation
function, and finally convert the results to the digital domain
using ADCs [see Fig. 2(a)]. The rescaling unit enables a wide
range of quantization ranges, e.g., needed to operate with dif-
ferent VMM input sizes, via adjusting neuron’s analog input
amplitude to match the fixed operating input range of the
activation functions and ADC units. The activation function
can be selected from linear, rectified linear, sigmoid, or hyper-
bolic tangent types, to support a wide range of neural layers
(see Section S.I in the Supplementary Material). Neuron
block outputs are digitized with p-bit ADCs and temporarily
latched in their embedded digital memory. The digital results
are then passed via Kp–bit wide digital ‘‘store’’ bus to the
main memory. Such data transfer, i.e., the ‘‘store’’ operation,
is performed in one step per neuron block so that, e.g., a total
of N steps are required to transfer data from all neurons in
oneMSPU. The specific number of processor cycles required
for each step varies based on the location of the neuron block,
i.e., its distance from themainmemory. In particular, the store
bus data are passed via a Kp-bit 2-to-1 multiplexer in each
neuron block. These multiplexers act as a bus repeater for the
utilized portion of the store bus and are also used to decouple
and deactivate its unutilized portion.

The RE and RBE signals (which control the target neu-
ron block and the corresponding VMM blocks it serves
and cut the VMM input bus, respectively) are configured
with ‘‘row-select’’ single-bit flip-flops of the neuron blocks
[see Fig. 2(b)]. Specifically, the row-select flip-flops of neu-
ron blocks are connected via xor gates, with the output of
the xor gate directly controlling the RE line. To preselect
RE signals for the contiguous set of rows (e.g., rows 10–15),
row-select bits of neuron blocks in the first (10), closest to
the main memory, and in the last+1 (16) row of the selected
set of rows are set to ‘‘1,’’ while others are set to ‘‘0.’’ This
implementation results in activating all selected rows (i.e.,
setting RE = 1 for rows 10–15). On the other hand, using
a simple nand gate that detects a transition from selected to
unselected row, RBE is deasserted only for the last+1 row of
the selected group of rows [see Fig. 2(b)], which effectively
cuts the downstream VMM input bus.

E. MIXED-SIGNAL PROCESSING UNIT: DIGITAL BUFFER
BLOCK
The data toDBBs in each quadrant are supplied from themain
memory via Kp–bit wide digital ‘‘load’’ bus [see Fig. 1(a)].
The DBB’s internal logic circuitry is designed to flexibly
support various data flow scenarios—from the simple load
(Fig. 3(b): scenario #1) to ‘‘load and shift’’ configuration
(Fig. 3(b): scenarios #2 and #3). The flexible ‘‘load and
shift’’ configuration enables efficient computation of CNV
layers with a wide range of specifications (filter size and

FIGURE 3. (a) Detailed circuit implementation of the DBB. The
control circuitry is shown in blue color. Square labeled with ‘‘c’’
denotes comparator for selecting a specific DBB. For clarity,
some of the details are not shown. (b) Examples of three DBB
chain configurations scenarios. Specifically, scenario #1 shows
loading (sequentially) data exclusively from the load bus.
Scenarios #2 and #3 show loading data from load bus into
DBBs and simultaneously shifting data between DBBs
connected in a two-block shift register (#2) or a four-block shift
register configuration (#3).

stride) while taking advantage of the rowwise data reuse
[see Fig. S1b in the Supplementary Material).

Specifically, the input to each DBB is supplied by a
Kp-bit-wide 2-to-1 multiplexer, which selects the input
source between the load bus (i.e., main memory) and the
previous DBB. For simplicity, we assume that only one DBB
can be loaded from the load bus at one step, by setting the
address of the target DBB on the buffer address bus. Similar
to the data transfer from neurons, the number of processor
cycles required for each step varies based on the location of
the DBB.

The shift operations are supported by properly configuring
a ‘‘shift-bit’’ flip-flop in each DBB and are masked by the
‘‘shift enable’’ line. In particular, the shift register configu-
rations are programed by setting shift bits to ‘‘1’’ for all the
DBBs except for the first block of shift register [see Fig. 3(b)].
Setting shift bit to ‘‘1’’ of a particular DBB is performed con-
currently with loading that DBB from load bus by asserting
‘‘shift mode’’ control line. (Note that rowwise execution of
the CNV layer typically starts by loading all DBBs with row
data from main memory, with all shift operations disabled by
deasserting shift enable signal line so that all shift bits are
typically configured at this time.) Once shift bits are properly
configured, simultaneously with loading new data into DBB,
the already loaded data in DBBs can be shifted between the
remaining blocks of that shift register [e.g., shifted to the
right in scenarios #2 and #3 of Fig. 3(b)]. This is performed
with an internal ‘‘master shift command’’ signal that enables
latching data from previous DBBs of the specific shift register
whenever its shift bit and enable signals are set to ‘‘1.’’

In addition, each DBB has a single-bit SR latch to specify
the target VMM block columns, i.e., to set column enable
(CE) signal, which is configured similar to shift-bit flip-
flop. It also has a bus repeater on the load bus, which is
disabled when the DBB is loaded, to stop downstream data
propagation on the bus [see Fig. 3(a)].

VOLUME 6, NO. 1, JUNE 2020 101

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

F. MIXED-SIGNAL PROCESSING UNIT: VMM
COMPUTATION
Assuming that the target VMM columns are preselected
(CE=1) and the desired row-select bits are set, VMM oper-
ation is performed by applying a positive pulse to the
‘‘VMM_OP’’ command signal. This signal enables the neu-
ron blocks associated with the selected rows as well as
their input VMM blocks for which CE = 1 via propagating
through the RE and then CoE lines. Naturally, the VMM_OP
pulsewidth should be longer than the worst case end-to-end
VMM operation time, i.e., the time it takes from the moment
inputs are applied to DAC to that of latching ADC outputs.

