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Abstract—In this paper we consider a mobile cooperative
network that is tasked with building a map of the spatial
variations of a parameter of interest, such as an obstacle map
or an aerial map. We propose a new framework that allows
the nodes to build a map of the parameter of interest with a
small number of measurements. By using the recent results inthe
area of compressive sensing, we show how the nodes can exploit
the sparse representation of the parameter of interest in the
transform domain in order to build a map with minimal sensing.
The proposed work allows the nodes to efficiently map the areas
that are not sensed directly. To illustrate the performanceof
the proposed framework, we show how the nodes can build
an aerial map or a map of obstacles with sparse sensing. We
furthermore show how our proposed framework enables a novel
non-invasive approach to mapping obstacles by using wireless
channel measurements.

Index Terms—mobile networks, compressive sensing, mapping
of obstacles, cooperative mapping

I. I NTRODUCTION

Mobile intelligent networks can play a key role in emer-
gency response, surveillance and security, and battlefieldop-
erations. The vision of a multi-agent robotic network cooper-
atively learning and adapting in harsh unknown environments
to achieve a common goal is closer than ever. In this paper, we
are interested in the cases where a mobile cooperative network
is tasked with collecting information from its environment.
More specifically, we consider scenarios where the network
is in charge of building a map of the spatial variations of a
parameter (or a number of parameters) cooperatively, to which
we refer to ascooperative mapping. Such problems can
arise in several different applications. For instance, building
a map of the indoor obstacles [1], ocean sampling [2] or
aerial mapping [3] all fall into this category. A mobile network
tasked with a certain exploratory mission faces an abundance
of information. In such an information-rich world, there is
simply not enough time to sample the whole environment
due to the potential delay-sensitive nature of the application
as well as other practical constraints. A group of unmanned
air vehicles, for instance, may need to cooperatively buildan
aerial map of an area in a limited time. It is not practical to
wait for the collective sampling of the vehicles to cover every
single point in the terrain. A fundamental open question is
then as follows:What is the minimal collective sensing needed
to accurately build a map of the whole terrain despite the
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fact that significant parts of it will not be sampled? This is
a considerably important problem as it enhances our ability
to collect information and allows us to keep up with the high
volume of information in the environment.

If we can understand the core information present in the
data and can show that it has a dimension far less than
the data itself, we can then reduce our sensing considerably.
While considerable progress has been made in the area of
mobile networks, a framework that allows the vehicles to
reconstruct the parameter of interest based on a severely under-
determined data set is currently missing. In most related work,
only areas that are directly sensed are mapped. The rich
literature on Simultaneous Localization and Mapping (SLAM)
and its several variations fall into this category [4]–[7].SLAM
approaches mainly focus on reducing the uncertainty in the
sensed landmarks by using a Kalman filter. Similarly, ap-
proaches based on generating an occupancy map also address
sensing uncertainty [8]. Another set of approaches, suitable
mainly for mapping obstacles, are based on the Next Best
View (NBV) problem [1], [9]–[12]. In NBV approaches, the
aim is to move to the positions “good” for sensing by guiding
the vehicles to the perceived next safest area (area with the
most visibility) based on the current map [1]. However, areas
that are not sensed directly are not mapped in NBV.

In this paper, we present acompressive cooperative mapping
framework for mobile exploratory networks. By compressive
cooperative mapping, we refer to the cooperative mapping ofa
spatial function based on a considerably small observationset
where a large percentage of the area of interest is not sensed
directly. Our proposed theory and design tools are inspired
by the recent breakthroughs in non-uniform sampling theory
[13], [14]. The famous Nyquist-Shannon sampling theorem
[15] revolutionized several different fields by showing that,
under certain conditions, it is indeed possible to reconstruct
a uniformly sampled signal perfectly. The new theory of
compressive sampling(also known by other terms such as
compressed sensing, compressive sensing or sparse sensing)
shows that under certain conditions, it is possible to reconstruct
a signal from a considerably incomplete set of observations,
i.e. with a number of measurements much less than predicted
by the Nyquist-Shannon theorem [13], [14]. This opens new
and fundamentally different possibilities in terms of infor-
mation gathering and processing in mobile networks. In this
paper, we develop the fundamentals of cooperative sensing and



mapping in mobile networks from a compressive sampling per-
spective. While our proposed framework would be applicable
to several mobile network applications, in this paper we mainly
focus oncooperative mapping of a spatial functionsuch as
collective aerial or underwater mapping, collective mapping
of the communication signal strength or cooperative mapping
of the obstacles.

