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Co-Optimization of Motion, Communication, and
Sensing in Real Wireless Channel Environments
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Abstract—We consider the problem where a robot nav-
igates from a start position to a destination and needs
to sense some sites along the way. The robot collects
data when sensing each site and needs to transmit all
collected data to a remote station by the end of its trip,
as it moves along its path, under time/energy constraints,
and while operating in real wireless fading environments.
Our goal is to minimize the robot’s total motion and com-
munication energy costs by co-optimizing its path, data
transmission along the path, and sensing decisions, un-
der given constraints and while considering the stochastic
wireless channel. In this paper, we show how to solve this
co-optimization problem efficiently and with performance
guarantees. More specifically, we formulate a specially-
designed Markov Decision Process (MDP) and utilize Monte
Carlo Tree Search (MCTS) to efficiently and optimally solve
it. While the co-dependence of communication, sensing,
and motion decisions makes this joint optimization chal-
lenging, we show that by considering the transmission
optimization in the terminal reward and motion actions in
the state transitions, we can iteratively optimize the sens-
ing/motion and the communication parts in different stages
of MCTS, in a way that allows us to equivalently solve the
original co-optimization problem efficiently. We mathemati-
cally prove the convergence of our approach, characterize
its convergence speed, and derive key properties of the
optimum solution. We extensively evaluate our approach in
realistic wireless environments where the channel experi-
ences path loss, shadowing, and multi-path fading and is
unknown to the robot.

Index Terms—Communication and sensing, co-optimiza-
tion of motion, optimization, robotics, sensor networks.

I. INTRODUCTION

IN A ROBOTIC network, robots with limited local sensing,
communication, and actuation capabilities interact with their

environment and each other to perform given tasks [1]–[3].
Such networks can tremendously impact various areas, such as
mobile service provisioning, search and rescue, surveillance, and
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extending cellular network coverage, among other possibilities.
In order to properly design such networked robotic systems, it is
important to jointly consider and optimize the robot’s sensing,
motion, and communications.

Traditionally, robotics and communications were studied sep-
arately in these systems. But in more recent years, researchers
have started to look into communication-aware robotics, where
realistic wireless communication models are explicitly taken
into account for various robotic tasks, such as data relaying [4]–
[7], cooperative transmission [8]–[10], robot-assisted wireless
coverage [11]–[13], and data gathering [14]–[16]. These works,
however, are mainly focused on the co-optimization of motion
and communication, without considering the sensing aspect.
Some other works, on the other hand, focus on the synergy
between sensing and motion, without taking communications
into account [17]–[22].

More related to this article are studies on the co-optimization
of motion, communication, and sensing for data transmission
from a field-sensing robot to a remote station in realistic
channel environments and under resource constraints. Due to
the complex spatial dynamics of a wireless channel and the
challenges imposed by sensing and path planning, most existing
works consider an ideal and known channel environment, and
mainly focus on the sensing and motion aspects [23]–[25].
A small number of recent studies (including ours) attempt to
consider realistic communication issues in this context but either
proposed a heuristic approach with no performance guarantees
for the generated trajectory and transmission policy [26], or
mainly considered a predefined path to focus on a subset of
sensing and communication issues [27].

In this article, we consider a general robotic task scenario that
involves planning the robot’s entire path, its data transmission
along the path in a realistic and previously unknown channel
environment, as well as its sensing of the field. More specifically,
as illustrated in Fig. 1, the robot navigates from a start position
to a given final destination, and needs to sense a number of
sites in the field. For each site, the robot must move within a
certain distance in order to sense it. When visiting each site,
the robot collects new sensing data. The robot is required to
transmit all its collected data (and possibly some initial data)
to the remote station by the end of the trip, and while traversing
the field. Its transmission energy cost is subject to a spatially
varying and priorly unknown wireless communication channel
that experiences fading. This captures several real-world robotic
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Fig. 1. (Left) Example of the robotic task scenario considered in this article. (Right) High-level description of the co-optimization problem. We are
interested in solving this challenging problem efficiently and with performance guarantees.

applications. For instance, a field robot may be tasked with
inspecting sites of interest in an environmental monitoring or
a search and rescue mission, and needs to transmit the sensing
data back to a remote center during the operation. In another
example, a robot can be used to collect data from static sensors
(with limited communication ranges) that are spread out over a
field and it needs to communicate back the collected data as it
traverses the area.