G. AUXILIARY UNIT
Auxiliary unit (AUX) is provisioned to perform less frequent
digital computations in neuromorphic inference. In particu-
lar, this block is used to perform in parallel Kp-bit vector-
by-vector operations, such as additions, subtractions, and
fixed-precision multiplications. It also performs compari-
son in max-pooling operation, which is typically used in
CNNs. (An average pooling, another typical operation, can
be implemented directly in a mixed-signal domain with prop-
erly adjusted weights.) AUX consists of an array of arith-
metic logic units (ALUs), multipliers, and internal registers.
During max-pooling operation, the register holds the current
maximum value and feeds it to one of the ALU’s inputs to
compare with the next input value fed from the main memory
through the load bus. The outputs of AUX blocks can be
written back to the main memory via the store bus.

H. CONTROLLER AND INSTRUCTION SET
ARCHITECTURE
The most typical operations on aCortex involve loading mul-
tiple DBBs with data from the main memory, performing the
vector-by-matrix computation, and then moving the results
from neuron blocks back into the main memory. Accordingly,
aCortex controller includes three separate agents as loader,
operator, and collector, each dedicated to performing one of
these frequently used operations [see Fig. 4(a)]. These agents
are configured and synchronized using the main controller.
Such multiagent structure shrinks the code size, enables eli-
gible time overlapping between these operations, and mini-
mizes the engagement of the main controller, which, in turn,
reduces the controller time overhead.

The main components of each agent are listed in Fig. 4(c).
The loader is responsible for reading data from the main
memory into the DBB/AUX blocks using the load bus. This
agent uses two counters to support burst mode in which
multiple data packs with a preconfigured main memory/DBB
initial addresses and strides are loaded. Moreover, the loader
uses a load bus counter to adjust the load time based on the
physical distance between the main memory and the target
DBB. Such distance is extracted from the most significant
bits of the DBB address considering that the locations of
neuron and DBBs are counted from the center of the chip
outwards, starting from 1. For example, load_time = mem-
ory_read_time+ ceiling(DBB_address/32) for the case when
passing data on the load bus through 32 DBBs takes one con-
troller cycle. The collector that is responsible for storing back
the neuron/AUX’s output to the main memory has a similar

FIGURE 4. (a) Top-level representation of the multiagent
controller and connectivity between different agents and the
rest of the architecture. (b) Examples of agent operation timing
diagram when the load operation is completed before
(scenario #1) and after (scenario #2) the collect operation.
(c) Main components of each controller’s agent.

structure to the loader. The operator has an embedded counter
to produce the appropriate pulsewidth of the VMM_OP con-
trol signal for the VMM operation. It also holds the neuron
scaling factor, the type of activation function selector, and
AUX function control bits. The main controller instructions
are further detailed in Section S.II in the Supplementary
Material.

III. APPLICATION MAPPING
Application mapping process of a given neural network on
aCortex involves checking accelerator resource requirements
(i.e., main memory and MSPU) and producing a weight
mapping andmachine code to set up the accelerator. A similar
process is also used in the accelerator design to estimate the
required main memory and MSPU resources and to optimize
their specifications (M , N , K) for the target range of applica-
tions. Such a process starts with extracting the computational
graph and finding the optimal topological partitioning and
ordering of the computational steps [see Fig. 5(a)]. In such
a graph, the vertices are computation kernels (i.e., neural
layers), while the edges are input/output data. In general,
finding the optimal sorting of a given graph is an NP-hard
problem. However, the layer-by-layer operation scheme of
aCortex, resulted from our energy-optimal design, reduces
the complexity of the problem. After obtaining the graph
and scheduling order, the next step is to check the memory
requirement throughout the inference steps. In aCortex, 3-D
data are stored in the main memory in a row first, column
second, and channel/feature map third order [see Fig. 5(b)].
Following this order, multiple channels of one data pixel (and
adjacent pixels in a row in the case of CNV stride >1) are
always grouped into K -word-long data packs (see Fig. S1b
in the Supplementary Material). One pack of K -word data
is then mapped into a word line of the main memory block
and can be read/written simultaneously. Such data placement
in the main memory enables burst mode read/write using the
controller’s loader/collector. Note that, due to quantization,
such a scheme may result in underutilized memory, e.g.,
when the number of channels/feature maps is not divisible
by K .

Considering such data arrangement, the memory usage
after each inference step (i.e., neural layer) is calculated by

102 VOLUME 6, NO. 1, JUNE 2020

Bavandpour et al.: aCortex: Energy-Efficient Multipurpose Mixed-Signal Inference Accelerator

FIGURE 5. (a) Application mapping flowchart performed on the host computer. (b) Mapping scheme of a 3-D data structure into the
aCortex’s main memory. (c) Example showing computational graph cuts for evaluating the amount of main memory occupied during
various steps of inference for a single Inception layer (left) and a multilayer LSTM network (right). (d) Utilized the main memory graph
as a function of the network processing step for the studied benchmark networks.

FIGURE 6. (a) Pseudocode for aCortex weight kernel packing algorithm. (b) Preferred mapping locations of various neural network
sizes. (c)–(e) Weight kernel mapping results for Inception-v1, ResNet-152, and GNMT-1024 for K = 64. Each pixel shows one VMM
block colored according to the neural layer occupying it.

drawing a cut in the computational graph that separates the
already computed portions of the graph (network processing
steps) from the upcoming ones and adding up all the edges
that are crossed. Since, during the execution of each layer,
both its inputs and outputs are present in the main memory,
the upper bound for the total memory usage is calculated by
adding up the memory usages for two consecutive cuts and
subtracting their overlap edges.

