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The integration of two-dimensional (2D) materials into 
solid-state electronic devices and circuits could help extend 
Moore’s law and allow advanced beyond-CMOS (comple-

mentary metal–oxide–semiconductor) products to be fabricated1,2. 
While the wafer-scale synthesis of various 2D materials has been 
demonstrated3,4, most circuital applications are relatively simple 
(such as logic gates or sensors) and rely on very large devices (tran-
sistors with channels of >100 µm, for example)5,6. Recently, small 
(<100-nm) transistors that use 2D semiconductors as the channel 
material have been successfully fabricated7,8, but the devices were 
isolated and no applications were reported. The key limitations in 
the use of 2D materials in the development of high-density elec-
tronic circuits for complex applications are the low device yield and 
large device-to-device variability.

The use of 2D materials in the fabrication of memristors has 
shown particular promise, and these devices could be of use in both 
information storage and neuromorphic computing9. Such devices 
can exhibit properties that metal-oxide memristors do not, includ-
ing high thermal stability10, coexistence of threshold and bipo-
lar resistive switching (RS)11, high controllability of potentiation, 
depression and relaxation12 and excellent mechanical stability and 
transparency13. However, 2D-material-based memristors are typi-
cally fabricated by mechanical exfoliation; yield and device-to-device 
variability are not reported and circuital applications are rarely dem-
onstrated. RS devices made using liquid-phase-exfoliated molybde-
num disulfide14 have been demonstrated and used to build flexible 
pressure sensors. However, the lateral size of the metal–insula-
tor–metal cells15,16 presented in that work14 is over 900 µm2, and the 
high number of uncontrollable defects at the randomly oriented 

nanoflake junctions results in a relatively poor endurance (around 
100 cycles), a problem known to occur for memristors made of 
liquid-phase-exfoliated materials17.

In this Article, we report the fabrication and statistical analysis of 
high-density memristive crossbar arrays made of 2D layered mate-
rials, and use them to model an artificial neural network for image 
recognition. Our devices, which can be as small as 150 nm × 150 nm, 
use chemical-vapour-deposited (CVD) multilayer hexagonal boron 
nitride (h-BN) as the RS medium, and exhibit different switching 
mechanisms depending on the electrode material used (gold for 
bipolar RS and silver for threshold RS). By many metrics, both types 
of device achieve performances that are superior to state-of-the-art 
metal-oxide memristors, and we report a high device yield of more 
than 98%.

Fabrication and characterization of crossbar arrays
We used large-area multilayer h-BN grown by CVD and transferred 
it onto 2-inch SiO2/Si wafers to construct memristive crossbar 
arrays with vertical Au/h-BN/Au and Ag/h-BN/Ag structure (see 
Fig. 1a–c, Supplementary Figs. 1–5 and Methods). The h-BN shows 
correct layered structure (Supplementary Fig. 6) with atomically 
wide (<1-nm) native defects embedded, which propagate verti-
cally and form percolation paths (Fig. 1d and Supplementary Fig. 
7). The average density of defects measured by transmission elec-
tron microscopy (TEM) and conductive atomic force microscopy 
(CAFM) is ~150 spots µm−1 and ~250 spots µm−2 respectively (Fig. 
1d–f and Supplementary Figs. 8–10)—discrepancies are expected 
due to the shape of the CAFM tip and the voltage applied18,19. By 
applying constant voltage stresses locally with the CAFM tip we 
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observe that (1) the conductive spots show characteristic random 
telegraph noise signals20, demonstrating abundant charge trapping 
and detrapping (Fig. 1g,i,j and Supplementary Figs. 11–13), and (2) 
the insulating areas show longer time to breakdown, which more-
over is irreversible. When similar tests are applied at the device level, 
random telegraph noise characteristics similar to those observed at 
the conductive spots have been observed (Fig. 1h,k,l), proving that 
the electrical characteristics of the entire devices are governed by 
the local defects.