In general, this is a considerably challenging problem due to
the coupling of sensing, communication, and motion decisions,
the stochastic nature of real wireless channels, as well as the
limited time/energy budget for the operation. In this article,
we are interested in solving this problem efficiently and with
performance guarantees. More specifically, we need to find the
co-optimum motion, communication, and sensing decisions
such that the total motion and communication energy cost is
minimized and other system constraints are satisfied, while
operating in realistic fading channel environments that are
previously unknown to the robot. In order to tackle this consid-
erably complex and combinatorial co-optimization problem, we
propose a novel approach utilizing the Markov decision process
(MDP) and Monte Carlo tree search (MCTS), and show how we
can solve this problem efficiently and with theoretical conver-
gence guarantees. MCTS, initially introduced for game-playing
AI [28], is a solution approach for sequential decision-making
problems, and has been utilized in other fields since its introduc-
tion. In recent years, it has also been utilized for some robotic
applications, for instance, for viewpoint planning [20], legged
locomotion [29], and pose estimation [30]. However, MCTS has
not been used in the context of communication-aware robotics.
But a direct formulation of MDP and applying MCTS will not
work for our co-optimization problem of interest due to the
coupled sensing-motion-communication action space and the
associated complex constraints. In this article, we thus show how
to properly translate our problem to a specially designed MDP
and exploit MCTS to solve it efficiently and with performance
guarantees. The following are the main contributions of this
article.

1) We consider a complex robotic co-optimization prob-
lem, which involves sensing, data transmission, and path
planning, in a realistic, priorly unknown wireless fading
channel environment. Fig. 1 (right) shows a high-level
description of the problem, which we are interested in
solving efficiently and with performance guarantees. We
propose a novel approach to solve this co-optimization

problem by formulating a specially designed MDP and
utilizing MCTS to efficiently and optimally solve it. As
we shall see, by considering the transmission optimiza-
tion in the MDP terminal reward evaluation and the
motion actions in the state transitions, we can reduce
the complexity of this problem and iteratively optimize
the sensing/-motion and communication parts in different
stages of MCTS, which enables us to efficiently solve the
original challenging co-optimization problem. In order
to address the stochastic and priorly unknown nature of
the channel, we use a probabilistic channel prediction
framework and show how it can be incorporated in our
proposed MCTS-based approach.

2) We mathematically characterize an upper bound on the
probability that our proposed approach does not result
in the optimum decision. We show that our algorithm
converges to the optimum as the number of iterations
increases and provides a bound on the convergence speed.
We further mathematically characterize the properties of
the optimum solution.

3) Using a realistic 2-D wireless channel environment, we
thoroughly validate the performance of our proposed
approach. We further compare our approach with a bench-
mark method that separately optimizes motion and com-
munication, and show that our approach significantly
outperforms it. For instance, based on an evaluation of
50 problem instances, our solution uses 55% less total
energy on average. Finally, we compare it with the most
related state-of-the-art work in this area.

The rest of this article is organized as follows. Section II
provides the preliminaries. In Section III, we formulate the
co-optimization problem and in Section IV, we discuss how to
transform the co-optimization into an MDP and utilize MCTS
to solve it. In Section V, we prove the convergence and show the
theoretical properties of our proposed approach. In Section VI,
we validate our approach in a realistic 2-D wireless channel
environment. Finally, Section VII concludes this article.

II. PRELIMINARIES

In this section, we summarize the communication and motion
energy models to be used in this article. We further summa-
rize how wireless channels can be predicted in real channel
environments. We also provide an overview of MDP [31] and
MCTS [32].
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A. Channel Prediction and Communication Energy
Model

Consider the case where the robot adopts the commonly
used M-ary quadrature amplitude modulation (MQAM) for
transmission [33].1 As shown in [33], the required trans-
mission power can be well approximated by ΓT = (2r −
1)ln(5pBER)/(−1.5γ), where r is the spectral efficiency (i.e.,
transmission rate divided by bandwidth, in b/s/Hz), pBER is the
required bit error rate (BER), and γ is the received channel-to-
noise ratio (CNR). During operation, the robot needs to assess its
transmission power along any given unvisited path for planning
purposes. This requires it to predict the channel at unvisited
locations over the space, based on a few channel samples.
Due to the real-world wireless propagation effects of path loss,
shadowing, and multipath fading, the CNR is best modeled as a
spatial stochastic process. Then, given a small number of prior
channel samples in the same environment and based on [34],
the CNR (in dB) at an unvisited location q, ΥdB(q), can be best
modeled by a Gaussian random variable, with its expectation
and variance given by

E[ΥdB(q)] = Hq θ̂ +ΨT (q)Φ−1(Y −HQθ̂)

Σ(q) = α̂2 + σ̂2 −ΨT (q)Φ−1Ψ(q)

(1)

where Y = [y1, . . ., ym]T are the m priorly collected CNR
measurements (in dB); Q = [q1, . . ., qm] are the measurement
locations; θ̂, α̂, β̂, and σ̂ are the estimated channel parameters;
Hq = [1 − 10log10(‖q − qb‖)], HQ = [HT

q1
, . . ., HT

qm
]T ;

Ψ(q) = [α̂2exp(−‖q − q1‖/β̂), . . ., α̂2exp(−‖q − qm‖/β̂)]T ;
and Φ = Ω+ σ̂2Im with [Ω]i,j = α̂2exp(−‖qi −
qj‖/β̂) ∀i, j ∈ {1, . . ., m} and Im denoting the identity
matrix.