The paper is organized as follows. In Section II we dis-
cuss the compressibility of the signals of interest in mobile
exploratory networks. In Section III we provide a brief intro-
duction to the theory of compressive sensing. In Section IV
we consider cooperative aerial mapping as well as mapping of
obstacles. In particular, we propose a novel compressive and
non-invasive technique for mapping of the obstacles, basedon
wireless channel measurements. We conclude in Section V. A
list of key variables used in the paper is provided in Table 1.

II. SIGNAL COMPRESSIBILITY IN COOPERATIVE MOBILE

NETWORKS

We first define what “sparse” and “compressible” signals
refer to.

Definition: A sparsesignal is a signal that can be repre-
sented with a small number of non-zero coefficients.

Definition: A compressiblesignal is a signal that has a
transformation where most of its energy is in a very few
coefficients, making it possible to approximate the rest with
zero. In this paper, we are interested in linear transformations.

The new theory of compressive sampling shows that, under
certain conditions, a compressible signal can be reconstructed
using very few observations. Most natural signals are indeed
compressible. The best sparse representation of a signal de-
pends on the application and can be inferred from analyzing
similar data. Our analysis of aerial maps, obstacle maps
(indoor or outdoor) as well as maps of communication signal
strength, for instance, has shown them to have a considerably
sparse representation. Fig. 1 shows two maps based on real
data, an aerial map and an obstacle map. By applying a linear
transformation to the signals, it can be seen that most of
the signal’s energy is contained in a small percentage of the
transform coefficients. However,this energy is not necessarily
confined to a consecutive set of transform coefficients, which
makes reconstructing the signal based on a considerably
small number of observations challenging. In general, Fourier
transformation can provide a good compression for the spatial
variations of the communication channel or a height map. For
the maps that have localized non-stationary features, suchas
an obstacle map (see Fig. 1 b), wavelet transform or total
variation (a difference-based approach) can provide an even
better compression. A map of the obstacles is also sparse in
the spatial domain. It should be noted that in the compressed
mapping of the obstacles, an object-based approach is not
suitable. Instead, we consider the space of interest as a binary
spatial function that takes on values of 0 or 1 (it is also possible
to make it non-binary and include the properties of the objects
as we shall see in Section IV).

In this paper, we show how the new theory of compres-
sive sampling can result in fundamentally different sensing
approaches in mobile cooperative exploratory networks.

III. C OMPRESSIVE SAMPLING THEORY

The new theory of sampling is based on the fact that real-
world signals typically have a sparse representation in a certain
transformed domain. Exploiting sparsity, in fact, has a rich
history in different fields. For instance, it can result in reduced
computational complexity (such as in matrix calculations)
or better compression techniques (such as in JPEG2000).
However, in such approaches, the signal of interest is first fully
sampled, after which a transformation is applied and only the
coefficients above a certain threshold are saved. This, however,
is not efficient as it puts a heavy burden on sampling the
entire signal when only a small percentage of the transformed
coefficients are needed to represent it. The new theory of
compressive sampling, on the other hand, allows us to sense
the signal in a compressed manner to begin with.

Consider a scenario where we are interested in recovering
a vectorx ∈ R

N . We refer to the domain of vectorx as
the primal domain. For 2D signals, vectorx can represent the
columns of the matrix of interest stacked up to form a vector
(a similar approach can be applied to higher-order signals).
Let y ∈ R

K whereK � N represents the incomplete linear
measurement of vectorx obtained by the sensors. We will
have

y = Φx, (1)

where we refer toΦ as the observation matrix. Clearly, solving
for x based on the observation sety is an ill-posed problem as
the system is severely under-determined (K � N ). However,
suppose thatx has a sparse representation in another domain,
i.e. it can be represented as a linear combination of a small
set of vectors:

x = ΓX, (2)

where Γ is an invertible matrix andX is S-sparse, i.e.
|supp(X)| = S � N where supp(X) refers to the set of
indices of the non-zero elements ofX and | · | denotes its
cardinality. This means that the number of non-zero elements
in X is considerably smaller thanN . Then we will have

y = ΨX, (3)

whereΨ = Φ×Γ. We refer to the domain ofX as the sparse
domain (or transform domain). IfS ≤ K and we knew the
positions of the non-zero coefficients ofX , we could solve
this problem with traditional techniques like least-squares. In
general, however, we do not know anything about the structure
of X except for the fact that it is sparse (which we can validate
by analyzing similar data). The new theory of compressed
sensing allows us to solve this problem.