Initially, all the Au/h-BN/Au memristors showed characteristic 
electroforming process15 at voltages ranging between 3 V and 8 V 
(Supplementary Fig. 14). After this, the devices exhibited stable 
non-volatile bipolar RS between a high-resistance state (HRS) and a 
low-resistance state (LRS)15. Depending on the current compliance 
(ICC) used during the set transition, the resistance of the Au/h-BN/
Au cells in the LRS can be tuned (Supplementary Fig. 15), lead-
ing to ILRS/IHRS > 10 for ICC = 1 µA and > 106 for ICC = 1 mA (read at 
−0.1 V); all the resistive states are stable over time (Supplementary 
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Fig. 1 | Material characterization and crossbar array fabrication. a, Photograph of a 2-inch wafer with Au/h-BN/Au memristive crossbar arrays distributed 
along it. b, Scanning electron microscopy (SEM) image of a crossbar array containing 750-nm × 750-nm Ag/h-BN/Ag memristors on the wafer. Scale 
bar, 4.5 µm. c, AFM topographic map of a part of the Ag/h-BN/Ag memristor crossbar array shown in b. Scale bar, 2 µm. d, Cross-sectional TEM image 
showing the layered structure of h-BN and defective paths through the layers (yellow oval area). Scale bar, 1.5 nm. e, Small-area CAFM map recorded 
inside an h-BN grain of the polycrystalline h-BN stack. Scale bar, 250 nm. The statistical analysis of the h-BN grain area of each conductive spot is shown 
in Supplementary Fig. 8. f, Cross-section of a representative conductive spot inside the h-BN domains, indicating the diameter (~7.5 nm) calculated via 
the full-width at half-maximum (FWHM) method. g,h, Current versus time (I–t) curves collected with the tip of the CAFM placed on a conductive spot by 
applying V = 5 V, and with the probe station in 5-µm × 5-µm metal/h-BN/metal devices (respectively). i,j and k,l, The random telegraph noise analysis  
of g and h (respectively). L1, Level 1; L2, Level 2.
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Fig. 16). When using ICC = 1 µA, the devices show very low oper-
ating currents ranging from 0.2 pA to 1 nA in the HRS and from 
10 nA to 500 nA in the LRS (read at −0.1 V; Supplementary Fig. 17), 
which strongly reduces sneak path currents and enables their use 
in high-performance neuromorphic circuits. The application of 
sequences of pulsed voltage stresses (PVSs) allowed analogue tran-
sition between the different resistive states (Fig. 2b; lower currents 
down to ~1 µA are shown in Supplementary Fig. 18), and >25 stable 
intermediate-conductance states ranging from 200 nS to 40 mS have 
been observed (Fig. 2c and Supplementary Fig. 19). This behav-
iour, never observed before in a 2D-material-based memristor, is a 

very important feature enabling the use of h-BN-based memristive 
crossbar arrays for neuromorphic applications21.