This formulation allows the robot to predict the channel
quality at any unvisited locations, based on a small number of
prior channel measurements in the same environment.2 See [34]
for more details and the performance of this channel predictor
in different real environments.

Based on this channel prediction, the expected required
transmission power at location q is given by E[ΓT (q)] =
(2r − 1)E[1/Υ(q)]/Z, where Υ(q) is the predicted CNR at
location q, E[1/Υ(q)] can be evaluated given the log-normal dis-
tribution ofΥ(q) (or Gaussian in dB), andZ = −1.5/ln(5pBER).
Given a transmission time duration, the robot can then predict the
communication energy cost for transmitting from any unvisited
location to the remote station.

1MQAM represents a broad family of standard digital modulation methods,
including the one used in 802.11 Wi-Fi standards.

2It should be noted that the robot needs to predict the uplink channel for the
purpose of its sensing-path-communication co-optimization, as we shall see.
Thus, the small number of prior channel measurements can be collected by the
remote station and transmitted back to the robot which will be in charge of
channel prediction over the space. Alternatively, if time division duplex is used,
the robot can directly use a small number of downlink channel samples in order
to predict the channel elsewhere.

B. Motion Energy Model

Based on experimental studies, a mobile robot’s motion power
can be modeled by a linear function of its speed for a number
of platforms [35]: ΓM = κ1 u+ κ2 when 0 < u ≤ umax, and
ΓM = 0 when u = 0, where u and umax are the robot’s speed
and maximum speed, respectively, and κ1 and κ2 are positive
constants determined by the robot’s motor, mechanical trans-
mission system, and external load. Suppose that the robot travels
at a constant speed uconst. The motion energy cost for a travel
distance of l is then given by Em = (κ1 + κ2/uconst)l.

C. Markov Decision Process

An MDP is a mathematical framework for modeling a
discrete-time sequential decision-making process. Suppose that
a decision-making agent is in some state. The goal of MDP is to
find the optimum action to take in this state. An MDP is defined
by four components as follows.

1) State: There is a finite set of states S, where each s ∈ S
represents a state that the decision-making agent can be
in. When the agent reaches a terminal state, it finishes the
decision-making process.

2) Action: There is a finite set of actions A, where each
a ∈ A is a feasible action that the agent can take. The
action set can be state dependent, i.e., for each state s, the
set of feasible actions As is different.

3) Transition: ζ(s, a, s′) is the probability that by taking
action a in state s, the agent moves to state s′. The MDP
is deterministic if there is no randomness in the state
transitions.

4) Reward: w(s, a, s′) is the immediate reward that the
agent receives after transitioning from s to s′, due to action
a. There can be a terminal rewardwT (sT )when the agent
reaches a terminal state sT .

In this article, we are interested in finite-horizon, determin-
istic, undiscounted MDPs, where the core problem is to find
a decision policy π : S → A that maximizes the cumulative
reward of a state s, which is given by

Xs =

T−1∑
t=ts

w(st, π(st), st+1) + wT (sT ) (2)

where ts is the time instance when agent is in state s and T is
the time step that the agent reaches a terminal state.

Given an initial state s1, the optimization for deriving the
optimum decision policy can be written as follows:

max.
π(s)

T−1∑
t=1

w(st, π(st), st+1) + wT (sT ) (3)

where we maximize the cumulative reward of s1, over the space
of all possible decision policies.

D. Monte Carlo Tree Search

MCTS is a popular algorithm that can be used to efficiently
solve finite-horizon, large-scale MDPs. In this overview, we
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assume that the MDP is finite-horizon, deterministic, and undis-
counted, which is the most relevant form for the problem-of-
interest in this article.

As discussed in Section II-C, the goal of the MDP is to find a
policy π(s) that maximizes the cumulative reward. Denote the
optimum cumulative reward of s as X�

s . The optimum policy
can then be recursively written as

π�(s) = argmax
a∈As

w(s, a, s′)+X�
s′ . (4)

In theory, traditional methods like value/policy iteration can
be used to find the optimum policy by solving for the optimum
actions for all states. However, they quickly become intractable
for MDPs with a large state space. On the other hand, MCTS is
an online algorithm that computes the optimum action for the
current state, rather than for all states. Specifically, it constructs
a tree to trace the future states that could be reached from
the current state and biases the computation (i.e., Monte Carlo
simulations) toward states that are more likely to produce large
cumulative rewards. Meanwhile, it also methodically explores
states with fewer Monte Carlo samples. In this way, MCTS not
only continuously refines the cumulative reward estimates of
the promising states, but reduces the chance of missing a good
state due to insufficient Monte Carlo sampling. By adopting a
proper sampling rule [e.g., using the upper confidence bound
(UCB) of (5)] that balances such exploitation and exploration,
the expectation of the cumulative reward estimate of a state
converges to the optimum efficiently and the probability of
failing to choose the optimum action also converges to zero
rapidly. These properties make it computationally favorable to
apply MCTS to large MDPs for online decision-making.

