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COMMUNICATION AND SENSING TRADE-OFFS IN COOPERATIVE
MOBILE NETWORKS

Yasamin Mostofi and Richard M. Murray

ABSTRACT

In this paper we consider the impact of communication noise on dis-
tributed sensing and estimation in mobile networks. We characterize when a
node should rely on getting information from others and when it should rely
on self exploration. In doing so, we explore the trade-offs between sensing and
communication by finding the optimum network configuration under commu-
nication constraints. We also show how to achieve the optimum configuration
in a distributed manner. While our main results are presented in one dimen-
sion (1D), we provide insight into the two dimension (2D) setup and extend

a number of key results to 2D.

Key Words: Cooperative networks, sensor networks, communication noise,
distributed sensing and control.

I. INTRODUCTION

Understanding and characterization of coopera-
tive networks has recently received considerable inter-
est. Such networks arise in many different areas from
surveillance and security, battlefield operations, and
human social interactions to smart homes and factories,
environmental monitoring, and biological networks.
A cooperative network consists of a group of agents
that want to perform a task jointly. Each agent has
limited sensing capabilities and relies on the group to
improve its understanding of the environment, i.e. its
estimation/detection quality. Consider, as an example,
an emergency response to an earthquake, where mobile
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agents wifl be deployed to explore the area and find as
many trapped people as possibie. The nodes have to dis-
tribute themselves in the area for sensing. They should
furthermore communicate their local information so
that other nodes redistribute themselves accordingly. It
is only through communication that scenarios where all
the nodes end up in one area while leaving other areas
unexplored could be avoided. Farthermore, the nodes
should communicate in areas harsh for communication
due to rubbles and demolished buildings; which results
in non-prefect communication links. Finally, the net-
work should operate in a distributed manner, where

* each node makes local decisions on where to explore

next.

In this paper we are considering a case where a
group of mobile units are given the task of coopera-
tively estimating an event of interest in a region. Each
node has limited observation capabilities. Therefore,
they can only achieve the task in a networked man-
ner. We are interested in finding the optimum network
configuration when considering non-ideal communica-
tion links among the nodes. Most of the works on co-
operative networks do not consider cost of communi-
cation as they assume either a perfect link or no link
between any two agents. Such models facilitate mathe-
matical characterization of these systems. However, as
the units move around, the qualities of the links vary in a
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non-binary fashion, which can be captured by consider-
ing the time-varying received SNR (signal-to-noise ra-
tio} of the links or equivalently by considering the com-
munication noises.

Optimum sensor configuration, without consid-
ering communication costs, are easy to formmlate, are
closely related to locational optimization problems
[1, 2] and are typically solved using Voronoi cells. Au-
thors in [3] have provided a comprehensive treatment
of centroidal Voronoi cells, indicating their applica-
tions in several different fields. Lloyd algorithm, a
classic algorithm in quantization theory, provides an
iterative and suitable way of achieving the optimum
configuration under certain conditions [4, 51. J. Cories
et al. have extended this algorithm to mobile sensor
networks, without considering comntunication noise [6].

Wireless communications can play a key role in
the overall performance of cooperative mobile networks
as sensor measurements are exchanged over wireless
links. Authors in [7-10] have looked at the impact of
packet-dropping links on Kalman filtering over a wire-
less link and the conditions required for stability. Au-
thors in [11-15] have looked at the impact of different
aspects of a communication link such as noise, quanti-
zation, fading, medium access and packet loss on wire-
Iess control of a mobile sensor. Impact of communica-

‘tion noise on optimum sensor configuration of coop-
erative networks, however, has not been studied exten-
sively. In mobile networks, the positions of the nodes
not only affect their sensing qualities but also impact
the quality of communication links and therefore the
overall networked sensing performance. Depending on
the individual sensing cost and the cost of commnmni-
cation, an agent may decide to rely on its own sensing
as opposed to getting information from other agents. In
other words, as the ratio of the communication cost to
sensing cost increases, there is a point beyond which it
is not worth communicating with the other agents. Such
behaviors can be seen in nature. Studies of social insect
colonies have shown that in collective foraging, if the
cost of communication (proportional to the delay due to
the size of the area to explore) is high, insects may de-
cide to explore the area independently as opposed to re-
lying on getting the information from others [16]. In this
paper, we are interested in mathematically formulating
this effect, i.e. the impact of communication costs on
cooperative networks. We are also interested in achiev-
ing the optimum configuration in a distributed manner.
By “distributed’, we are referring to the scenarios where
each sensor, independently, makes a local decision on
where to go next. We show that in the presence of com-
munication noise, the optimum configuration consists
of overlapping sensing regions. Furthermore, the nodes

© 2008 Yohn Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

Y. Mostofi and R. M. Murray: Communication and Seris

157

B =)
[ |

Fig. 1. Sensing region of the i™ sensor in 2.

may need to sacrifice local sensing quality by getting
closer to each other to produce a better networked sens-
ing. Inn summary, the main contribution of this paper is
to consider communication noise and its impact on co-
operative behaviors. Since the addition of communica-
tion noise introduces new challenges in terms of prob-
lem formulation, we first focus mainly on a 1D setup for
this paper. We then show how to extend the optimum
sensing regions to 2D.