Theorem 1(see [13] for details and the proof): IfK ≥ 2S

and under specific conditions, the desiredX is the solution to
the following optimization problem:

min||X ||0, such thaty = ΨX, (4)



(a) (b)

Fig. 1. (a) Height map of Sandia Mountains in New Mexico – courtesy of U.S. Geological Survey (left), and its transformed representation (Fourier) where
more than 99.9999% of energy is in less than 3% of the coefficients (right). (b) An obstacle map with the obstacles denoted in white (left), and its transformed
representation (wavelet) where 100% of energy is in less than 1% of the coefficients (right).

N size of the original signal in the primal domain

S size of the support of the signal in the sparse domain

K number of measurements taken to estimate the signal

x signal in the primal domain, anN × 1 vector

y K × 1 measured vector ofx in the primal domain

X N × 1 vector representing a linear transform ofx

Φ K × N observation matrix, s.t.y = Φx

Γ N × N linear projection matrix, s.t.x = ΓX

Γ
H Hermitian ofΓ

Ψ K × N matrix (defined asΨ = Φ × Γ), s.t.y = ΨX

TABLE I
KEY NOTATIONS USED IN THIS PAPER

where||X ||0 = |supp(X)| represents the zero norm of vector
X .

Theorem 1 states that we only need2 × S measurements
to recoverX and thereforex fully. This theorem, however,
requires solving a non-convex combinatorial problem, which is
not practical. For over a decade, mathematicians have worked
towards developing an almost perfect approximation to the`0

optimization problem of Theorem 1 [16]- [17]. Recently, such
efforts resulted in several breakthroughs.

More specifically, consider the following̀1 relaxation of
the aforementioned̀0 optimization problem:

min||X ||1, subject toy = ΨX. (5)

Theorem 2:(see [18], [13], [19], [20], [14] for details,
the proof and other variations) Assume thatX is S-sparse.
The `1 relaxation can exactly recoverX from measurement
y if matrix Ψ satisfies the Restricted Isometry Condition for
(2S,

√
2 − 1), as described below.

Restricted Isometry Condition (RIC) [21]:Matrix Ψ satis-
fies the RIC with parameters (Z, ε) for ε ∈ (0, 1) if

(1 − ε)||c||2 ≤ ||Ψc||2 ≤ (1 + ε)||c||2 (6)

for all Z-sparse vectorc.
The RIC is mathematically related to the uncertainty prin-

ciple of harmonic analysis [21]. However, it has a simple

intuitive interpretation, i.e. it aims at making every set of Z

columns of the matrixΨ as orthogonal as possible. Other
conditions and extensions of Theorem 2 have also been
developed [22], [23]. While it is not possible to define all the
classes of matricesΨ that satisfy RIC, it is shown that random
partial Fourier matrices [24] as well as random Gaussian [25]-
[26] or Bernoulli matrices [27] satisfy RIC (a stronger version)
with the probability1 − O(N−M ) if

K ≥ BMS × logO(1)N, (7)

whereBM is a constant,M is an accuracy parameter and O(·)
is Big-O notation [13].

While the recovery of sparse signals is important, in practice
signals may rarely be sparse. Most signals, however, will be
compressible. In practice, the observation vectory will also be
corrupted by noise. Thè1 relaxation and the corresponding
required RIC condition can be easily extended to the cases of
noisy observation with compressible signals [18].

A. Basis Pursuit: Reconstruction Using`1 Relaxation

The `1 optimization problem of Eq. 5 can be posed as a
linear programming problem [28]. The compressed sensing
algorithms that reconstruct the signal based on`1 optimization
are typically referred to as “Basis Pursuit” [14]. Reconstruction
through `1 optimization has the strongest known recovery
guarantees [21]. However, the computational complexity of
such approaches can be high, which resulted in further at-
tempts to reconstruct the signal through different approaches,
as we will discuss in the next section.