In total, we have measured 104 Au/h-BN/Au devices from differ-
ent crossbar arrays spread along the 2-inch wafer, and 102 of them 
showed bipolar RS characteristics very similar to those shown in Fig. 
2a (Supplementary Fig. 20), implying a yield of ~98%. We statistically 
analysed >1,500 current versus voltage (I–V) curves collected in 48 
devices (Supplementary Fig. 21), and quantified the cycle-to-cycle 
and the device-to-device variability of set voltage (VSET) and reset 
voltage (VRESET) by calculating the coefficient of variation (CV) 
as the standard deviation (σ) divided by the mean value (µ)22, in 
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Fig. 2 | Bipolar RS in h-BN memristors and their application in neuromorphic computing. a, Representative I–V characteristics measured during 120 
cycles in one single Au/h-BN/Au memristor using ICC = 1 µA (blue lines) and ICC = 1 mA (red lines). b, Sequence of PVSs (5.8 V/1 ms) showing analogue 
switching between two LRSs shown in a. c, I–t curves measured at 0.1 V, showing that the conductance states during the analogue transition (b) are 
stable. In total, >25 stable states have been measured for this type of memristor (Supplementary Fig. 19). d, Cumulative distribution plot of RHRS and 
RLRS measured over 1,500 cycles for 48 memristors. e, Cumulative distribution of device set voltages and reset voltages of 48 devices using 1-mA 
current compliance. f, Cumulative distribution of device set voltages and reset voltages of 16 devices using 1-µA current compliance. g, MNIST dataset 
simulation results for an ex situ-trained multilayer perceptron. The array linear dimension of 1 shows the case with no half-select disturbance, which is also 
representative of active (1T1R) crossbar array implementation. See Methods for more details of the neural network modelling. IQR, interquartile range.  
h, Example of device conductance statistics for a 64 × 64 crossbar array circuit, with the particular device parameters shown in Supplementary Fig. 26, 
after using a tuning algorithm with 1% desired tuning accuracy.
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absolute value. The statistical distributions of the resistances in the 
HRS and LRS (namely RHRS and RLRS) for the devices programmed 
at ICC = 1 mA and ICC = 1 µA are depicted in Supplementary Fig. 22. 
The cycle-to-cycle variability in a single device is attributed to the 
stochastic nature of the filamentary RS23, and the device-to-device 
variability is attributed to inhomogeneity in the sample derived 
from the fabrication process24,25, such as device area and thick-
ness fluctuations, wrinkles and so on (Supplementary Figs. 23 and 
24). For ICC = 1 mA, the minimum cycle-to-cycle variability of VSET 
and VRESET observed was 2.02% and 9.61% respectively, and their 
device-to-device variability rose to 6.06% and 29.07% when consid-
ering all 48 devices. When ICC was reduced to 1 µA, the minimum 
cycle-to-cycle variabilities of VSET and VRESET observed were 1.53% 
and 6.21% respectively, and the device-to-device variabilities rose to 
5.74% and 12.37% for a population of 16 devices. When analysing 
the variability of RHRS and RLRS, quantitative analyses calculating CV 
are not so meaningful because the data are normally presented in a 
logarithmic scale. However, the data in Supplementary Fig. 22 indi-
cate that the dispersion of RLRS is always below 1.5 decades, and the 
current window is always >10, allowing reliable state distinction for 
all the cycles of all devices (even at low ICC = 1 µA). Furthermore, the 
variability of RLRS from one device to another (20 devices) remains 
stable over long times (>1,000 s), as shown in Supplementary  
Fig. 25. It is worth noting that these standalone variability values 
have been obtained without the help of additional peripheral devices, 
such as a series transistor (so-called 1T1R cell), indicating that there 
is still room for further variability improvements26—although the 
use of series transistors remarkably increases the lateral size of each 
cell and reduces the integration density.

Multilayer perceptron network
To investigate potentials of using the developed technology in neu-
romorphic computing, we model a multilayer perceptron network 
based on crossbar circuits with integrated Au/h-BN/Au memristors. 
In particular, we considered ex situ-trained neural network circuits 
for neuromorphic inference27, and modelled image classification 
of the Modified National Institute of Standards and Technology 
(MNIST) dataset, which is a typical entry benchmark for emerg-
ing devices28–31. We focused on the disturbance of half-selected 
devices at the conductance tuning process. This issue arises due 
to device-to-device variations in the effective switching thresh-
olds32, and is the major challenge for implementing neuromorphic 
inference accelerators based on memristive crossbar circuits27,29. 
Half-select disturbance is modelled phenomenologically, in agree-
ment with nonlinear switching dynamics in non-volatile ionic 
memristive devices (Supplementary Fig. 26). The parameters of the 
model were chosen to reproduce measured variations in the set and 
reset switching thresholds (Supplementary Figs. 26 and 27).

The tuning error and classification accuracy were modelled 
for different array sizes and two slightly different assumptions for 
the tuning algorithm. Increasing linear dimensions of the cross-
bar array typically leads to better physical performance because of 
smaller peripheral circuitry overhead. However, it also results in 
more severe half-select disturbance and hence worse classification 
accuracy, as confirmed by the simulation results in Fig. 2g. Because 
of the higher observed variations in reset switching, we considered 
the case (labelled ‘C3’) when all devices in the crossbar circuit are 
reset initially to the low-conductance states before tuning. This 
modification of the tuning algorithm reduces the number of reset 
tuning pulses, and as a result leads to a smaller average tuning error 
and improved classification accuracy, especially for larger memory 
arrays, compared with the case (labelled as ‘C2’) with random initial 
conductance states (Fig. 2g,h). The most important result is that the 
classification accuracy for the reasonably sized (128 × 128) cross-
bar arrays27 only drops by ~0.5% due to the device variations and is 
within 0.8% of the best classification accuracy (98.02%) that can be 

achieved with ideal, high-precision software-based implementation 
of the same network. Moreover, the simulation results show that 
such high accuracy could not have been achieved if the variations 
in set switching were higher, for example similar to those of reset 
switching (labelled with ‘C1’ in Fig. 2g,h).