II. SYSTEM MODEL

Consider n mobile sensors with the task of coop-
eratively sensing and estimating an event that will oc-
cur in region Z, where Z represents the region of inter-
estin RV Let p : Z — Ry represent the probability
density function that corresponds to the probability of
the occurrence of the event over region Z. Each node
will explore part of the region by itself and will rely on
getting the information on the rest of the region from
others, which will be more energy efficient. In this pa-
per, we are interested in finding the optimum ‘sensing
regions’ and ‘sensor positions’, as well as distributed
ways of achieving the optimum configuration from any
initial positions. :

Let IT; C Z represent the sensing region of the i™
sensor. This means that if an event occurs in IT;, the ;™
sensor relies on its own observation of the event. On the
other hand, if an event occurs ouiside IT;, the it sensor
relies on receiving the corresponding measurement from

other sensors. An example is shown in Fig. 1 for R?,-

where x; represents the position of the i sensor,

Assumption 1. In this paper, we assume that all the
sensors need to have an estimate of the occurred event
either through direct sensing or communication with
others.

2.1 Sensing noise

Let U € R represent the measurable feature of the
event of interest (the analysis can be easily extended to.
U e RM for M # 1). Consider the case that an event
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happened at location x in II;. Then the following will
represent the measurement of the i sensor:

U;=U+w ifxell )

where w; represents zero-mean observation noise of the
i™ sensor ‘with variance of 0'120,-- We take the measure-
ment quality of each sensor to be a distance-dependent
function. Such models have been commonly adopted in
the literature, for example [6). Then, the measurement
quality of the /™ sensor degrades as }x - x;|| increases,
‘where ||| represents the Euclidean distance. We will
have

o5, =Ejlx — x;|%. 2

Let I ; C Z represent the region in which the i sensor

relies on receiving the estimate of U from the j™ sensor
ifxe Hi,j- Then,

x e Il; = node i relies on its own

observation,

(3

x €H; 5 => node i relies on receiving the
estimate of the event from nodej,

Naturally II; ; =I1;. Purthermore, for each i, IL;, ;’s for
1 < j < n partition Z, i.e.

n
Vi, U Hf,j=z and
j=1

Hi,j ﬁHi,z = for j#z. 4

Remark 1. Note that IT; ; £ IT j Tor j # i under com-
munication constraints, as this paper will illustrate.

2.2 Communication noise

Consider an event that occurred in TT; j» where
j # i. Then the following will represent the estimate
of the i sensor after communicating with the j® one:

=0 +v; itxelly; . (3)

where U j=U + w; represents the local measurement
of the j™ sensor and v;,; is the difference between the
received data at.the i™ node and the transmitted one at
the j™ node. We refer to v;, j as communication noise. It
consists of two parts: quantization noise and link noise,
where the latter represents the impact of bit error rate
on the transmission of the data. '

The transmission from the j% sensor to the i
one may not necessarily be a direct one. Depending on

the locations of the sensors, it may be more cost effec-
tive to have a multi-hop routing, as we shall explore
later in the paper. Let o7,  represent the communica-
tion noise variance associated with v;,; (this may not
be 2 direct communication). Let a%k | direce TEDLESENL the
variance of the communication noise that resulted from
a direct transmission from the /™ node to the k" one. In
[11], we have characterized the communication noise
as a function of the probability of bit error, which is it-
self a function of the received signal-to-noise ratio. We
have shown that a zero-mean additive model is appropri-
ate as long as uniform guantizers are used. We further-
more characterized the variance of the communication
noise as a function of the received signal-to-noise ratio.
Let cr%k diret = A(SNR; 1), where SNRy ; represents the
ratio of the received signal power divided by the receiver
thermal noise power at the k™ node. As we have shown
in [11], depending on the communication parameters
such as the type of coding, modulation, ..., function
A will have different forms. In [11], we characterized
function A for an uncoded transmission. In [17], it was
shown that for a coded transmission, A(SNR) can be
modeled as: A(SNR) « S_Nlﬁ'?’ where np > 1is an in-
teger that increases as the amount of deployed channel
coding increases (note that this is derived assuming that
the link noise is the dominant factor as compared to the
quantization noise, which is a reasonable assumption
in outdoor wireless systems). In this paper, we use this
model to represent the impact of communication noise
where we use n, = 1. Furthermore, SNRy ; is propor-
tional to M—_lxl—"—,g for an integer n; > 2 when there is
no fading [18]. In this paper we assume that there is no
fading. For the characterization of the impact of fading
on cooperative control, readers are referred to our pre-
vious work [10]. We take n, =2 in this paper, which
will result in

o%k,l,direcr = p”xk — X ”2 (6)

Therefore, we take the communication noise variance
as a distance-dependent function, as represented by (6).
Let « represent the cost of communication with respect
to the sensing cost. We will have o= %. Let D;(x) rep-

resent the estimation error variance of the i sensor
given that an event has occurred at position x. D; will
then represent the average of D; (x) over the probability
distribution of the event. We will have,

D= f v — 5P p(dx

¥

+3 Cllx = 2512 + oF, I p(x)dx.
J#i Jxell (D
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The overall estimation error variance of the network will
then be as follows: D = %E?ﬂﬁi. In this paper, we
are interested in finding sensing regions (I1; and IT; ;)
and sensor positions (x;s) that minimize D.