We applied this algorithm to three studied networks,
namely, Inception-v1 [36] and ResNet-152 [37] DNNs for
image classification, and GNMT [38], Google’s neural
machine translation network featuring a 16-layer LSTM net-
work with bidirectional encoder layers, with the vector length
of 1024 and the sequence size of 10. For example, Fig. 5(c)
shows such a process for an Inception neural layer and an
unfolded two-layer LSTM network. As shown in Fig. 5(c),
the memory requirement is limited by the initial layers of the
DNNs (for 4-bit computation with the data pack quantization
of K = 64).

In the next step, the weight matrices are mapped into
MSPUs using a greedy search algorithm [see Fig. 6(a)],
for which input parameters are the number of available
MSPU’s columns (M ′), architecture granularity parame-
ter (K), the number of tries (epoch), and the list of weight
kernels (LoK). In one iteration of the algorithm, the ker-
nels are first randomly ordered and then greedily mapped

in a row-first manner, in the given order, to the array of
VMM blocks. Such procedure is repeated epoch times,
and mapping configuration with the smallest number of
occupied VMM blocks is selected. Furthermore, the map-
ping process is repeated for different M ′≤M to search
for a square-shaped mapping of occupied VMM blocks
[see Fig. 6(b)] to minimize the average data transfer dis-
tance between MSPU’s active VMM/neuron blocks and the
main memory (and hence to increase energy efficiency)—
see more discussion on that in Section IV-B. The results of
this optimization process for our target networks are shown
in Fig. 6(c)–(e).

The mapped locations of weight kernels are then used in
the compilation process to generate the machine code for
handling the data flow and operation of the network. The
number of instructions for initializing and operating each
layer type is estimated for the system-level analysis based on
the proposed ISA (presented in Section II-H and Section S.II
in the Supplementary Material).

IV. CIRCUIT DESIGN AND PERFORMANCE EVALUATION
A. 55-nm FG-BASED IMPLEMENTATION OF
MIXED-SIGNAL BLOCKS
While aCortex can be realized with a variety of NVM tech-
nologies, the focus of this article is on a mature industrial-
grade flash-memory technology that has already enabled

VOLUME 6, NO. 1, JUNE 2020 103

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

FIGURE 7. (a) VMM/neuron schematic for the FG-based
mixed-signal universal neural computing scheme supporting
both positive/negative input/output as well as various
(non)linear activation functions. (b) Configuration of the
computing elements for various scenarios (desired activation
function and input type). (c) Performance results for a VMM
connected to a neuron block as a function of K assuming 4-bit
computing precision, maximum cell current of 16 nA,
the maximum current of 1 µA and unity gain for local sensing,
maximum ADC input current of 5 µA.

extremely compact and energy-efficient implementations of
mixed-signal circuits [20]. The key advantage of such imple-
mentation, compared with, e.g., those based on resistive
switching devices [31], is the FG cell’s inherent signal ampli-
fication and low operation currents that greatly relax the
requirement for sensing circuitry gain and enable very com-
pact peripheral circuits [20]. More specifically, the proposed
architecture was evaluated for the implementation based on
ESF-3 (embedded split-gate flash) technology in which FG
cells were redesigned for analog computing applications [17].

The proposed mixed-signal circuits allow for efficient
implementation of different types of activation functions,
kernel sizes, and quantization ranges, which are essential
features of multipurpose inference accelerator [see Fig. 7(a)].
In particular, the VMM operation is implemented using a
gate-coupled design [17]. In such an approach, inputs and
outputs are both encoded as currents, and the weights are
encoded as the memory state of the array FG devices.

The front-end input conversion is realized using current
steering (CS) DAC architecture, a viable choice consid-

ering its low power consumption, compact footprint, and
fast turn ON/OFF time at relatively low precision. A 4-bit
PMOS-based CS DAC circuits source the current into periph-
eral FG devices.

The developed current-mode global sensing circuit of
a neuron block has excellent wideband current following
behavior and provides very low input impedance while lim-
iting drain voltage distortion. To reduce process variation
overhead associated with an offset error, two additional FG
devices are provisioned in each channel (drain line) and are
used either to source or sink the input-referred offset current.

The input current scaling of a neuron block is implemented
using a binary-weighted current mirror structure controlled
by the multibit digital input [see Fig. 7(a)]. As already
mentioned in Section II.D, this feature is needed to adjust
quantization range in accordance with the maximum VMM
circuit output currents (which would vary, e.g., with the
size of the weight kernels) and, hence, to minimize losses
in functional performance due to quantization of activation
function outputs.

The 4-bit current-mode ADC has a 1-bit per stage cyclic
design that generates the 4-bit digital output in four cycles.
FG transistors are also employed for offset/compensation in
the high-speed comparator and to generate reference currents.

The sigmoid and ReLU activation functions are
implemented directly in the ADC, without using any other
additional circuitry, by appropriately choosing reference
currents, i.e., quantization levels of the ADC. Linear and
hyperbolic tangent functions are emulated via input biasing
and appropriate weight scaling [see Fig. 7(b)]. DACs/ADCs
are designed for unipolar data and can be reused, with-
out any circuit modification, for bipolar data by utilizing
offset-binary representation. More details on the circuit struc-
ture for the design of PVT-resilient CS DAC circuit and
algorithmic ADC can be found in [20].

Fig. 7(c) provides the VMM performance results as a
function of K based on the measurements of ESF3 memory
devices and postlayout simulations of peripheral circuitry.
These data are used to estimate system-level performance.

B. MAIN MEMORY AND BUSES IN 55-nm TECHNOLOGY
NODE
The main memory is implemented using asymmetric 2T gain
embedded DRAM cells with boosted power supply [39].
The retention time of eDRAM cells was changed to 100 µs
by reducing leakage and adjusting biases, with a 99.9% bit
yield confirmed by block-levelMonte Carlo simulations [39].
The memory performance was modeled using the CACTI
tool [40]. We also developed a bus area/energy/delay model
as a function of bus length and repeater size using postlayout
simulations considering all device/interconnect parasitics.