Next, we briefly explain how MCTS works.3 It starts with
a tree containing only the root node τ1 that represents the
initial state s1. It then iteratively grows the tree, where each
node uniquely represents one of the MDP states and each edge
represents a state transition.4 For each state s included in the
tree, MCTS maintains a visit count, ns, and an estimate of
the optimum cumulative reward after ns visits, X̄s,ns

.5 In each
MCTS iteration, there are four main stages as follows:

1) Selection: In each iteration, MCTS performs a tree traver-
sal from the root node τ1. During the traversal, at each
node (i.e., a state of the MDP), MCTS selects an action
according to some selection policy, which leads to the next
node. It continues this traversal until the selected action
leads to a state snext that does not have a corresponding
node in the current tree. Denote the last traversed node in
the current tree as τlast.

2) Expansion: We add a new node τnext representing snext to
the tree, as a child node of τlast.

3When describing the MCTS process, we use “node” to refer to a tree node
in the search tree and use “state” for a state of the corresponding MDP. We refer
the readers to [32] for a comprehensive survey of MCTS.

4We assume a one-to-one mapping from tree nodes to states. This is true in
our problem, since we will use the robot’s path history as the state. It should,
however, be noted that not all states of the MDP are represented in the tree.

5X̄s,ns is set to 0 initially when there is no visit to state s yet (i.e., ns = 0).

3) Simulation: Starting from snext, random feasible actions
are taken in the MDP until this process reaches a terminal
state.

4) Back up: Upon reaching a terminal state, we can cal-
culate the cumulative reward for any state s involved
in the tree traversal of the current iteration: Xs,ns+1 =∑T−1

t=ts
w(st, at, st+1) + wT (sT ), where ts is the time

step when this traversal is in state s, T is the time
when it reaches the terminal state, and ns records the
number of previous iterations where s was part of
the traversal. Then, for each s in the current traversal,
we update the estimate of the optimum cumulative reward
as follows: X̄s,ns+1 = (nsX̄s,ns

+Xs,ns+1)/(ns + 1),
where X̄s,ns

is the average value of the cumulative re-
wards of s seen in the past ns iterations where s was
part of the traversal and X̄s,ns+1 is the updated average
cumulative reward. We also increment the visit count ns

by 1.
These four steps are repeated until the number of MCTS

iterations reach a predefined computation budget. The agent
then takes an action according to this decision policy: aπ=
argmaxa∈As1

w(s1, a, s
′)+ X̄s,′ ns′ , and transitions to the next

state s2. In order to determine the action to take in s2, the agent
performs a new batch of MCTS iterations, with s2 being the new
initial state. This online planning process ends when the agent
arrives at a terminal state.

In order to ensure efficient convergence, it is necessary to
choose a proper selection policy while traversing down the tree in
the first MCTS step. A common choice is based on the UCB [28]

a† = argmax
a∈As

w(s, a, s′) + X̄s,′ ns′ +
√

2ln(ns)/ns′ (5)

where action a† leads the traversal to the next tree level.6

It can be seen from (5) that the first two terms bias MCTS to
select an action that is estimated to produce a large cumulative
reward, while the third term allows MCTS to explore an action
that leads to a less-visited state. As we shall see, using such a
tree traversal strategy will result in an efficient convergence for
our co-optimization problem.

III. CO-OPTIMIZATION PROBLEM FORMULATION

Consider the scenario where a robot travels from a start
position ps to a given destination pf in a wireless channel
environment, as shown in Fig. 1. During the trip, the robot needs
to sense V sites in the field. In order to sense a site j, the robot
must be within a sensing rangeΔj of it, in order to collectDj bits
of sensing data from this site. It also carriesD0 bits of initial data
when starting the operation. The robot is required to transmit all
of the collected and initial data to the remote station by the end of
the trip, while minimizing its total motion and communication
energy usage.