B. Matching Pursuit: Reconstruction using Successive Inter-
ference Cancellation

The Restricted Isometry Condition implies that the columns
of matrix Ψ should have a certain near-orthogonality property.
Let Ψ = [Ψ1Ψ2 . . . ΨN ], whereΨi represents theith column
of matrix Ψ. We will havey =

∑N

j=1 ΨjXj , whereXj is the
jth component of vectorX . Consider recoveringXi:

ΨH
i y

ΨH
i Ψi

= Xi
︸︷︷︸

desired term

+

N∑

j=1,j 6=i

ΨH
i Ψj

ΨH
i Ψi

Xj

︸ ︷︷ ︸

interference

. (8)



If the columns of Ψ were orthogonal, then Eq. 8 would
have resulted in the recovery ofXi. For an under-determined
system, however, this will not be the case. Then there are
two factors affecting recovery quality based on Eq. 8. First,
how orthogonal is theith column to the rest of the columns
and second how strong are the other components ofX .
In other words, it is desirable to first recover the strongest
component ofX , subtract its effect fromy, recover the second
strongest component and continue the process. Adopting the
terminology of CDMA (Code Division Multiple Access) in
communication literature, we refer to such approaches as
Successive Interference Cancellation. In fact, if Xi 6= 0, one
can think ofΨi codingXi. If the ith code is used as in Eq. 8,
thenXj for j 6= i can not be decoded properly and onlyXi

can be recovered.
Such successive cancellation methods have been used in

the context of CDMA systems in communication literature
for recovering the signals of different users at the base station
[29], [30]. While the context of the two problems may seem
different, they share a very core fundamental form. Recently,
Tropp et al. independently proposed using a version of suc-
cessive interference cancellation in the context of compressive
sampling and derived the conditions under which it can result
in almost perfect recovery [31]. They refer to it as Orthogonal
Matching Pursuit (OMP). Similar to Successive Interference
Cancellation, the basic idea of OMP is to iteratively multiply
the measurement vector,y, by ΨH , recover the strongest
component, subtract its effect and continue again. LetIset

denote the set of indices of the non-zero coefficients ofX that
is estimated and updated in every iteration. Once the locations
of the S nonzero components ofX are found, we can solve
directly for X by using a least squares solver:

X̂ = argmin
X : supp(X)=Iset

||y − ΨX ||2. (9)

OMP, however, has various significant drawbacks, most no-
tably lack of performance guarantee for partial Fourier matri-
ces [21]. Regularized Orthogonal Matching Pursuit (ROMP),
an extension of OMP, was then introduced by Needell et
al. as a way to overcome problems with OMP [21]. The
main difference in ROMP as compared to OMP is that in
each iterative step, a set of indices (locations of vectorX

with non-negligible components) are recovered at the same
time instead of only one at a time [21]. Other variations of
this work (some under different names) have also appeared
[21]- [32]. In [33], we proposedInterpolated ROMP(I-
ROMP), an extension of ROMP [21] with a considerably
better performance for certain applications. Both OMP and
ROMP do not consider the progression of the reconstructed
signal in the primal domain and only process the signal in the
sparse domain. We showed in [33] that this can result in a
reconstructed signal with undesirable properties in the primal
domain. In order to address this, we proposed I-ROMP, which
combines upsampling the measurement signal in the primal
domain and successive interference cancellation approaches
(see [33] for more details). Algorithm 1 shows a summary of

Algorithm 1 A Summary of Matching Pursuit Approaches
(OMP [31], ROMP [21] and I-ROMP [33])

Input: measured vectory ∈ R
K , target sparsityS, and size

of full signal N
Output: set of indicesIset ⊂ {1, ..., N} of non-zero coeffi-

cients inX with |Iset| ≤ S, andX̂, the estimatedX .
Initialize: Iset = ∅ andynew = y

1: while stop criteria not metdo
2: ynew

f = F (ynew)

3: Xproj = ΨH
f ynew

f

4: choose a subset of indices fromXproj based on a
utilized criteria for deciding the significant coefficients

5: update index setIset

6: X̂ = argmin
X : supp(X)=Iset

||y − ΨX ||2

7: ynew = y − ΨX̂

8: end while

the steps involved in Matching Pursuit approaches. Function
F in the second step is an upsampling function (such as
an interpolator) for I-ROMP and isF (ynew) = ynew for
OMP/ROMP. Consequently,Ψf of the third step is the full
N × N Ψ matrix for I-ROMP and is the originalK × N

matrix for OMP/ROMP (as discussed previously).
While `1 relaxation of the previous part can solve the com-

pressed sampling problem with performance guarantees, the
computational complexity of the iterative greedy approaches
of this part can be considerably less [31]. In the next section,
we use both approaches when reconstructing the signal.