Note that the few-microampere-scale operating current of many 
contemporary memristors is the other major challenge for implement-
ing mixed-signal neuromorphic inference accelerators. High device 
currents result in larger energy and area overheads of sensing circuits, 
and could also lead to non-negligible voltage drops across crossbar 
lines, which significantly degrades dot-product computing precision. 
Because of the demonstrated wide dynamic range of currents, operat-
ing currents in the developed Au/h-BN/Au memristors can be chosen 
in a nanoampere range, more optimal for mixed-signal circuits.

Zeptojoule memristors for spiking neural networks
To further explore the volatile threshold RS in metal/h-BN mem-
ristive devices, Ag has been used as an active top electrode for 
programming the devices. The threshold RS devices are crucial in 
high-density three-dimensional memory crossbar arrays because 
they can effectively suppress the sneak current path. Moreover, 
recent works have shown that threshold RS devices can be also used 
as low-power integrate-and-fire artificial neurons in spiking neu-
ral networks, due to their self-reset process, high ILRS/IHRS and low 
energy consumption33–35. The h-BN memristors using Ag electrodes 
also exhibit excellent threshold-type RS for different ICC, which can 
be as low as ICC = 110 fA (Fig. 3a–d, Supplementary Figs. 28 and 29 
and Supplementary Table 1). In addition, Fig. 3e shows an outstand-
ing switching slope of <0.09 mV per decade and high ILRS/IHRS ratios 
up to 1011 (Supplementary Table 1). The power consumption dur-
ing the set transition (PSET) can be as low as 44 fW (Fig. 3a), that 
is, PSET = ILRSVSET = 110 fA × 0.4 V, where ILRS corresponds to the ICC 
used in each experiment. By applying 5-V/2-µs pulses we statisti-
cally found that the set time (tSET) is ~200 ns (Fig. 3f). Then, the 
value of the energy consumption per set transition (ESET) in Fig. 3f 
can be calculated as ESET = ILRSVSETtSET = 20 nA × 5 V × 200 ns = 20 fJ. 
It should be highlighted that the higher electrical noise (>1 nA) of 
the semiconductor parameter analyser does not allow measurement 
of tSET when using ICC = 110 fA (Fig. 3a) and ICC = 1 pA (Fig. 3b).  
However, ESET can be estimated for ICC < 1 nA using the switching 
time obtained in Fig. 3f. This assumption is reasonable because the 
switching time from IHRS to 110 fA (Fig. 3a) or from IHRS to 1 pA  
(Fig. 3b) will surely be shorter than that between IHRS and 20 nA 
(Fig. 3f). Consequently, ESET in Fig. 3a–c may be as small as ~8.8 zJ, 
~120 zJ and ~80 aJ respectively, which approaches the fundamental 
thermal energy at room temperature (kBT ~ 4.1 zJ)36. Such ultralow 
energy consumption is undoubtedly a feature that enables the use of 
these Ag/h-BN/Ag memristors as integrate-and-fire artificial neu-
rons for energy-efficient spiking neuromorphic hardware33–35.

The good stability of the threshold RS has been proved by apply-
ing PVSs, which demonstrate no degradation after more than 2,000 
cycles (Fig. 3g). The application of PVSs with different amplitudes37 
also revealed that the Ag/h-BN memristive devices can be reliably 
operated at different current levels, and that the relaxation process is 
highly controllable and reproducible (Fig. 3h). The relaxation time 
(tRELAX) increases with the pulse amplitude, and the characteristics of 
the devices can be fitted by the exponential decay function (Fig. 3i), 
which is consistent with the Kohlrausch law relaxation function38,39, 
often used to emulate the short-term plasticity of biological synaptic 
systems40.

The size of the Ag/h-BN/Au memristors has been reduced to 
150 nm × 150 nm (Fig. 4a and Supplementary Figs. 30 and 31), and 
sequences of I–V curves and PVSs demonstrate stable threshold-type 
RS over 80,000 cycles (Fig. 4b,c) with low device-to-device variabil-
ity (Fig. 4d). As explained in Supplementary Table 2, these endur-
ance results are notable because previous works in this field showed 
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interesting electrical characteristics in 10-µm × 10-µm memristors 
(fabricated via photolithography), but the performances demon-
strated in similar devices with sizes below 1 µm × 1 µm (fabricated 
via electron-beam lithography) were much worse41,42. Furthermore, 
the value of IHRS and ILRS in Fig. 4c,d is read in each cycle, which is 
the only correct method to characterize long endurance of memris-
tors made of novel materials, as described in ref. 24.