6Note that the third term in (5) can be infinity when ns′ = 0. When there is
only one such s′, the policy chooses the action that leads to this s′. When there
are multiple such next states, then it is common to simply choose one of the
corresponding actions randomly. When ns = 1 and ns′ = 0, the third term is
also taken as infinity.
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In the optimization formulation, we consider a discretized
2-D workspace consisting of regular grids. The robot’s path is
defined by a sequence of waypoints, each being the center of its
corresponding grid. Two consecutive waypoints belong to two
neighboring grid locations in the environment and determine
a step in the path. Let P = [p1, .., pK ] denote a path from
the start position p1 = ps to the final position pK = pf . Let
p̃1, . . ., p̃V denote the locations of the V sites to be sensed.7

The robot’s path is subject to a total operation time budget:
T (P ) ≤ T , where T (P ) is the total time needed to traverse
the path P and T is the time budget. Let R = [r1, . . ., rK ]
denote the respective spectral efficiencies to be used at the
corresponding waypoints [p1, . . ., pK ].8 The communication
bandwidth B is constant during the operation and we denote
D̃j = Dj/B ∀j ∈ {0, . . ., V }. The transmission time duration
for each waypoint is tc. The robot uses a constant speed uconst

when moving. The motion energy cost of traversing the path
P is Em(P ) and the communication energy cost is denoted
by Ec(P, R; Υ), where Υ is the predicted channel over the
space and Υ(q) is the predicted channel at location q, based
on the channel prediction framework of Section II-A. The co-
optimization problem can then be formulated as follows:

min.
P,R

Em(P ) + Ec(P, R; Υ)

s.t. (1) mini∈{1, ...,K}‖pi − p̃j‖ ≤ Δj ∀j ∈ {1, . . ., V }
(2) T (P ) ≤ T

(3) p1 = ps, pK = pf

(4)

K∑
i=1

ritc =

V∑
j=0

D̃j

(5)

kj∑
i=1

ritc ≤
j−1∑
z=0

D̃z ∀j ∈ {1, . . ., V }

(6) 0 ≤ ri ≤ rmax ∀i ∈ {1, . . ., K}
(6)

where the objective function is the total motion and communi-
cation energy cost, with the path and the spectral efficiencies
to be optimized. Constraints (1)–(3) are related to the motion.
Constraint (1) ensures that the robot moves within the sensing
range for each site at some point in the path. Constraint (2)
ensures that the total travel time does not exceed the time
budget. Constraint (3) ensures that the path is from the start
position to the destination. The remaining constraints are related
to the transmission. Constraint (4) enforces the robot to transmit
all the data by the end of the trip. Constraint (5) ensures a
valid transmission plan, i.e., the data are transmitted only af-
ter they have been collected. In this constraint, kj = min{i ∈

7The order of visit for the sites is dictated by their order on the shortest path
from the start position to the destination through these sites. This is the optimum
order as long as no two sites are too close to each other.

8It should be noted that we do not consider quantization of the rates in our
formulation. Our work can be easily extended to include this, by using the
corresponding literature in the area of communications.

{1, . . ., K} | ‖pi − p̃j‖ ≤ Δj} ∀j ∈ {1, . . ., V }, which is the
index of the first waypoint within the sensing range for site j.
In other words, Dj are available after the robot has moved to
pkj

. Constraint (6) provides the feasible range for the spectral
efficiencies. It should be noted that the robot minimizes the
expectation of its communication energy cost in the objective
since the predicted channel over the space is a multivariate
random variable.

Due to the combinatorial nature of path planning and the
coupling between motion and communication, problem (6) is a
nonlinear, nonconvex, and combinatorial optimization problem,
which is challenging to solve. Let us consider a simplified
version first, where the robot’s pathP = [p1, . . ., pK ] is already
given and we only need to optimize the spectral efficiencies.
Based on the channel prediction model of Section II-A, this
subproblem can be written as follows:

min.
R

K∑
i=1

(2ri − 1)

Z
E

[
1

Υ(pi)

]
· tc

s.t. (1)

K∑
i=1

ritc =

V∑
j=0

D̃j

(2)

kj∑
i=1

ritc ≤
j−1∑
z=0

D̃z ∀j ∈ {1, . . ., V }

(3) 0 ≤ ri ≤ rmax ∀i ∈ {1, . . ., K}
(7)

where the objective function is the communication energy cost
and the communication-related constraints are the same as in
problem (6). Since the entire path P is given, E[1/Υ(pi)] can
be evaluated based on the predicted channel at location pi. It can
be seen that this is a convex optimization problem which can be
solved very efficiently, as the objective function is convex and
the constraints are linear [36].

This is an important observation that motivates our proposed
approach to solve the co-optimization problem. If we can design
an algorithm where the sensing/motion part and the transmission
part are computed iteratively in different steps, then we can
potentially make the problem tractable, as the decision space is
considerably simpler when we only consider sensing/motion and
the convex transmission subproblem can be solved efficiently.
In the next section, we show how we can indeed achieve this
by properly formulating an MDP for the co-optimization prob-
lem (6) and utilizing MCTS to solve it.