IV. COMPRESSIVECOOPERATIVE MAPPING IN MOBILE

NETWORKS

In this section we show how the new theory of compressive
sampling and reconstruction can result in the efficient mapping
of a spatial function in mobile cooperative networks. In
particular, we discuss two cases, cooperative aerial mapping
and mapping of the obstacles.

A. Compressive and Cooperative Aerial Mapping

Consider a case where a group of Unmanned Air Vehicles
(UAVs) are tasked with building an aerial map of a region.
Then x of Eq. 1 represents the aerial map of interest in the
spatial domain. The vehicles make measurements in the spatial
domain, i.e. vectory consists of the few measurements made
by the vehicles. Then Fourier transformation, for instance, can
be used for sparse representation and reconstruction.

Fig. 2 (left) shows an aerial map of a portion of the Sandia
Mountains in Albuquerque, NM. Fig. 2 (right) shows our
reconstruction when only 30% of the area is sensed. We used
I-ROMP of Algorithm 1 for reconstruction and exploited the
sparse representation of the signal in the Fourier domain. The
normalized MSE of this reconstruction is7.5 × 10−8. It can
be seen that the reconstructed map is almost identical to the
real map. The result indicates the potentials of compressive
sampling framework for efficient and cooperative mapping in
mobile networks.



Fig. 2. Demonstration of the reconstruction of a height map (as applicable to UAV applications) with only 30% measurements using compressed sensing. (left)
the original height map of a portion of Albuquerque Sandia Mountains data set (courtesy of U.S. Geological Survey). (right) reconstruction using I-ROMP
technique with only 30% random samples. The normalized MSE of the reconstruction is7.5 × 10−8 . For clarity, refer to the original PDF for the color
version of this image.

B. Compressive Cooperative Mapping of Obstacles

In this section we show how a group of mobile nodes
can build a high-quality map of the obstacles with minimal
sensing and without directly sampling a high percentage of
the area. Accurate mapping of the obstacles is considerably
important for the robust operation of a mobile network. Yet the
high-volume of the information presented by the environment
makes it prohibitive to sense all the areas, making accurate
mapping considerably challenging. In this part, we show how
the nodes can cooperatively build a map of the obstacles based
on a considerably small set of observations. We furthermore
propose a non-invasive mapping strategy which is enabled by
the theory of compressive sampling. Since the non-invasive
case is more challenging and not addressed previously (to the
best of authors’ knowledge), this part will mainly focus on the
non-invasive case.

1) Compressive Non-Invasive Mapping of Obstacles – A
New Possibility for Non-Invasive Mapping:

In this part we show how the theory of compressive
sensing enables newnon-invasivemapping possibilities. By
non-invasive mapping, we refer to a mapping technique that
allows the vehicles to map inside a building, for instance,
before entering it. In general, devising non-invasive map-
ping strategies can be considerably challenging. Motivated by
computed tomography approaches to medical imaging [34],
geology [35], and computer graphics [36], we show how
our proposed compressed mapping framework can result in a
new and efficientnon-invasive sensingtechnique for mapping
indoor obstacles, based on wireless channel measurements.
Consider a case where a number of vehicles want to build
a map of the obstacles inside a building before entering it.A
non-invasive mapping allows the nodes to assess the situation
before entering the building and can be of particular interest
in several applications such as an emergency response.In this
part, we consider building a 2D map (our proposed approach
can be extended to 3D maps as well). Figure 3 (left) shows
a sample indoor 2D map where a number of vehicles want
to map the space before entering it. Letg(u, v) represent the
binary map of the obstacles at position(u, v) for u, v ∈ R.