Finally, extreme downscaling has been analysed in Ag/h-BN/Pt 
and Pt/h-BN/Pt memristors with nanodot-like top electrodes (see 
Fig. 4e,f, Methods and Supplementary Fig. 32). This methodology 
is very interesting for experimental purposes because it avoids the 
use of ultrathin metallic wires, which can easily melt due to the high 
current densities registered in the LRS—a recent report presented 
the fabrication of 2-nm × 2-nm memristor crossbar arrays43, but 

only eight RS cycles with large variability of VSET ranging between 
−2 V and −5 V were presented. Ag/h-BN/Pt devices show lower 
VSET and higher switching slope than those using Pt top electrodes 
(see Fig. 4g,h and Supplementary Fig. 33b), in agreement with the 
lower dielectric breakdown time (TDB) observed when applying 
constant voltage stress (Supplementary Fig. 34). Indeed, this experi-
ment indicates that the threshold-type RS is dominated by the pen-
etration of metal ions from top electrodes.

Conclusions
We have reported the fabrication of high-density crossbar arrays of 
Au/h-BN/Au memristors with a yield of 98%. The devices exhibit 
analogue switching within a large dynamic range of conductance 
(from 200 nS to 40 mS), ultralow cycle-to-cycle variability (down to 
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read pulse, 2-µs interval, 5-V/2-µs set pulse, 6-µs interval and 0.1-V/2-µs read pulse). To make the measurement more reliable, the experiment has been 
repeated 28 times (the number of red lines). As shown, tSET ~ 200 ns. g, Endurance test of an Ag/h-BN/Ag memristor showing >2,000 cycles of operation. 
The inset shows the applied waveform, which consists of a 5.5-V/2-ms set pulse followed by a 0.1-V/2-ms read pulse. The interval between the set and 
read pulses is 2 ms. h, Reproducible multilevel operation of potentiation and relaxation in a 150-nm × 150-nm Ag/h-BN/Au threshold memristor under 
different pulse amplitudes. The potentiation of the device is achieved using a 20-µs set pulse, and the relaxation process is read using a 0.1-V/286-µs 
pulse. i, Zoom-in plot of one cycle shown in h; scattered symbols are experimental measurements, and solid lines are fittings to the exponential decay 
model, I(t) = I0 exp(−t/τ), which is similar to the Kohlrausch law function, I(t) = I0 exp(−t/τ)β (where I0 is the initial current before relaxation, β is a 
stretching index ranging from 0 to 1 and τ is a parameter with the dimensions of time39,40). Therefore, the current relaxation of Ag/h-BN/Au device can be 
fitted by the Kohlrausch law using β = 1. Inset: the statistical distribution of the relaxation time for each pulse amplitude.
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1.53%) and excellent standalone device-to-device variability (down 
to 5.74%). Simulation results for an ex situ-trained MNIST image 
classifier based on mixed-signal Au/h-BN/Au memristive hardware 
show that the measured I–V uniformity is sufficiently good for 
matching the accuracy of the ideal software-based implementation. 
Furthermore, when using silver electrodes, our h-BN memristors 
show multilevel threshold-type RS with ultralow switching energy 
in the zeptojoule regime and a very stable relaxation process that 
fits the exponential Kohlrausch-law function, which enables their 
potential application in spiking neuromorphic hardware. Our work 
is a step towards the development of high-density electronic circuits 
based on 2D materials, and could help accelerate the deployment of 
2D materials in semiconductor fabrication lines.

Methods
h-BN growth. A multilayer h-BN sheet has been grown by chemical vapour 
deposition on Cu foils using ammonia borane as precursor. The detailed CVD 
growth process is exhaustively described in ref. 12.

TEM characterization. Directly after CVD growth, 20 nm Ti and 40 nm Au were 
deposited by electron-beam evaporation on the h-BN/Cu stacks to enhance the 
contrast during TEM inspection and protect against oxidation, respectively. The 
resulting Au/Ti/h-BN/Cu sample was cut into thin (~40-nm) lamellas using a 
focused ion beam (Helios NanoLab 450S, FEI), and the layered structure of the 
h-BN stacks was confirmed by TEM (JEM-2100, JEOL).