IV. SOLVING THE CO-OPTIMIZATION PROBLEM VIA

MONTE CARLO TREE SEARCH

The co-optimization problem (6) can be seen as a sequential
decision-making problem, where at each step, the robot decides
on a motion action and a transmission action such that its
total energy cost is minimized. (MDP, thus, provides a suitable
framework for modeling this problem. In order to formulate
a proper MDP (i.e., satisfying the Markov property), a state
should not only include the robot’s current waypoint, but also
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its past waypoints. This creates an exponentially large state
space, making it infeasible to use traditional methods such as
value/policy iteration. By utilizing MCT, on the other hand,
we can efficiently handle the large state space. However, the
coupled sensing-motion-transmission action space still presents
a challenge since we cannot determine the optimum spectral
efficiencies when the path is not fully determined, given the
complex communication constraints of problem (6).

In order to resolve this issue, we propose a specially designed
MDP where we do not need to consider the transmission actions
in the state transitions. More specifically, we only consider
the motion actions in the state transitions, while the spectral
efficiencies are optimized when evaluating the terminal reward
in a terminal state. This allows us to iteratively optimize over
the sensing-motion and the communication parts in two different
stages of our proposed MCTS, and get around the challenge of
determining the optimal spectral efficiencies without a complete
path. Note that while the sensing-motion and the communication
parts are handled in two different stages, they are still jointly
optimized within the same MDP framework. As we shall see
in this section, we can theoretically establish the equivalence
between this MDP and the original co-optimization problem (6).
We next describe in details how we formulate this MDP.

A. Co-optimization as a Markov Decision Process

The optimization problem (6) can be written as a determinis-
tic, finite-horizon, and undiscounted MDP as follows.

State: LetP ′ = [p1, . . ., pk] denote a partial path, wherep1 =
ps and pk may not have reached pf . P ′ is the first part of a
complete path from ps to pf . For instance, a partial path of
[p1, p2, p3] indicates that the robot starts at p1 = ps and will
move to p2 and p3 sequentially, with the remaining path not yet
determined. A partial pathP ′ then represents a state in this MDP.
A state is a terminal state if the corresponding partial path has
reached the destination, i.e., pk = pf .

Action: Given a state in this MDP with P ′ = [p1, . . ., pk], an
action is represented by a next location that the robot can move
to. The feasible set of actions is the set of those neighboring
locations of pk, after moving to which the robot can still reach
the destination while satisfying the motion constraints on the
entire path, i.e., constraints (1)–(3) of problem (6).

Transition: Given a feasible action, the next state is obtained
by appending this location to the current partial path. For in-
stance, given a current state of [p1] and an action of p2, the next
state is given by [p1, p2]. There is no randomness in moving
from one location to another.

Reward: We take the reward to be zero for any state transition.
The terminal reward is then taken as: wT (P ) = −(Em(P )+
minR∈ΩR

Ec(P, R; Υ)), where P is the complete path from ps
to pf associated with the terminal state and ΩR is the feasible
set of spectral efficiencies as defined by constraints (1)–(3) in
problem (7). The first term (in parentheses) is the motion energy
cost of traversing P and the second term is the communication
energy cost given by solving problem (7), which is taken as
infinity if problem (7) is infeasible given P . −wT (P ) is then

the minimum total energy cost given that the robot would use
the full path P .

It can be seen that we have moved the transmission optimiza-
tion into the terminal reward computation and only the motion
part is considered in the MDP actions. Since the MDP’s reward
function captures the objective function of problem (6) and its
actions conform to the constraints of problem (6), solving this
MDP provides the optimum solution to problem (6). We formally
show this in the next Proposition.

Proposition 1: By solving the MDP of Section IV-A with
the initial state s1 = [ps], we obtain the optimum solution to the
original co-optimization problem (6).

Proof: As the MDP is undiscounted and there is no re-
ward for any intermediate step, the cumulative reward of
s1 is equal to the terminal reward: wT (P ) = −(Em(P ) +
minR∈ΩR

Ec(P, R; Υ)). By maximizing the cumulative reward
of s1, we have the following optimization problem:

max.
p2, ..., pK

− (Em(P ) + minR∈ΩR
Ec(P, R; Υ)) (8)

where we optimize over the actions p2, . . ., pK , which also need
to be feasible, i.e., the complete path P = [p1, . . ., pK ] needs
to satisfy constraints (1)–(3) of problem (6).