C. SYSTEM-LEVEL RESULTS AND DESIGN SPACE
EXPLORATION
We have developed a software framework that utilizes the
postlayout energy/speed/area metrics for all the aCortex’s
building blocks (buffers, buses, DACs, ADCs, integrators,
and digital circuits) to evaluate the system-level performance
for any target DNN/RNN network. This framework uses the
list of processing tasks for a given neural network to map the

104 VOLUME 6, NO. 1, JUNE 2020

Bavandpour et al.: aCortex: Energy-Efficient Multipurpose Mixed-Signal Inference Accelerator

VMM kernels on the NVM devices embedded in the VMM
blocks and then generate a detailed performance report for
the given set of architecture specifications. Using such a tool,
we have performed a preliminary exploration of architectural
parameters (i.e., K and MSPU aspect ratio, AR = M /N) to
optimize the processor performance for the aforementioned
target neural networks. A detailed study of these benchmark
networks (see Figs. 5 and 6) has shown that a 1MB MM
is sufficient to store all intermediate data, while the flow
control program requires at most 4KB of IM. Moreover,
the controller energy/delay is estimated in an instruction-
by-instruction manner in which the required machine code
for initializing and performing each layer type has been
evaluated.

Fig. S2 in the Supplementary Material shows the system-
level EE, throughput, and area with respect to K and AR
for these networks. Larger K typically results in higher
throughput due to wider bus widths and consequently higher
data transfer rate. It also improves the EE by reducing
the VMM block peripheral circuitry energy consumption
(trend clearly seen in Fig. S2c in the Supplementary Mate-
rial). Moreover, the increase in throughput results in lower
leakage energy, which further increases EE. However, for
the networks with medium and small weight kernels (i.e.,
ResNet-152 and Inception-v1), larger K results in underuti-
lization of active blocks and buses as well as an increase in
the number of required VMM blocks to map the network,
which, in turn, increases the energy overhead of the ana-
log peripheral circuitry and buses. As such negative effects
outweigh the positive ones, the overall system-level EE and
throughput are getting worse for largerK . For DNNs, the load
bus delay/energy typically plays a more significant role in
the system throughput/EE compared with the store bus due
to a higher input-to-output data transfer ratio in convolution
operations. Such property leads to higher throughput/EE for
smaller AR (i.e., relatively shorter load bus) in these net-
works. The opposite of this trend is observed for GNMT
in which the LSTM layers have a smaller input-to-output
data transfer ratio. Note that such trends do not consistently
hold due to network-specific weight packing efficiency with
respect to AR.

The accelerator area decreases for larger values ofK due to
the larger sharing factor of analog peripheries, hence smaller
area overhead of DACs and sensing circuitry (see Fig. S2 in
the Supplementary Material). This trend does not hold for
Inception-v1 in which smaller weight kernels result in the
VMM block underutilization and lower weight packing effi-
ciency which outweigh the gain in peripheral circuitry area
efficiency.

The results for different networks indicate K = 64 and AR
≈ 2 as a semioptimal design point for which block utiliza-
tion and load/store bus energy/delay are somewhat balanced.
Detailed performance report and area/energy breakdowns for
this design point are presented in Table 1. As these results
show, the energy consumption is dominated by data trans-
fer and intermediate data storage for DNNs with smaller
size weight kernels, such as Inception-v1 and ResNet-152
networks. On the other hand, the energy consumption is
dominated by sensing circuitry and DACs, even despite
larger accelerator area (and, hence, larger data transfer energy
consumption) for GNMT inference task. This is because

TABLE 1. aCortex system-level results and breakdowns ∗.

GNMT inference involves larger size VMM operations
(weight kernels), which ultimately leads to a larger compute-
to-communication ratio and allows us to take better advantage
of analog-domain computing. Also, note that area overhead
of high-voltage programming/erasure and VMM peripheral
circuits is quite low (compared with other NVM-based accel-
erators) due to their effective sharing, and, in fact, the area of
aCortex is dominated by FGmemory cells. Thus, the detailed
results show that the integration density is one of the key prop-
erties of memory devices for the energy-efficient inference
accelerators.

The performance comparison of aCortex against its major
fully digital [5]–[7] and mixed-signal [23], [24] competitors
shows that aCortex achieves significantly higher perfor-
mance, especially for mobile/IoT applications, for which the
storage efficiency (MB/mm2) and EE are the most important
metrics (see Fig. S3 in the Supplementary Material). In order
to make a fair comparison, we performed a highly optimistic
projection of the performance metrics for the mixed-signal
architectures to 55-nm, 4-bit design point. According to these
estimations, aCortex achieves ∼28×/∼65× improvement in
EE over ISAAC [23]/PUMA [24] while maintaining a com-
parable SE and enduring a relatively small drop in through-
put (∼0.3×/∼0.4×). Note that these architectures do not
consider the overhead of programming/erasure circuitry that
could impact the performance results.

VOLUME 6, NO. 1, JUNE 2020 105

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

REFERENCES
[1] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,

pp. 436–444, May 2015.
[2] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, ‘‘Efficient processing of

deep neural networks: A tutorial and survey,’’ Proc. IEEE, vol. 105, no. 12,
pp. 2295–2329, Dec. 2017.

[3] N. P. Jouppi, C. Young, N. Patil, and D. Patterson, ‘‘A domain-specific
architecture for deep neural networks,’’ Commun. ACM, vol. 61, no. 9,
pp. 50–59, Aug. 2018.

[4] Investor Day Presentation, NVIDIA Corp., Santa Clara, CA, USA, 2017.
[5] N. P. Jouppi et al., ‘‘In-datacenter performance analysis of a tensor pro-

cessing unit,’’ in Proc. Int. Symp. Comput. Archit. (ISCA), Toronto, ON,
Canada, Jun. 2017, pp. 1–12.