HI. CASE OF PERFECT
COMMUNICATION: p=0

If the communication among the nodes is perfect,
then optimum sensor configuration can be character-
ized using Voronoi cells and can be achieved utilizing
Lloyd algorithm. Here we briefly summarize the results.
Readers are referred to [4] for the original results in the
context of quantization and to [6] for the extension of
the algorithm to mobile sensor networks. We will have
the following for p=0:

=3 f <§ Ix — x; |2 p(x)dx,
Jj=
l<i<n (8)

In this case I1; ; =11 for 1 <i, j < n [4]. Given fixed
sensor locations, optimum II; will be as follows [4]:

Wi opt=={s € Z[lls — x; || < fbs — x|, ¥j £} (9

which means that the points that are closer to the i
sensor belong to II;. It can be seen from (9) that, for
the ideal communication case, the region of interest is
divided to non-overlapping sensing regions, where each
node is responsible for sensing the event if it is the
closest sensor to it. Given fixéd sensmg regions, i.e.
fixed I1;s,

oD .5 X p(s)ds
-a—-; = 0:>xi,opt = LEH‘
4

<i<n,

1
L‘EH[' P(S)ds - -
(10)

It can be seen that each sensor should position itself
at the center of the mass of its region. Lloyd algo-
rithm provides an iterative way of reaching the opti-
mum configuration [4]. At each time step, each sensor
only needs to know the positions of its neighbors. It
then finds its optimum sensing region using (9) and po-
sitions itself at the center of the mass of the region (10).
Following this procedure will guarantee convergence
to the globally optimum conﬁguratxon for log-concave

() 51

IV. Impact of a Non-Zero Communication
Cost: p#0

Taking the distance-dependent communication
cost into account can make the analysis different and
more challenging for the following two reasons:

1. There will be overlapping sensing regions, i.ec.
I1; N II; #9 for i # j. This means that, as p in-
creases, there will be some regions in which two
sensors rely on their own individual measurements,
as opposed to one sensing and communicating its
measurement to the other. We will introduce this
concept formally in the next part.

2. Consider the case where the j® sensor needs to re-
ceive the measurement of the i™ one. Tn general de-
pending on the positions of the two sensors, direct
transmission of the measurement may not be cost ef-
fective. Routing the information through other nodes
makes more sense especially as other nodes may
need to receive the same measurement. However, op-
timization of routing paths can be challenging as it
requires considerable coordination. In this paper, we
mainly consider the cost-effective case with routing.
Then, the minimization of the overall estimation er-
ror variance, when o # 0, also necessitates optimiza-
tion of the routing paths between any two nodes,
which makes the analysis more challenging. There-
fore, in this section, we start by looking at the prob-
lem in 1D to gain insight into the impact of commu-
nication noise and the overlapping sensing regions.
This is then followed by a 2D analysis. In the sub-
sequent sections, we also briefly explore cases with
direct transmission among the nodes.

4.1 Optimum sensing configuration for N =1 (1D
case)

In this part, we analyze the problem of finding
the optimum. sensing regions and sensor positions for
N =1. While a one-dimensional case may not represent
real scenarios, it will establish the necessary foundation
and provide insight for more general cases. Fig. 2 shows
a case where »n sensors are given the task of coopera-
tively estimating an event that will occur in R. Without
loss of generality, we label x;s from left to right, i.e.
X1<Xp<< -+ <<Xn. p{x) represents the probability den-
sity function of the event, where x ¢ R. We will have

I s {x|Roi-3 = x < Ry} 1 =i=<nm (11
where R;s represent the boundaries of the sensing re-
gions with R_y = Ry = —o0 and Ryp—1 =Ry =00
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Fig. 2. Cooperative sensing in [,

Remark 2. Note that Ry; > Ry Vi. However, de-
pending on the communication and observation costs,
there may exist an 7 such that Ra;..1<Ro;_3. Therefore,
Fig. 2 shows one possible ordering of the R;’s.

Overlapping sensing regions. Note that {x|Ry;_;
= x = Ry;} represent an overlapping sensing region. If
the event occurs there, both i™ and (7 + 1) sensors will
rely on their own measurements. This means that it is
more cost effective for both i and (7 D™ sensors to
rely on their own measurements as opposed to getting
it from the other one. Without taking the overlapping
sensing regions into account, it will not be possible
to solve the optimization problem in the presence of
communication noise,

Routing. Consider the scenario in which the (i +
m}™ sensor needs to send its observation to the /™ sen-
sor, where m > 1. We will have,

F=i+1

i+m 2
Kipm — %) = ( 3 (x— xj-l))

> 3 Gy - xpp)? (12)
= b ji—1
J=i+1

‘which means that the communication cost for direct
transmission is higher than the cost of routing the mea-
surement using the nodes in between. Therefore the
(i + m)® sensor should relay its measurement to the
i™ node through the nodes in between in order to mini-
mize the overall estimation error variance. There is even
more incentive for such relaying as the nodes in be-
tween, themselves, need to receive the observation of
the (i + m)® sensor. Therefore, when an event OCCUIS,
every node needs to only communicate with its neigh-
bors. We assume that the relaying nodes are merely
passing on the information without any local process-
ing.