The solution to the MDP maximizes the negative value of
the total energy cost [i.e., minimizes the objective function in
problem (6)], and the resulting motion actions and spectral
efficiencies need to satisfy their respective constraints in the
original problem (6). As such, the path P � and the spectral
efficiencies R� obtained by solving the MDP of Section IV-A
are also the optimum solution to problem (6). �

B. Solution via Monte Carlo Tree Search

The MDP formulation of Section IV-A facilitates applying
MCTS. First, in order to solve problem (6), we do not need
to derive the optimum decisions for all the MDP states, as
many of them are suboptimal and thus irrelevant to the original
optimization problem. Instead, MCTS provides a methodical
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framework to bias the computation toward promising states. Sec-
ond, MCTS is well suited for the structure of the MDP. In each
iteration, it only needs to perform the transmission optimization
at the end of the simulation stage, when the simulation reaches
a terminal state and the path becomes complete. This avoids
the difficulty of determining the optimal spectral efficiencies
without a complete path. Lastly, the convex optimization-based
terminal reward evaluation [using problem (7)] allows for fast
Monte Carlo simulations. Next, we describe in details how to
utilize MCTS to solve this MDP.

1) Selection Policy: As discussed in Section II-D, we keep
track of the average cumulative reward X̄s,ns

and a visit count
ns for each state s during the MCTS iterations. These quantities
are used in the UCB-based selection policy for selecting the next
state to move to during the tree traversal stage

s† = argmax
s′∈Cs

X̄s,′ ns′ +
√

2ln(ns)/ns′ (9)

where s† is the next state to move to and Cs is the set of next
states reachable from s via a feasible action. Note that we select
from the next states instead of the actions, since there is no
intermediate reward and the transition is deterministic.

2) Expansion and Simulation: When adding a new node
to the tree, the expansion part follows from the standard
MCTS. In the simulation stage, a random feasible action (i.e.,
a random next waypoint) is taken until the path reaches the
destination. More specifically, given a state with partial path
P ′ = [p1, . . ., pk], the set of feasible next locations is the set of
the neighboring locations of pk, after moving to which the robot
can visit the unsensed sites and reach the final position within
the remaining time budget [i.e., satisfying constraints (1)–(3)
of problem (6)]. Denote the next site to sense as p̃j′ . We can
obtain a random feasible next location by sampling from the set:
Ωnext = {pk+1 | ‖p̃j′ − pk+1‖T +

∑V
j=j′+1 ‖p̃j − p̃j−1‖T +

‖pf − p̃V ‖T ≤ T − T (P ′)− ‖pk+1 − pk‖T and pk+1 ∈
Ωpk

}, where ‖pi − pj‖T is the minimum time needed to move
from pi to pj (on the grids) and Ωpk

is the set of neighboring
locations of pk. It can be seen that any location from Ωnext

allows the robot to visit the exact location of each unsensed site
and then reach the destination within the remaining time, i.e.,
any location from this set is a feasible next location.9

3) Reward Evaluation and Back Up: The simulation ends
when it encounters a terminal state, i.e., the partial path reaches
the destination. In order to facilitate the convergence of MCTS,
we need to transform the terminal reward wT (P ) into [0, 1] [see
(8) for the details of wT (P )] [28]. To do this, we utilize a simple
baseline strategy where the robot moves along straight lines,
sequentially from the start position to each exact site location
and finally to the destination. We denote the negative total

9Note that this set does not contain all the possible feasible next locations, as
there may exist a feasible next location that requires the robot to not visit the
exact locations of the unsensed sites in order to reach the destination within the
remaining time. However, finding such a feasible next location requires solving
an optimization problem similar to the shortest-path traveling salesman problem
with neighborhoods [37], which is computationally expensive for the simulation
stage. On the other hand, sampling a point from Ωnext is quick, and as we shall
see in Section VI, allows us to efficiently obtain near-optimal solutions to the
complex co-optimization problem (6).

energy cost of this straight-path baseline as wsp. We then take
w̃T (P ) = max(0, 1− wT (P )/wsp) as the transformed reward,
which is in [0, 1]. w̃T (P ) indicates the percentage total energy
cost reduction over this baseline and is zero if the total cost
resulted from P is larger than that of the baseline.

The transformed reward w̃T (P ) is then backed up. For each
state s that is part of the current tree traversal, its average
cumulative reward is updated as follows:

X̄s,ns+1 = (w̃T (P ) + nsX̄s,ns
)/(ns + 1) (10)

and the visit count ns is incremented by 1. In addition to this
standard MCTS back-up procedure, for each s, we also record
the maximum cumulative reward seen so far, as follows:

X̂s,ns+1 = max{X̂s,ns
, w̃T (P )} (11)

where X̂s,ns
= 0 initially when ns = 0.