[6] Y. Chen et al., ‘‘DaDianNao: Amachine-learning supercomputer,’’ inProc.
47th Annu. IEEE/ACM Int. Symp. Microarchitecture, Cambridge, MA,
USA, Dec. 2014, pp. 609–622.

[7] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, ‘‘UNPU: An
energy-efficient deep neural network accelerator with fully variable weight
bit precision,’’ IEEE J. Solid-State Circuits, vol. 54, no. 1, pp. 173–185,
Jan. 2019.

[8] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, ‘‘Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,’’ IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[9] C. Mead, Analog VLSI and Neural Systems. Boston, MA, USA:
Addison-Wesley, 1989.

[10] R. Sarpeshkar, ‘‘Analog versus digital: Extrapolating from electron-
ics to neurobiology,’’ Neural Comput., vol. 10, no. 7, pp. 1601–1638,
Oct. 1998.

[11] S. Chakrabartty and G. Cauwenberghs, ‘‘Sub-microwatt analog VLSI
trainable pattern classifier,’’ IEEE J. Solid-State Circuits, vol. 42, no. 5,
pp. 1169–1179, May 2007.

[12] G. Indiveri et al., ‘‘Neuromorphic silicon neuron circuits,’’ Frontiers Neu-
rosci., vol. 5, May 2011, Art. no. 73.

[13] J. Hasler and B. Marr, ‘‘Finding a roadmap to achieve large neuromorphic
hardware systems,’’ Frontiers Neurosci., vol. 7, Sep. 2013, Art. no. 118.

[14] F. M. Bayat, M. Prezioso, B. Chakrabarti, H. Nili, I. Kataeva, and
D. Strukov, ‘‘Implementation of multilayer perceptron network with
highly uniform passive memristive crossbar circuits,’’ Nature Commun.,
vol. 9, no. 1, Dec. 2018, Art. no. 2331.

[15] M. J. Marinella et al., ‘‘Multiscale co-design analysis of energy, latency,
area, and accuracy of a ReRAM analog neural training accelerator,’’ IEEE
J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 1, pp. 86–101, Mar. 2018.

[16] C. Li et al., ‘‘Analogue signal and image processing with large
memristor crossbars,’’ Nature Electron., vol. 1, no. 1, Jan. 2018,
Art. no. 52.

[17] X. Guo et al., ‘‘Temperature-insensitive analog vector-by-matrix multi-
plier based on 55 nm NOR flash memory cells,’’ in Proc. IEEE Cus-
tom Integr. Circuits Conf. (CICC), Austin, TX, USA, Apr./May 2017,
pp. 1–4.

[18] M. Bavandpour, M. R. Mahmoodi, and D. B. Strukov, ‘‘Energy-
efficient time-domain Vector-by-Matrix multiplier for neurocomputing
and beyond,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66, no. 9,
pp. 1512–1516, Sep. 2019.

[19] M. Bavandpour et al., ‘‘Mixed-signal neuromorphic inference accelerators:
Recent results and future prospects,’’ in IEDM Tech. Dig., San Francisco,
CA, USA, Dec. 2018, pp. 20.4.1–20.4.4.

[20] M. R. Mahmoodi and D. Strukov, ‘‘An ultra-low energy internally analog,
externally digital vector-matrix multiplier based on NOR flash memory
technology,’’ in Proc. 55th ACM/ESDA/IEEE Design Autom. Conf. (DAC),
San Francisco, CA, USA, Apr. 2018, Art. no. 22.

[21] G. W. Burr et al., ‘‘Experimental demonstration and tolerancing of a large-
scale neural network using phase-change memory as the synaptic weight
element,’’ IEEE Trans. Electron Devices, vol. 62, no. 11, pp. 3498–3507,
Jul. 2015.

[22] X. Guo et al., ‘‘Fast, energy-efficient, robust, and reproducible mixed-
signal neuromorphic classifier based on embedded NOR flash memory
technology,’’ in IEDM Tech. Dig., San Francisco, CA, USA, Dec. 2017,
pp. 6.5.1–6.5.4.

[23] A. Shafiee et al., ‘‘ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,’’ in Proc. ACM/IEEE 43rd
Annu. Int. Symp. Comput. Archit. (ISCA), Seoul, South Korea, Jun. 2016,
pp. 14–26.

[24] A. Ankit et al., ‘‘PUMA: A programmable ultra-efficient memristor-based
accelerator for machine learning inference,’’ in Proc. 24th Int. Conf. Archi-
tectural Support Program. Lang. Operating Syst., Providence, RI, USA,
Apr. 2019, pp. 715–731.

[25] X. Liu et al., ‘‘RENO: A high-efficient reconfigurable neuromorphic
computing accelerator design,’’ in Proc. Design Autom. Conf. (DAC),
San Francisco, CA, USA, Jun. 2015, pp. 1–6.

[26] X. Liu et al., ‘‘Harmonica: A framework of heterogeneous computing sys-
tems with memristor-based neuromorphic computing accelerators,’’ IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 5, pp. 617–628, May 2016.

[27] L. Song, X. Qian, H. Li, and Y. Chen, ‘‘PipeLayer: A pipelined ReRAM-
based accelerator for deep learning,’’ in Proc. IEEE Int. Symp. High Per-
form. Comput. Archit. (HPCA), Austin, TX, USA, Feb. 2017, pp. 541–552.

[28] P. Chi et al., ‘‘PRIME: A novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory,’’ in Proc.
ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Seoul, South
Korea, Jun. 2016, pp. 27–39.