Remark 3. Consider an event that occurs in the over-
lapping region that is observed by both the i and
(i + D™ sensors: x € I7; (111;4+1. Then based on the
definition of the overlapping sensing regions, the cost

of local sensing for the i node is less than the cost
of local sensing for the (i + 1) node plus the cost of
comimunication from node 7 + 1 to node {. Consider a
7™ sensor, where j #i or i + 1, that is closer to the i

node. Then the cost of communication from sensor i to

" sensor j is less than the cost from sensor i 4 1 to sensor

Jj- Therefore, based on the definition of the overlapping
sensing regions, the j sensor should rely on receiving
the measurement of that event from the i node in order
to minimize its overall cost. We will have the following
when node j is closer to node i,

Hjip =y — i (I
for j#i 1. (13)

4.1.1 BEstimation error variance

The average estimation error variance can be writ-
ten as follows:

Bi =Ei,center + _ﬁi,up + _ﬁi.down (14)
where
_ Ry
D; center = D;(x)p(x)dx
Rai.3
Ro; ”
= (x — x) plx)dx,
Roi_
_ 002 3 (15)
Diwp= D;(x)p(x)dzx,
Ro;
_ Ry—3
D down = f D, (x)p(x)dx.
—o0

Lemma 1. _I-)-,-,up and Ei,dom can be written recursively
as follows:

. Roiya ) '
Diup = Dittap + & f ozt ()
Ry; .

oo

+p(xip1 — %) | px)dx,
Ry

_ Ry
D; down = Dj-1,down+¢ (x—x;-1)*p(x)dx
Rai_5

Ryi_
+o(x; — xi-1)* f * 3p(x)arx. (16)

Proof. Since each sensor receives the measurements of
other nodes through communicating with its neighbors,
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we will have,

_ n=1 pRajys 5 J 2
Di,up = f(x - xj-i—l) + PZ (741 — xz) plx)dx

Jj=i Ry j 7=

n—1 Rojyz 2 j ’
s= 3 S = xj)” + pY (a1 — x2)° | p(x)dx

j=i+l sz =i

2

Ryqo 5 5
+/R E(x — xi41)° + p(xip — x:)° | p(0)dx

n—1 Ryjia J 5
= 3 [é‘(x —~ x4+ p D G — xp) } p{x)dx

J=i+1 J Ry z=i+1
Distup ‘ :
n—1 Raj4z ’
+ > Pl — )" plx)dx
J=i+1 J Ry

2i

Rojen
+ fR E(x — xi41)* + p(riey — xa-)ﬂ plx)dx

_ Rojya )
=Dty + £ f (o — %41 p(0)dx
Rg;

n—1 pRaij4s 5
+0). Kip1 — %) plx)dx
J=i Ry

_ Ryiqa ' )
= Dy up + 5./12 (x —xi+) " plx)dx
2 ’

: o0
+ot— ) [ peyd an
2
A recursive expression can be written in a similar man- We have En,up =El,down =0 from (15). Therefore, we
ner for D; down- O will have the following for the overall average estima-

) ) tion error variance:
Using Lemma 1, we will have

n—1

_ Rokqa N 1n
Diyp= 3, [5[ {(x — xp41) p(x)dx D==-%"D;
2 [ 18 _ —
+p(xk+1 - xk) % p(x)dx = ;l- Z (Di,ccnter + .D;',up + Di,down)
-2k - i=
+En,ups . Roi
_Ss [ (x — 5 p(x)dx
. i Rak—3 5 izt JRz 3
D down = Y [ﬁf (x — xg 1) p(x)dx
k=2 Rop—s fn—l n—1 Rog2 9 .
+= f (x — X1 p(x)dx
: 2 Rae—3 . Ry=1 k=i J Ry
o0 — 1) | p(x)dx} |
5o n—-In—1 9 @ -
— +=3 > (e —xk) f plx)dx
+D1.down. Coas ==t Ree
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En i Ry 3 2
+;Z >, f (x — xp—1)" p(x)dx

i=2k=2 JRop_5

no i Rog-3
+£Z > (Ge-xx-1)? f p(x)dx. (19)

i=2 k=2 —00

To minimize D, we follow a procedure similar fo the
Lloyd algorithm by iteratively fixing the sensor posi-
tions and optimizing the regions followed by fixing the
regions and optimizing the positions.

4.1.2 Optimum sensing regions {given sensor
positions)
Given fixed sensor locations, we will have the fol-
lowing for the optimum R;; and R, 1
oD
aRz J

=0 forl<j<n-1
= (Ryj — x;)% + (j — D(Ryj — x;)*
= aj 1 — x)% + j(Ry; ~ xj41)? (20)

which results in

xX;+Xxj41 Xjt1 — X5
R2j,opt= J 2J+ a J+2 J
l<j=<n-1L 1)

Sinﬂlarly,-ajfz%=0for15jgn—1=>

Xj+Xj+1 a2 el
2 2
i<j<mn-1. (22)

RZjﬁl,opt =

Note that %ﬁ—l— represents the optimum boundaries
for the ideal communication case. We can then see
that, in the non-ideal communication case, the optimum
boundaries are shifted to the left and right by mw
to form the overlapping sensing regions. This is shown
in Fig. 3,

4.1.3 Optimum sensor positions (given sensing
regions)

Similarly, given R;’s and after a long but straight
forward derivation, the optimum sensor positions will
be the solution to the following set of linear equations
for'l < j <n:

éD

a}* =0=Ajx;,0pt + ﬁjxjm_l,opt

TV X jrLopt =1 _ (23)

Pi4l %
o z
—
RITEN]
e | | L wig1 |
A

L& - o~ ]

Rz fwgy)/2

Fig. 3. Overlapping sensing regions.

with xp =xp41 =0,

Rzj Raj
b= pedsr b [ pwx
Ryj3 Ryj 2
Ryjq
+r—Jj) p(x)dx
Ryj-3
oo
+a(j — 1) px)dx
Ry
(o0
+of f px)dx
R

2§

Raj-3
=+ 1) f p)dx
-

Raji
+o(n — j)[ 1p(x)'dx,

oo
gi=—a(j—1) plxydx
Raj—a
(R2j-3
—on—j+1) plx)dx,
—00

Ry
n;= [ xp(x)dx
R

2j—3
Raj .
= [ wpeoas
Raj.a

Ryj-1
+n— 7 xp(x)dx (24)
Ryj—3

and y; =f;.4.