Fabrication of memristor crossbar arrays. The metal/h-BN/metal memristor 
crossbar arrays were fabricated on n-type Si wafers covered by 300 nm of thermal 
SiO2. First, the bottom electrodes were patterned using photolithography (MJB4 
Mask Aligner, SÜSS MicroTec) or electron-beam lithography (Raith ELPHY 
VII integrated with Supra 55 SEM); the devices with sizes of 3 µm × 3 µm were 
patterned via photolithography, and the devices with sizes of 750 nm × 750 nm 
and 150 nm × 150 nm were patterned via electron-beam lithography. Second, the 
metallic film was deposited by electron-beam evaporation (PVD 75 evaporator, 
Lesker), and the photoresist was removed by lift-off (that is via acetone bath for 
1 h). Third, the layered h-BN stack was transferred onto the bottom electrodes 
(detailed transfer process in next section). Fourth, the top electrodes were 

deposited using a methodology identical to that for the bottom electrode (that 
is lithography, metal evaporation and lift-off). Several samples with different 
device sizes, h-BN thicknesses and metallic electrodes were fabricated. Sample 1 
contained multiple memristive crossbar arrays (device size 3 µm × 3 µm) fabricated 
using 50 nm Au as bottom and top electrodes, leading to Au/h-BN/Au cells. 
Sample 2 contained crossbar arrays (device size 3 µm × 3 µm) fabricated using 
20-nm Ag/10-nm Ti bottom electrodes and 30-nm Au/20-nm Ag top electrodes, 
leading to Au/Ag/h-BN/Ag/Ti structure cells. Sample 3 contained multiple 10 × 10 
memristive crossbar arrays (device size 750 nm × 750 nm) fabricated using 30 nm 
Ag/10 nm Ti as bottom electrodes and 50 nm Ag as top electrodes, leading to 
Ag/h-BN/Ag/Ti structure devices. Sample 4 contained multiple 150-nm × 150-nm 
devices fabricated using 30 nm Au/10 nm Ti as bottom electrodes and 30 nm 
Au/10 nm Ag as top electrodes, leading to Au/Ag/h-BN/Au/Ti structure devices.

Transfer of h-BN. To transfer h-BN onto the bottom electrodes, liquid poly(methyl 
methacrylate) (PMMA) was spin-coated on the surface of multilayer h-BN grown 
on Cu foil. The spin-coating process consisted of 500 r.p.m. for 6 s and 3,500 r.p.m. 
for 30 s. Then, the device was baked at 100 °C for 3 min to solidify the PMMA and 
improve its adhesion to the h-BN stack. After baking, the Cu foil was etched using 
iron iii chloride (FeCl3, 0.1-g-ml−1) liquid for 5 h, and the resulting PMMA/h-BN 
stack was cleaned in hydrochloric acid (HCl, 2 wt%) for 30 min and deionized water 
for 1 h. Next, the PMMA/h-BN stack was picked up with the target substrate (that 
is the SiO2/Si wafer with bottom electrodes patterned) and dried at 60 °C for 5 min. 
Finally, the substrate was immersed in acetone (≥99%) for 12 h to remove the PMMA.

Fabrication of metal/h-BN/metal nanodot memristor. n++Si wafers were first 
cleaned using 1% HF/H2O solution to remove the native SiOx layer. After cleaning, 
50 nm Pt was deposited on top by an electron-beam evaporator, and the h-BN 
was transferred onto the Pt/n++Si substrate. An ultrathin alumina membrane 
(UTAM) film with 300-nm thickness, 80-nm pore diameter and 100-nm interpore 
distance was purchased from Shenzhen Top Membranes Technology. The PMMA 
supporting layer attached to the UTAM film was first removed by acetone, and 
then the UTAM film was transferred onto the h-BN surface. After being washed 
with acetone three times, 25-nm Ag or 25-nm Pt electrodes were deposited on top 
via electron-beam evaporation. After deposition of the top metal layer, UTAM 
films were finally peeled off using polyimide (Kapton) tape.