[29] M. Imani, M. Samragh, Y. Kim, S. Gupta, F. Koushanfar,
and T. Rosing, ‘‘RAPIDNN: In-memory deep neural network
acceleration framework,’’ 2018, arXiv:1806.05794. [Online]. Available:
http://arxiv.org/abs/1806.05794

[30] H.-Y. Chang et al., ‘‘AI hardware acceleration with analog memory:
Microarchitectures for low energy at high speed,’’ IBM J. Res. Develop.,
vol. 63, no. 6, pp. 8:1–8:14, Nov. 2019.

[31] D. B. Strukov and H. Kohlstedt, ‘‘Resistive switching phenomena in thin
films: Materials, devices, and applications,’’ MRS Bull., vol. 37, no. 2,
pp. 108–114, Feb. 2012.

[32] F. M. Bayat, X. Guo, M. Klachko, N. Do, K. Likharev, and D. Strukov,
‘‘Model-based high-precision tuning of NOR flash memory cells for ana-
log computing applications,’’ inProc. 74th Annu. Device Res. Conf. (DRC),
Newark, DE, USA, Jun. 2016, pp. 1–2.

[33] F. M. Bayat, X. Guo, H. A. Om’mani, N. Do, K. K. Likharev, and
D. B. Strukov, ‘‘Redesigning commercial floating-gate memory for analog
computing applications,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
Lisbon, Portugal, May 2015, pp. 1921–1924.

[34] A. Mishra, E. Nurvitadhi, J. J Cook, and D. Marr, ‘‘WRPN: Wide
reduced-precision networks,’’ 2017, arXiv:1709.01134. [Online].
Available: http://arxiv.org/abs/1709.01134

[35] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
‘‘Quantized neural networks: Training neural networks with low precision
weights and activations,’’ 2016, arXiv:1609.07061. [Online]. Available:
http://arxiv.org/abs/1609.07061

[36] C. Szegedy et al., ‘‘Going deeper with convolutions,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Boston, MA, USA, Jun./Jul. 2015,
pp. 1–9.

[37] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Las Vegas, NV, USA, Jun./Jul. 2016, pp. 770–778.

[38] Y. Wu et al., ‘‘Google’s neural machine translation system: Bridging the
gap between human and machine translation,’’ 2016, arXiv:1609.08144.
[Online]. Available: http://arxiv.org/abs/1609.08144

[39] K. C. Chun, P. Jain, T.-H. Kim, and C. H. Kim, ‘‘A 667 MHz logic-
compatible embedded DRAM featuring an asymmetric 2T gain cell for
high speed on-die caches,’’ IEEE J. Solid-State Circuits, vol. 47, no. 2,
pp. 547–559, Feb. 2012.

[40] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, ‘‘CACTI 6.0:
A tool to understand large caches,’’ HP Labs, Palo Alto, CA, USA,
Tech. Rep. HPL-2009-85, 2009.

106 VOLUME 6, NO. 1, JUNE 2020

 1

SUPPLEMENTARY INFORMATION

S.I. NEURAL LAYERS AND WEIGHT-STATIONARY HARDWARE

COMPATIBILITY

Artificial neural networks (ANNs) consist of a common core

computing “neuron” cell. Capturing the basic behavior of its

biological counterpart, the artificial neuron calculates the

weighted summation of inputs passing through a (non)linear

activation function, f(), as 𝑦 = 𝑓(∑ 𝑥𝑖𝑤𝑖
𝑚
𝑖=1) where x and w are

inputs and weights, respectively. Targeting various

applications, different multi-layer ANNs with various layer-

types (i.e. neuron connectivity and activation functions) have

been developed [1]. We next briefly review the layer operation

for today’s most popular ANN models, which, e.g., occupy

95% of Google’s data center workload [5], and present their

weight-stationary hardware-friendly re-arrangement.

A. Fully-Connected (FC) Layer

FC is the most common ANN layer, e.g. in multi-layer

perceptron (MLP) networks, which are used for classification,

prediction, etc., and convolution neural networks (CNN), which

are mainly used for image classification/recognition [1]. In the

FC layer, each neuron in the input layer feeds all the output

neurons through a set of weights. As shown in Fig. S1a, FC

layer can be re-organized as a weight-stationary VMM

followed by an activation function. In such VMM, weight

matrix (green) is stationary, and the input elements (blue) are

vertically shared and propagated through all the weight

columns at the same time. Accordingly, all weight locations

simultaneously perform multiply-and-add operation, and the

outputs (shown with orange color) are calculated in parallel.

B. Convolutional (CNV) Layer

CNV is the core neural layer of CNNs, the dominant network

in computer vision, which uses a special connectivity pattern to

efficiently exploit the spatial locality of inputs while extracting

image features. This layer type includes multiple channels of

3D weight matrices, each applied over the whole 3D input data

in a sliding window fashion, to produce its corresponding

output feature map as shown in Fig. S1b. This figure also shows

our target scheme to map the CNV operation into a weight-

stationary VMM structure. In this scheme, CNV operation is

performed in a row-first manner in which one output pixel (for

all the channels) is calculated at a time. At the input, the CNV

row-wise data reuse is exploited using multiple “load and shift”

chains of input buffers. This input buffer array feeds a

stationary 2D weight matrix, which is a reshaped and stacked

representation of the 3D CNV filters. Accordingly, the output

vector represents different channels of one output pixel location

at a time. Note that in this scheme, different input channels of

each input pixel location (CI elements) can be grouped in one

input data pack without disturbing the data flow (Fig. S1b).

Moreover, for the strides larger than unity (s > 1), every s

adjacent pixels in the row direction can also be grouped into one

input data pack. Hence, for a given CNV operation, the data

pack size can be any divisor of CI×s.

C. Recurrent Layer

Recurrent neural layers aim to extract and interpret the

information encoded into the temporal locality in a sequence of

inputs using a feedback connection and a sequential operation.