4.1.4 Global optimality

In the previous section, we derived optimum sens-
ing regions given sensor positions and optimum sensor
positions given sensing regions. We, however, did not
formally prove global optimality of the derived results,
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In general, proving that (19) has a unique global mini-
murm is considerably challenging. Without considering
communication effects, the global optimality of the so-
lution was a subject of extensive analysis in the con-
text of quantization and was finally proved to be glob-
ally optimal under certain conditions on p(.) function
in [19, 5]. With the addition of communication noises,
proving global optimality becomes considerably chal-
lenging and beyond the scope of this paper. Instead, we
prove that given sensing regions, D of (19) is a con-
vex function of sensor positions. We furthermore show
that, given sensor positions, sensing regions derived in
Section 4.1.2 minimize the cost function in (19),

First we show that given sensing regions, D
of (19) is a convex function of sensor positions. Let

Y1) = PG — y)2p@)dx and Yoy, y2) =c(y; —

2
y2)? for ¢ > 0. Then %xQﬁp(x)dx > 0 and

V23Y; =2¢ % [31 _11] V27Y; has eignevalues at 0 and

4c. Therefore, V2Y; is positive semidefinite: V2Y, =
0. Thus, Yy(y) and Y2(y1, y2) are convex functions,
Given fixed sensing regions, D of (19) is a sum of
functions of the form Y1 or 3. Since sum of convex
functions is convex [20], D will be a convex function
of the positions, given sensing regions.

Next, consider fixing sensor positions. It can be
shown, by computing the Hessian matrix, that D is not
necessarily a convex function of R;s. Therefore, to show
the optimality of the regions derived in Section 4.1.2,
we show that they minimize D. Consider (7) with fixed
sensor positions for N = 1:

Di= k2
[cel‘l,— Elx — xp) p(x)ldx

+3 [E(x — x;)?

J#E Jxell;

+a3, , 1p@da. (25)

For every position x, it can be part of II; or a IT; ;.
If it belongs to I1;, it will experience a cost of &(x —
x;)? p{x). Similarly, it will experience a cost of [£(x —
)c",-)2 + cr%i'j]p(x) if it belongs to II; ;. Therefore, it
should only belong to IT; if and only if £(x~x;)2 p(x) <
[E(x — xj)2 + ‘73; ]_]p(x) for ¥j #i. For instance, con-
sider j>i. Then x belongs to II; if and only if (x —
x)% < ming il (e — 5% + 0¥y e = -] Tt
can be easily confirmed that the derived Ry ; of Section
4.1.2 satisfies this condition. Similarly, it ‘can be veri-
fied that the derived R, j—1 of Section 4.1.2 minimizes
the overall cost.

4.1.5 Achieving the optimum configuration in a
distributed manner

In the previous section we derived optimum sensor
positions and sensing regions in the presence of non-
ideal commumication links. In this part, we are interested
in achieving the optimum solution, starting from any ini-
tial positions, in a distributed manner. By “distributed”
we are referring to the case in which each sensor only
communicates to its two neighbors. Then it makes an
independent decision on its coverage area and position.
At fixed sensor positions, the optimum coverage areas
are already in a distributed form, as can be seen from
(21) and (22). Each sensor only needs to know the po-
sitions of its two neighbors to find its optimum cover-
age area. Given the coverage areas, each sensor then
has to position itself at the optimum location, which is
the solution to the linear set of equations denoted by
(23). It is possible to solve these equations to find x; gp;.
However, the direct solution will require the ™ node
to know more than the locations of its two neighbors.
Due to the structure of this set of linear equations, how-
ever, it is possible to achieve the optimum solution in
a distributed manner iteratively. Let xi(k) represent the

position of the i* sensor at k™ iteration. Then the i
sensor will communicate with its neighbors to receive
their positions, xi(f)l and xi(?l. Based on the received

information, it will go to the following position:

wty_ Bw  Viw M
X = —,1_: i1 A_inﬂ + ;L_i = (26)
x®D — ax® 4 p, @27
where
X=[x1 x»» ... xn]T,
_ - _
0 —— 0 0
A
R
o By _n
A3 A3
-]
A1
1
B=|%
U
| An
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and X represents X at k™ iteration (note that x; will
receive noisy versions of x; | and x; 4, due to the com-
munication noise. We will consider the effect of such
noisy samples in the next part). '

Lemma 2. Matrix I, — A is strictly diagonally domi-
nant, where I, is an n x n identity matrix.