Optical and SEM characterization. Morphology and structure information on 
the devices was obtained using a fluorescence optical microscope from Leica 
Microsystems (model DMi8) and a Supra 55 scanning electron microscope  
from Zeiss.
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Fig. 4 | RS characteristics of nanoscale crossbar and nanodot memristors. a, Top-view SEM image of a 150-nm × 150-nm Au/Ag/h-BN/Au memristor. 
Scale bar, 800 nm. b, Threshold-type RS observed in a 150-nm × 150-nm Au/Ag/h-BN/Au memristor. c, Pulse endurance test of 150-nm × 150-nm Au/
Ag/h-BN/Au memristor showing over 80,000 programming cycles. The applied set and read pulses are 4 V/2 ms and 0.1 V/2 ms, respectively. The interval 
between the set and read pulses is 2 ms. d, First 1,200 programming cycles measured during pulse endurance tests in six different 150-nm × 150-nm 
Au/Ag/h-BN/Au memristive devices, showing very low device-to-device variations. e, AFM topographic map (collected in tapping mode) of the 
nanodot-like Ag electrodes on the surface of the h-BN sheet. Scale bar, 150 nm. f, FWHM cross-section of the nanodots shown in e. g,h, Threshold-type RS 
characteristics of an Ag/h-BN/Pt and a Pt/h-BN/Pt nanodot memristor, respectively.
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AFM characterization. The surface topography of memristor crossbar arrays and 
nanodot devices was characterized using an atomic force microscope from Bruker 
(Dimension Icon) working in ambient atmosphere. The topographic maps were 
collected in tapping mode using NanoWorld POINTPROBE tips (model NCH). 
The I–V characteristics of nanodot devices were collected in contact mode using 
standard Pt probes (tip radius < 20 nm) from Rocky Mountain Nanotechnology 
(model 25Pt300B). The bias was applied to the top nanodot electrodes, while 
keeping the sample substrate grounded.

Electrical characterization. The CAFM electrical analysis of h-BN was conducted 
via a Park NX-Hivac atomic force microscope working in a high-vacuum 
environment (~10−6 torr) and using solid Pt probes from Rocky Mountain 
Nanotechnology (model RMN-25PT300B). Electrical characterization of the 
memristor crossbar devices was performed using two measurement set-ups. 
The first one is a Cascade probe station (model M150) connected to a Keithley 
4200-SCS semiconductor parameter analyser. The second one is a Lake Shore 
Cryogenic Probe Station connected to a Keysight B1500A semiconductor parameter 
analyser. Pulsed measurements were carried out using Keysight B1530A waveform 
generator fast measurement units (WGFMUs); a 1-MΩ resistor was connected in 
series to the memristors during the endurance test to limit the ON-state current. 
In all devices the voltage stress was applied to the top electrodes, while keeping 
the bottom electrodes grounded. In this investigation, the total number of devices 
measured via ramped voltage stress and pulse voltage stress is 550.

Artificial neural network simulations. A 784 × 64 × 10 multilayer perceptron 
network with hyperparameters similar to those in ref. 21 was simulated using 
a phenomenological model for half-select disturbance with a specific window 
function (Supplementary Fig. 26). Classification accuracy is reported for 10 runs, 
with randomly generated device variations used in each run, for different crossbar 
array sizes, and three different cases (C1–C3). For each run, classification accuracy 
is assessed after writing conductances to the same set of desired values using a 
tuning algorithm with 1% target accuracy44. The desired values were determined by 
mapping the weights, obtained by training the neural network in the software, to 
the differential pair of conductances. One of the memristors in a pair, depending on 
the sign of the weight, is always set to the smallest possible conductance Gmin. When 
the crossbar size is smaller than required by the neural network algorithm, accurate 
summation of the partial dot products is assumed, which for example could be 
implemented with combination of local and global sensing circuitry. In C2 and C3, 
set and reset variations of the utilized half-select disturbance model were fitted to 
those observed in the experimental work. In C1, larger set variations, similar to 
the ones observed for reset switching, were modelled to highlight the impact of the 
variations. In C1 and C2, all conductances were randomly initialized in the dynamic 
range before applying the tuning algorithm. In C3, all devices were set initially to 
the low-conductance state (Gmin). The devices were always tuned individually, in the 
same fixed order. The number of tuning iterations, that is the sequences of pulses 
with increasing write amplitudes, was limited to 10 to bound the tuning time.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.
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