Long-short-term-memory (LSTM) is one of the most popular

recurrent layers, which is widely used in language translation

and speech recognition [1]. Fig. S1c shows the original LSTM

structure and its weight-stationary re-arrangement. As shown,

Supplementary Information Fig. S1. Network structure and hardware-friendly representation of the most popular neural layers: (a) fully-connected layer, (b)
convolution layer, and (c) long-short-term-memory (LSTM) layer, all targeting a weight-stationary dataflow scheme. Note that the red arrows represent the

dataflow, and the numbers represent location index.

1 2

Wf×

σ (.)

Wi×

σ (.)

WC×

tanh (.)

Wo×

σ (.)

ft it Ct
~ ot

×

×
tanh (.)

×

t-1 t
+

CtCt-1

ht-1 ht

xt LSTM Cell
1 2
1 2

21
21
21

σ (.)

σ (.)

σ (.)

σ (.)

ta
n

h
 (.)

σ (.)

σ (.)

×

× +

tanh (.)

×

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

3 3

4

3

3

3

4

3

3

3

5

4

4

4

5

4

4

4

6 6

f (.)

f (.)

f (.)

1

1

1

1

2

2

2

2

3

3

3

3

1
2
3

f (.)

f (.)

f (.)

1

2

3

1
11

3
33

2
2

2

1

2

3

f (.)

f (.)

f (.)

Input

Vec. (X)
Weight

Matrix (W)

Output

Vec. (Y)

(a) (b)

(c)

 𝑖 𝑚 = 𝑖 𝑚

 1

 =

 1

 =

 =1

1 2 3
4 5 6
7 8 9

1 2
3 4

1 2
3 4

1 2
3 4

×

×

×

1 2

3 4

f (.)

f (.)

f (.)

Input FM (X) Filters (W) Output FM (Y)

CI

R
CI

s

𝑓 = 1 𝑥
 = 𝑖 1 𝑥 𝑖
 = 1 𝑥
 = 𝑓 1

 = 1 𝑥
 = ()

1 ×

+ Multiply-Accumulate

(MAC) Operation

Storage

element

 2

the LSTM’s computational effort is dominated by VMM

operations for which the input vector is obtained via

concatenating the current element of the input sequence and a

hidden state [ht-1, xt]. Accordingly, the VMM’s weight matrix is

obtained by stacking the forget (f), candidate (C), input (i), and

output (o) weight matrices. The rest of the LSTM computation

includes basic element-wise vector operations and recurrent

data transfer for the next step. Note that unlike CNV, the LSTM

computation includes bipolar inputs and multiple activation

function types which calls for a more generalized computing

scheme supporting such cases – see Fig. 7b and its discussion

in Section IV.A. Moreover, LSTM layers typically have very

large weight matrices resulting in a larger compute-to-

communication ratio. Hence the computing efficiency typically

plays a more significant role (compared to data transfer

efficiency) in the overall efficiency of inference task for such

layers.

S.II. INSTRUCTION SET ARCHITECTURE DETAILS

The main controller instructions are:

Agent configuration: CNF agent, (mstr), (nstr/bstr)

Configure the agent (i.e. loader/collector) with appropriate

parameters such as memory stride (mstr) and neuron/buffer

stride (nstr/bstr) which are immediate fields in the instruction.

Load: M2B rm, rb, cnt, smode, sen

Command the loader to load cnt data packs (each K words)

starting from initial memory address specified by register rm

into the digital buffer blocks starting from the initial address

specified in register rb (assuming that strides are pre-

configured). smode field specifies the new value loaded to the

shift bit in each digital buffer block, and sen enables “load and

shift” operation.

Compute: VMM nsf, af

Command the operator to start VMM computation while

simultaneously configuring the neuron scaling factor (nsf) and

activation function type (af).

Collect: N2M rn, rm, cnt

Command the collector to collect cnt data packs (each K

words) from neuron blocks starting from initial address

specified by register rn into the memory locations starting from

initial address specified in register rm (assuming that strides are

pre-configured).

Row select: RSEL n_addr

Set the row select bit in the neuron block specified by n_addr

to “1”.

Synchronize: WAIT agent

Hault the main controller until the target agent finishes its

task.

Reset: RST

Reset all the column and row select bits.

The remaining instructions include simple arithmetic (i.e.

add/sub, addi/subi) and (non-)conditional control (i.e. jmp,

djnz, call, return) instructions. Note that for the considered

applications, all data in main memory are used before they have

to be refreshed. Therefore, for simplicity, we will not discuss

refresh operation, though its implementation is straightforward

and can be performed explicitly using either M2B instruction or

automatically by memory controller.

S.III PRIOR WORK

At the system-level, many efforts have been recently made to

exploit the efficiency of mixed-signal operators and develop an

efficient DNN/RNN processor architecture [23-30].

Specifically, ISAAC [23] and PUMA [24] architectures are

2D mesh structure of tiles where each tile contains several small

fixed-size ReRAM-based VMM units (typically 128×128) with

dedicated input/output peripheral circuitry. In these

architectures, one shared memory is implemented in each tile

for storing intermediate data and communication between

VMMs, while the communication between the tiles are

performed through a shared 2D bus structure. Such heavily

granular multi-core design approach is followed with the aim of

increasing the utilization, minimizing the data transfer

overhead, and maximizing throughput via pipelining and

parallel processing. However, data conversion and

communication overhead due to partial VMM operation, static

power consumption of the analog blocks, large area overhead

of the neurons / DACs / ADCs, and large control and

communication overhead between tiles/VMMs limit the

performance of such architectures, especially when running

relatively complex computational graphs such as of Inception

and ResNet.

RENO [25] and Harmonica [26] are, respectively, a ReRAM-

based reconfigurable neuromorphic computing accelerator and

a heterogeneous computing system based on such accelerator.