Proof. It can be seen from (24) that

Iﬁjl+i’yjf=06(j—1)f px)dx
Raj.a
+mjf px)dx
sz
Raj-3
+oln — j -+ 1}/ plx)dx

Ryj
-wm—ﬁf p(x)dx

forl<j<n. (28)
Therefore,
. .
A =181+ 17l +f plx)dx
Raj3
s RZ}
+i—1 plx)dx
’ Raja

Ryj1
o) [ peoax

Ryj.3
forl<j<n 29
resulting in g-}u'll:—_ll'gjkl for any 1 < j < n. Therefore

I, — A is strictly diagonally dominant. |

Based on Lemma 2, I, — A is invertible and
therefore the set of equations represemted by (23)
has a unique solution: Xopi= (I, — A)~'B, where
Xupt=[x1,opt A2,0pt .- xn,opt]T~

Lemma 3 (Gershgorin Disk Theorem [211). Let C
represent an r X n matrix with entries C(Z, j). Then
each of the non-zero eigenvalues of C is in at least
one of the following disks: {seR? : |s — C(@i, )| <

DI e(()))

Proof. See [2'1] for proof. ) ) . (|

Lemma 4. Limg_, 00 X® > X,

- Proof. Let 0 =x® _ Xopt and r represent the

spectral radius of matrix A. Then ¢%) = A%, Using

Lemma 2 and 3, we will have r < max{%}_llm}<l,
resulting in limg_c0 X — Xopt. [

It can be seen from (24) that the i™ sensor can
caleulate f5;, 4;, v; and #; locally, based on its own po-
sition and the communicated positions of its two neigh-
bors. Therefore, starting from any initial positions, the
sensors can achieve the optimum configuration in a dis-
tributed manner by following these steps:

1. Each node communicates its position to its neigh-
bors.

2. Using the communicated information, each node
identifies its optimum coverage area based on (21)
and (22).

3. The nodes will move to the optimum positions,
indicated by the solution of (23), by following
these sub-iterations:

3a) Each node communicates its position to its
neighbors.

3b} Each node updates its position based on (26).

3c) Proceed to 3a or terminate.

4. Proceed to 1 or terminate.,

Several criteria can be deployed for determining when to
stop the iterations. The i™ node can compare its position
and sensing region at k1 iteration with those of (k— 1)t
iteration as well as the ones calculated for (k + 1)t
iteration. If the difference of the values at time steps k
and k£ + 1 as well as those of time steps k and k — 1 are
below a certain predefined level, the node will stop.

4.1.6 Simwulation results

To see the performance of the proposed distributed
algorithm, Fig. 4 shows convergence of the positions of
7 sensors to the optimum configuration for ¢ =2. The
probability density function of the event of interest is
taken to be a zero-mean Gaussian distribution. with the
variance of 100 (o= 10) for this example. The nodes
are initiated at random locations. It can be seen that the
sensors converge to the optimum configuration after a
few iterations. To see the impact of the quality of the
communication links on the perfoermance, Fig. 5 shows
D, the overall estimation error variance, for =1, =2
and (.2, and for different number of sensors, It can be
seen that guality of the communication links can affect
the performance considerably.

4.1.7 Impact of communication noise on the
transmitted positions

In the previous section, we proposed a distributed
way of achieving the optitnum configuration. While we
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Fig. 4. Performance of the proposed distributed algorithm — conver-
gence of 7 sensors from random initial positions to the opti-
mum configuration in a distributed manner.
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Fig. 5. Impact of communication links on the overall estimation error
varience, £=1.

considered the impact of the communication noise on
the communicated observations, we did not include the
impact of communication noise on the communicated
posmons Let X; ;1 and X; ;41 represent the reception
of the i sensor when the i — 1 and i +1 sensors transmit
their positions respectively. Then (26) will change as
follows:

G+ Bi NG Vi ok 11
xt' ix i, 1)—1 j'! z(z)-}-l l (30)
. T i

25 ; T T T ; . .
: implementing equation {15)

20 """" —#— implementing equation {(17) p=0.001[]
: — -0— - Implementing equation (17) p=0.1

Sensor positions

2 4 6 8 10 12 14 16
lteration

Fig. 6. Effect of communication noise in the transmitted positions
on the convergence of the proposed algorithm, =3, at=2,
zero-mean Gaussian pdf with ¢=10.

where J;, 4, 9; and #; include the effect of communi-
cation noise on the transmitted positions. Similarly, the
i™ node uses £; ;1 and &; ;1 to determine its optimum
coverage region in every step.

To limit the amount of communication noise in the
received samples, each sensor monitors the quality of its
communication links from its neighbors (through mea-
suring the received signal-to-noise ratio for instance).
If the quality of a link is below a certain threshold, the
receiver ignores the communication (drops the packet).
For instance consider two nodes that are initially located
considerably far from each other and want to find the
optimum configuration. If the communication noise is
excessively high, each sensor ignores the transmission
of the other. This means that each sensor will act indi-
vidually by moving towards the center of the mass of
the distribution {optimum solution for # = 1}. The qual-
ity of the communication link improves as they move
towards the center of mass. At some point, the link qual-
ity becomes acceptable and the nodes proceed to use
the transmitted information.

In order to estimate the received SNR, the receiver
uses the inserted training bits [22]. The optimum thresh-
old for keeping the received data depends on the appli-
cation. For instance, for delay-sensitive applications the
optitnum threshold is lower as the receiver can not af-
ford to wait for near-perfect packets. In [23], minimum
required SNR is reported for more traditional applica-
tions such as voice and data. In [10], we have character-
ized the optimum threshold for control-over-wireless-
link applications as the one that provides a balance be-
tween information loss and communication noise. In
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the simulations of this paper, we take the minimum re-
quired SNR to be 3 dB. Fig. 6 shows the convergence
of the proposed distributed algorithm considering the
communication noise in the received positions. As can
be seen, even for a considerably high noise variance,
p=0.1, the algorithm performs considerably well.