We will have

g(u, v) =

{
1 if (u, v) is an obstacle
0 else

(10)

Consider communication from Transmitter 1 to Receiver 1,
as marked in Fig. 3 (left). A fundamental parameter that
characterizes the performance of a communication channel
is the received signal power, which is measured in every
receiver [37]. There are three time-scales associated withthe
spatio-temporal changes of the channel quality and therefore
received signal strength [38], as indicated in Fig. 4. The
slowest dynamic is associated with the signal attenuation due
to the distance-dependent power fall-off (path loss). Thenthere
is a faster variation referred to as shadow fading (shadowing),
which is due to the impact of the blocking objects. This means
that each obstacle along the transmission path leaves its mark
on the received signal power by attenuating it to a certain
degree characterized by its properties. Finally, depending on
the receiver antenna angle, multiple replicas of the transmitted
signal can arrive at the receiver due to the reflection from
the surrounding objects, resulting in multipath fading, a faster
variation in the received signal power.

A communication from Transmitter 1 to Receiver 1 in
Fig. 3 (left), therefore, contains implicit information ofthe
obstacles along the communication path. LetP (θ, t) represent
the received signal power in the transmission along the ray
(line) that corresponds toθ and t, as shown in Fig. 3 (left).
We can then model lnP (θ, t) as follows [38]

lnP (θ, t) = lnPT
︸︷︷︸

transmitted power in dB

+ β − αlnd(θ, t)
︸ ︷︷ ︸

path loss(≤0)

+
∑

i

ri(θ, t)ni(θ, t)

︸ ︷︷ ︸

shadow fading effect due to blocking objects(≤0)

+ w(θ, t),
︸ ︷︷ ︸

multipath fading + noise

(11)

where PT is the transmitted power,d(θ, t) is the distance
between the transmitter and receiver across that ray,α andβ

are constants,ri is the distance travelled across theith object
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P(θ,t)

Fig. 3. An indoor obstacle map with the obstacles marked in white and the illustration of compressed non-invasive mapping (left), Reconstruction of the map
using the proposed framework with only 4% measurements (middle), Reconstruction of the map using the proposed framework with only 11.7% measurements
(right) – only shadowing and path loss are considered.

along the (θ, t) ray andni < 0 is the decay rate of the wireless
signal within theith object. Furthermore, the summation of Eq.
11 is over the objects across the ray. Then we have

A(θ, t) , lnP (θ, t) − lnPT − (β − αlnd(θ, t)
︸ ︷︷ ︸

path loss

)

=
∑

i

ri(θ, t)ni(θ, t)

︸ ︷︷ ︸

shadow fading effect

+ w(θ, t).
︸ ︷︷ ︸

multipath fading + noise

(12)

Path loss and shadowing effects represent the signal degrada-
tion due to the distance travelled and obstacles respectively
andw(θ, t) represents the impact of multipath fading, sensing
noise and modeling errors. Then

A(θ, t) =

∫ ∫

line (θ,t)

f(u, v)dudv + w(θ, t). (13)

where

f(u, v) =

{
n(u, v) if g(u, v) = 1

0 else
(14)

with g(u, v) representing the binary map of the obstacles
(indicated by Eq. 10) andn(u, v) denoting the decay rate of
the signal inside the object at position(u, v). By changingt at
a specificθ, a projection is formed, i.e. a set of ray integrals,
as is shown in Fig. 3 (left).

Fourier Slice Theorem [34]:Consider the case where there
is no multipath fading and noise. The Fourier transformation
of A(θ, t) (with respect tot) is equal to the samples of the
Fourier transform off(u, v) across angleθ.

The Fourier Slice Theorem allows us to measure the samples
of the Fourier transform of the map by measuring the received
signal strength and as a resultA(θ, t) across rays. We can
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Fig. 4. A multi-scale representation of the received signalpower

then pose the problem in a compressive sampling framework.
By measuring the received signal power across the rays, the
vehicles can then compute samples ofA(θ, t) and apply the
Fourier Slice Theorem to effectively sample the Fourier trans-
formation of the 2D map. In this case,x of Eq. 1 represents
the samples of the Fourier transform of the map (f(u, v))
acquired using the Fourier Slice Theorem. By utilizing the
sparse representation of the signal in the spatial domain (or
wavelet), the vehicles can solve for the map cooperatively,
based on minimal measurements, and more importantly in
a non-invasive manner. For instance,X can be the vector
representation off(u, v). Since the changes in the map is
typically sparser than the map itself, a better approach is to
considerX to be the variations in the map. This approach
is referred to as Total Variation (TV) [13], which we will
use later in our simulation results. Wavelet transformation
can potentially result in even a sparser representation than
TV in some cases. By sampling in the Fourier domain and
reconstructing based on the sparsity in the spatial or wavelet
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domain, the resultingΨ matrix of Eq. 3 will have good
isometry properties.