This accelerator utilizes a mixed-signal centralized mesh

interconnect network to reduce DAC/ADC overhead while

increasing the throughput via passing the analog output directly

to the next layer. However, this approach is only optimized for

fully-connected multi-layer networks and associative

memories. Moreover, despite lowering the DAC/ADC

overhead, the accelerator performance is impacted by costly

mixed-signal routers.

Pipelayer [27] explores the trade-off between hardware

resource of ReRAM array and performance utilizing the notion

of parallelism granularity targeting both training and inference.

This architecture uses a spike-based integrate and fire scheme

to eliminate DAC/ADC overhead. However, input multi-level

encoding and output spike generation overhead still results in

inferior efficiency.

PRIME [28] is a ReRAM based architecture proposing the

application of morphable memory blocks with small extra add-

on circuitry which can be configured as computational unit on

demand. Such morphable memory blocks result in a compact

and energy efficient design by reusing the memory block

peripheries for computation. However, the performance of

PRIME is negatively impacted by lack of data-reuse for

convolution, high data conversion/transfer overhead due to

small analog-domain VMM, i.e. kernel breakdown, and latency

overhead due to SA/neuron sharing. Additionally, the very

limited switching endurance of ReRAM makes the main idea of

PRIME hardly practical.

 3

RAPIDNN [29] is also a ReRAM based architecture which

aims to improve the hardware performance through minimizing

the required computing precision while achieving similar

network accuracy. Precision is reduced by utilizing a

reinterpretation mechanism (non-linear quantization of

inputs/weights/outputs based on statistical data). Moreover, in

this architecture all neural functionalities are implemented

inside the memory using a direct digital lookup table-based

technique which eliminates costly DAC/ADC/neuron.

However, semi-sequential VMM operation and lack of data-

reuse for convolution result in performance drop for large scale

neuromorphic applications especially those involving

convolution operation. Besides, the architecture suffers from

data encoding overhead despite eliminating data conversion

overhead.

Supplementary Information Fig. S2. Design space exploration for aCortex performance metrics, i.e. energy efficiency (TOp/J), throughput (TOp/s), and area

(mm2), with respect to the key architectural parameters, i.e. granularity (K) and aspect ratio, (AR=M/N) for three benchmark neural networks (GNMT-1024 RNN;
ResNet-152 and Inception-v1 DNNs).

Supplementary Information Fig. S3. (a) Performance comparison of aCortex with the state-of-the-art digital and mixed-signal neuromorphic processor

architectures. Except for TPU, all performance results are based on simulations. * Highly optimistic mapping of performance metrics to 4-bit computing precision

and 55-nm technology node. #The performance numbers do not include overhead of external memory access (weights/intermediate data). (b) Energy efficiency
versus throughput scatter plot for the approaches listed in (a). The size of bubbles represents the area of the processors.

0
100
200
300
400

3
2

6
4

12
8 3
2

6
4

12
8 3
2

6
4

12
8 3
2

6
4

12
8

AR=0.5 AR=1 AR=2 AR=4

0

10

20

30

3
2

6
4

12
8 3
2

6
4

12
8 3
2

6
4

12
8 3
2

6
4

12
8

AR=0.5 AR=1 AR=2 AR=4

0
200
400
600
800

3
2

6
4

12
8 3
2

6
4

12
8 3
2

6
4

12
8 3
2

6
4

12
8

AR=0.5 AR=1 AR=2 AR=4

0

50

100

150

32 64

12
8 32 64

12
8 32 64

12
8 32 64

12
8

AR=0.5 AR=1 AR=2 AR=4

0
1
2
3
4
5

3
2

6
4

12
8 3
2

6
4

12
8 3
2

6
4

12
8 3
2

6
4

12
8

AR=0.5 AR=1 AR=2 AR=4

0

100

200

300

32 64

12
8 32 64

12
8 32 64

12
8 32 64

12
8

AR=0.5 AR=1 AR=2 AR=4

0

50

100

150

32 64

1
2

8 32 64

1
2

8 32 64

1
2

8 32 64

1
2

8

AR=0.5 AR=1 AR=2 AR=4

0
0.5

1
1.5

2
2.5

32 64

1
2

8 32 64

1
2

8 32 64

1
2

8 32 64

1
2

8

AR=0.5 AR=1 AR=2 AR=4

0

20

40

60

32 64

1
2

8 32 64

1
2

8 32 64

1
2

8 32 64

1
2

8

AR=0.5 AR=1 AR=2 AR=4

EE (TOp/J) Throughput (TOp/s) Area (mm2)
In

ce
p

ti
o

n
-v

1
R

e
sN

e
t-

1
5

2
G

N
M

T-
1

0
2

4

K

K

K

DaDianNao [6] TPU [5] UNPU[7] # ISAAC [23] PUMA [24] aCortex

Technology node 28 nm 28 nm 65 nm 32 nm 32 nm 55 nm

Approach digital digital digital ReRAM ReRAM 2D-NOR

Clock (MHz) 606 700 200 1200 1000 700

Precision (bits) 16 fixed point 8 fixed point 1-16 (4 here) 16 fixed point16 fixed point4 fixed point

Area (mm2) 88 330 16 85.4 90.6 293

Power (W) 20.1 40 297 65.8 62.5 0.044

Throughput

(TOp/s)
5.54 92 1.38 39.9 52.31 14.94

SE (MB/mm2) 0.2 off-chip off-chip 0.74 (0.25*) 0.76 (0.257*) 0.273

EE (TOp/J) 0.286 0.43 11.6 0.35 (5.14*) 0.84 (12.09*) 335.8

0.1

1

10

100

1000

0 20 40 60 80 100

EE
 (

TO
p

/J
)

Throughput (TOp/s)

(a) (b)

aCortex

PUMA

ISAAC

UNPU

TPU

DaDianNao

	09107115.pdf
	supp1-2999581