4.2 Extension to R

In general, extending the analysis to R? is chal-
lenging due to the need for optimization over possible
routing paths. In this part, we focus on finding the op-
timum coverage regions in 2D.

42.1 Case of 2 sensors

Consider two sensors that are located at x; & [
for i € {1, 2}. Let II; represent the region of coverage
of the i sensor. Then the overall average estimation

error variance, D, can be written as follows:

5:0.5[ Fldx -+ [2 g1(x)dx

G} =1

+ ~/1:[2, Sa(x)dx +~[R2—H2 gz(x)dx] (31)

where

fix) =¢llx — x:2p(x) for iefl,2}
g1(x) =¢||x — x> p(x) + pllx — x21%p(x)

g2(x) =¢llx — x| p(x) + pllx1 — 22l p(x).
(32)

~ Lemma 5. Given the sensor positions, the optimum

sensing regions are as follows:
x € Iy opy iff ||x — x1 2
< % — x| + affx1 — x2?,
_ \ (33)
x € Mg op iff [|x — Xz
< e = x| + aflxg — 22012

Proof, Consider optimization of II;. From (31), II;
should be chosen such that the first two terms on the

right-hand side of (31) are minimized. This suggests that -

any x € R? should belong to I1; if and only if the cost
f1(x) is less than g, (x). Otherwise, it should belong to
— Il;. In Sther words, ’

x€lly op ff 1 (x) < g1(x)

*z

=0

k)

Fig. 7. Optimum sensing region for node 1 — case of 2 nodes.

= xelly op iff fIx — %142

< [lx — x21 + allx1 — xo 12 (34)

Optimization of I1; is done in a similar manner, O

Let Fy 3 represent the half-plane that is formed by
choosing the points that are closer to the first sensor
than the secand one. Let Fynig 1,2 represent the hali-
plane that is formed by shifting F1 3 towards the second
sensor, paraliel to the line that passes through x; and
X3, by g{|x_12—x_2|!_ This is shown in Fig. 7. It can be seen
that

P
(35)

2 2
h(x) =llx — x| + allx — X2l — |lx — x|

where h(x) =0 is the line marked in Fig. 7. From
Lemma 5, this means that 111 = Fnir 1,2 and I 2= RZ—
;. Optimum [Ty can be characterized geometrically
in a similar manner. Given fixed sensing regions, the
optimum sensor positions can be easily derived by
differentiating (31) with respect to x;s fori e {1, 2}.

4.2.2 Case of 3 sensors

For the case of three nodes, we can find the op-
timum regions in the same manner, However, we have
to consider possible routing options. Consider the first
node. The first node can get the information of the
event that is sensed by the third sensor either by direct
communication or by routing through the second node
depending on the relative positions of the nodes. Let
VAR omm, i, j,ronte; T€present the communication noise
variance for the transmission from the 7™ node to the
i" one through the kth possible routing path. Then the

-© 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society



Y. Mostofi and R. M. Murray: Communication and Sensing Trade-Offs in Cooperative Mobile Networks 167

average estimation error variance of the i sensor can
be written as follows:

D= [ Ellx — x: 2 p()dx
I1;

P>

i=1,j# J1Lj

[éllx — 5

+VARc0mm,i,j] p(x)dx foric {1, 2, 3},
(36)

where VAR comm,;, ; 18 the minimum of VAR comm, 7, j,routes
over all the routing paths between the two nodes:
VARcomm,i, i 1'1‘-il'lrcn.1te;c VARcomm,i, Jj.routey -

Lemma 6. Let

S1={xeR?||x —x1]* < |lx — x|

o X min(||x—x3||1*+l|x3—x1 |2, %2 — %117}
(37)

and

So={x ¢ B |lx — x1|* < fx — x3i?
+axmin(||xz—xa |2+ lx2—x1 12, Ixa—x11%).
(38)
Then
ITy,0pe= 51 Sz ' (39)

Proof. It can be seen from (36) that to minimize Dy, x
should belong to Il; only if the cost associated with it
is less than those associated with ITy 5 and IIy 3. Then
we will have the following using (36)

x € M ope iff Eflx — 212 p(x)
< [&llx — x2))* + VARcomm,1,2]p(x) and
&l — n P px) < [Eilx — x3)? |
+VARcomm,1,31p(x). | 40

Noting that VARcomm 1,2=p x min(|lxz — x3)? +
hxa — xll? 132 — %1% and VAReomm,13=¢ X
min{|lx3 — x2}f* + llxz — x1{f2, Jlxz — 1 %) results in
Hi,ope =511 %. o 0

Similar expressions can be written for Il op and
113, opt. It can be seen that

1_Ii,opt C n Fshi.ft,i,j ie {L 2, 3} (41)
J#

where Fypir ; ; is as defined for the case of two nodes.
In other words, depending on the positions of the 3 sen-
sors, IT; may or may not be equal to [ i Finisy,i, ;- For
instance, if [lxa — 2]l + a2 — x| < Jlws — x|,
then S, C Fisi 1,3- Fig. 8 shows an example of such
a case. In this case, the half-plane F; is shifted by
dip= ocﬁﬂgm to form 81 = Fymir, 1,2 since it is more
cost-effective for node 2 to send its measurement di-
rectly to node 1. However, for node 3, it is more cost-
effective to route its information through node 2 to node
1 given the positions of Fig. 8. Therefore, the half-plane

F1,3 is shifted by dy 3 = Ocuxa_xgl"lfgﬂ;ﬁr _xl I 5 O.Cuxg;m "
to form 82 C Fyiry, 1,3 The bold solid lines indicate the
boundaries of area IT;.