Fig. 3 (middle and right) shows our preliminary results in
a simplified setting (only shadow fading and path loss) for
non-invasive compressed mapping of the obstacles of the left
figure. For this result, no noise and multipath fading is con-
sidered. Furthermore, path loss model as well as the distance
between the transmitter and receiver is assumed known. Our
reconstruction is based on minimizing Total Variation, using
`1 magic toolbox [39]. It can be seen that with only 11.7%
measurements (right figure), the map can be built almost
perfectly. Even with 4% measurements (middle figure), the
reconstruction is very close to the original. Fig. 5 shows
the normalized MSE of the reconstruction of the obstacle
map of Fig. 3 (left) as a function of the percentage of the
measurements taken. It can be seen that a cooperative network
can build a high-quality and non-invasive map of indoor
obstacles with a considerably small set of measurements.
While this is a preliminary result, it shows the potential of
compressive mapping for non-invasive mapping of obstacles.

1) Practical Challenges of Non-Invasive Mapping and Fur-
ther Extensions:In this part, we proposed a non-invasive
compressive and cooperative mapping framework for mapping
indoor obstacles. In practice, there can be several challenges
in implementing a non-invasive approach, which necessitates
further research and implementation in this area. The goal of
this part was to propose the foundations of this approach, show
that the compressive sampling framework enables the possibil-
ity of non-invasive mapping, and initiate further investigation
in this area.

The main challenge in implementing the proposed non-
invasive mapping approach is multipath fading, i.e. multiple
replicas of the transmitted signal will be received at the
receiver due to the reflection from the objects inside the
building. This will result in the information of the obstacles
that are not along the direct path from the transmitter to
the receiver to interfere with the desirable information. In
general, multipath fading can result in a non-invasive but
noisy reconstruction of the indoor obstacle map. However, in
several applications it may still be useful to have a rough
map before entering the building. The effect of multipath
fading can also be reduced by using directional antennas

as well as averaging the received signal over a very small
distance. It should be noted that the compressive sensing
framework enables the possibility of non-invasive mapping
in ways that was not feasible beforehand. By utilizing the
proposed compressive mapping framework, the map can be
built with a considerably small set of measurements. This
allows for more measurements to go towards averaging over
fading and noise. Such efficient fading mitigation approaches
would not have been possible without utilizing the compressive
sampling theory framework. In our previous work [40]–[44],
we have also developed other multipath fading mitigation
techniques in the context of mobile communications. Such
approaches can also be utilized to develop a framework where
the vehicles cooperatively learn the impact of all the obstacles
(not only the ones along the communication path) and remove
the effect of interference (caused by multipath) from their
received signals. It should also be noted that an estimate ofthe
position of the transmitting vehicle (or the distance between
the transmitter and receiver) as well as an approximation of
the path loss component (which can be acquired by averaging
the received signal) is also needed to implement the non-inv
asive approach. Once the vehicles map the obstacles from
outside, they can safely enter the building and improve the map
by using typical sensing devices and utilizing the proposed
compressive mapping framework of this paper.

C. Note on the Decentralized Nature of Compressive Mapping

It should be noted that the nature of our proposed compres-
sive mapping framework is reconstruction based on minimal
sensing. Therefore, it naturally lends itself to decentralized
approaches where every node can estimate the map based on
its own observations as well as the observations of whichever
node it can receive information from. This is particularly
important in mobile cooperative networks since they typically
lack a leader and the underlying graph of the network is not
necessarily fully connected.

V. CONCLUSIONS

In this paper, we considered a mobile cooperative network
that is tasked with building a map of the spatial variations of a
parameter in its environment. We developed the foundationsof
compressive cooperative mapping, a new mapping framework
for mobile cooperative networks. By using the recent results in
the area of compressive sensing, we showed how the nodes can
exploit the sparse representation of the parameter of interest
in order to build a map with minimal sensing, and without
directly sensing a large percentage of the area. We showed
the application of our proposed framework to aerial mapping
as well as mapping of the obstacles. We also proposed a
new non-invasive mapping technique for cooperative mapping
of the obstacles. Our simulation results showed the superior
performance of the proposed framework.
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