Optimuom IT; ;. Next, we derive an expression for
the optinmum II; ; for j € {2,3}. We will have the
following from (36),

Yx & [RZ —TIIi,x€ Hl,Z,opt iff

&llx = x2]|* + VAR comm, 1,2
< Ellx — 23 + VARcomm, 13- (42)

Then IIj 3,0pt=R% ~ Iy — TIj 2 ope- Let Z3,3 repre-
sent the half-plane that is caused by shifting F» 3 by
%—M towards x3 (if negative, the shift
would be towards x2). Then from (42}, we will have
Ty 2,00 =Z2,3 r]'(IR2 — IIy,0pt). Similar expressions
can be derived for the optimum I1; ; for i # 1.

4.2.3 Extension to n sensors in [

Lemma 7. Given the sensor positions, the optimum
sensing regions for the case of n sensors will be as fol-
lows,

l<i<n (43)

Sij= {x e R¥fix — %1% < flx — x;01?

1

*E

VARcomm,i i } 7 (44)
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Fig. 8. Optimum sensing region for node 1—the boundaries of the
region are marked with bold solid Lines.

with VARcomm,,; Tepresenting the minimum  of
VAR comm,i, j,route, OVer all the possible routing paths
from node j to node i, as defined for (36).

Proof. By extending the analysis of the previous part,
we will have

7. — 2
D; /H =P

i .
+ [Elx — x50
j=1j5# JI;
+VARcomm,i,j]p(x)dx
forie{l,2,...,n}. (45)

Then optimum I1;’s, given the positions of the nodes,
can be characterized as follows:

x € I gpe ifF &l x — x;1* p(x)

< [€lix - x5]* + VAR comm,i, ;1 p(x)
Vi #i, (46)
which results in (43). , _ O

It can be seen that §; ; C Fyiry;,; and therefore
I1; C[; Fenis,s,j- This is due to the possible existence
of indirect less costly routing paths between every two
nodes. ‘ ‘

As we saw in the previous sections, having
non-zero communication costs, forced each sensor to
enlarge its own observation region, which resulted in
overlapping sensing regions. As the number of sensors

increases in [R?, the number of possible routing paths
increases. This can reduce the sensing burden of each
sensor as it can rely, slightly more, on communica-
tion with others. It should be noted, however, that the
sensing regions are still overlapping and can be con-
siderably larger than the perfect communication case.

4.3 Direct transmission

The analysis of the previous sections can be ap-
plied to the case where the communication among every
two nodes is a direct one. In this part, we briefly dis-
cuss this case. For the 1D case, it can be easily shown
that this does not affect the optiranm R;’s. To see this,
note that we will have the following D; for this case:

D; direct, 1D

Ry;
= f E(x — %) p(x)dx
R

23

n—1 pRajiz 5
+3 [E(x —xj)

J=i 4Ry

+p(x; — %) 1p(x)dx

‘ i Razj3 9
e [Ex — x;)
j=2 JRy5
+p(x; — %Y 1p(x)dx. (47)

Then it can be easily confirmed that we will have the
same optimum R;’s. For the 2D case, we will have,

i1
D direct,2D = 2
j=1 Hj,j

[Ellx — x;11?

+pllx; — x:]1*1p(x)dx
forie{l,2,...,n} (48)

Then

2
I

X & Hi,direct,opt iff Eflx — x;||“p{x)

< [Elx - %1%+ pllx; — xlp(x) Vi (49)

which means that

IT; direct,opt = [ Ftitt,i, ;- (50)
J#

By comparing this with Lemma 7, it can be seen that
the optimum regions are different from the indirect
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transmission case, i.e. the optimum regions are poten-
tially larger to account for the higher cost of commu-
nication.

V. SUMMARY AND FUTURE WORK

In this paper we considered distributed sensing and
estimation under communication constraints in mobile
coopetative networks, We derived expressions for opti-
mum sensing regions and sensor positions when consid-
ering communication noise. The results indicated that
the optimum configuration consists of overlapping sens-
ing regions. We also proposed a distributed algorithm
to achieve the optimum cenfiguration from any initial
positions. We assumed communication and observation
noise variances that are proportional to the square of the
distance. It is tmportant to consider other functions that
embrace the impact of possible obstacles in the environ-
ment. Furthermore, it is also important to consider sens-
ing and communication models that account for limited
sensing and communication ranges of the nodes. Cover-
age optimization with limited sensing range but perfect
communication has been addressed [24]. Investigating
the impact of communication noise in such scenarios
is another possible extension of this work. We are also
working on extending the results to multiple targets. We
furthermore did not consider target mobility. For mo-
bile targets, it becomes important to find optimum tra-
jectories and distributed ways of achieving them con-
sidering non-ideal communication links. Finally, once
the behavior of the network is fully characterized in 2D,
the analysis will be directly applicable to 3D where we
expect to see similar communication and sensing trade-
offs. ‘
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