4) Solution Extraction: Given the initial state s, we perform
NI MCTS iterations (NI dictated by the computation budget).
As there is no randomness in the rewards of this MDP, X̂s,ns

records the best solution (i.e., the minimum total energy cost)
seen so far given that the robot would traverse the partial path
P ′
s. Therefore, instead of using X̄s,ns

as in standard MCTS, we
use X̂s,ns

to decide the next location that the robot should move
to

sπ = argmax
s′∈Cs

X̂s,′ ns′ (12)

where the last waypoint in the partial path of sπ is the next
location for the robot to move to and Cs is the set of next states
reachable from s via a feasible action.

We then set sπ as the new initial state and perform another NI

iterations, after which we select the best next state. This process
ends when we reach a terminal state, where we obtain the best
complete path, P �, and we can solve for the optimum spectral
efficiencies, R�. P � and R� are then the solution to problem (6)
given by our proposed approach. Our proposed algorithm is
summarized in Algorithm 1.

Remark 1: (Applicability to other modulation schemes):
While we assume a general MQAM model in our derivations, our
proposed approach is applicable to other modulation techniques
as long as the transmission power can be written as a function of
the transmission rate and the location-dependent channel quality
[e.g., in the objective function of problem (7)], which is used for
terminal reward evaluation in our MCTS.

V. THEORETICAL ANALYSIS

In this part, we mathematically prove the convergence and
characterize the convergence speed of our proposed approach.
We further characterize properties of the optimum solution.

A. Convergence and Optimality

Since we have shown the equivalence between our MDP
formulation and the original co-optimization problem (6) (in
Proposition 1), our convergence and optimality analysis in this
part directly establishes the performance guarantees of our
MCTS-based solution for problem (6).
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The first result shows the convergence of the expected average
cumulative reward of a state.10 It should be noted that X�

s is the
optimum cumulative reward of state s in the following theorem,
as defined in Section II-D.

Theorem 1: When MCTS with the UCB selection pol-
icy is applied to the MDP of Section IV-A, for any state s,
the bias of X̄s,ns

is O(ln(ns)/ns), i.e., ‖E[X̄s,ns
]−X�

s ‖ =
O(ln(ns)/ns). Moreover, X�

s = maxs′∈Cs
X�

s′ , where Cs is the
set of next states reachable from state s via a feasible action,
which corresponds to the set of child nodes of the node of state
s in the tree.

Proof: Note that the immediate reward is zero for any state
transition. The results then follow directly from [28, Ths. 2 and
6]. �

Theorem 1 shows that the bias of the average cumulative
reward of a state s is O(ln(ns)/ns). Moreover, the expected
average cumulative reward converges to the optimum cumulative
reward of the optimum next state. By the optimum next state of
a state s, we mean the next state s� which has the maximum
optimum cumulative reward, i.e., s� = argmaxs′∈Cs

X�
s′ .

Next, we explicitly derive what the optimum cumulative
reward is for each state by using induction.

Theorem 2: When MCTS with the UCB selection policy
is applied to the MDP of Section IV-A, for state s, X�

s =
maxs′∈Ls

w̃T (Ps′), where Ls is the set of terminal states with s
being their common ancestor in the tree and Ps′ is the complete
path associated with the terminal state s′.

Proof: This can be shown by induction. First, the statement
is true for a (sub)tree with only one node representing a
terminal state. Then, consider a nonterminal state s in the
tree. Assume that for each immediate next state s′ ∈ Cs,
X�

s′ = maxs′′∈Ls′ w̃T (Ps′′). Based on Theorem 1, we then
have X�

s = maxs′∈Cs
X�

s′ = maxs′∈Cs
maxs′′∈Ls′ w̃T (Ps′′) =

maxs′′∈Ls
w̃T (Ps′′), which completes the proof. �

Theorem 2 says that X�
s is equal to the maximum terminal

reward over all the terminal states reachable from s, which is
indeed the optimum cumulative reward of s in this MDP.

As discussed in Section IV-B, unlike the standard MCTS, we
use X̂s,ns

to decide the next waypoint for the robot to move to,
as shown in (12). In the next results, we prove the convergence
of this policy and characterize its key properties. First, we show
that the bias of the maximum cumulative reward converges to
zero and is no greater than that of the average cumulative reward.

Theorem 3: When MCTS with the UCB selection policy is
applied to the MDP of Section IV-A, for any state s,‖E[X̂s, ns

]−
X�

s ‖ ≤ ‖E[X̄s,ns
]−X�

s ‖ = O(ln(ns)/ns).
Proof: It is always true that X̂s,ns

≥ X̄s,ns
. Thus,

E[X̂s,ns
] ≥ E[X̄s,ns

]. In addition, X̄s,ns
≤ X̂s,ns

≤ X�
s .

Therefore, we have ‖E[X̂s,ns
]−X�

s ‖ ≤ ‖E[X̄s,ns
]−X�

s ‖ =
O(ln(ns)/ns). �

Next, we study the probability of failing to move to the
optimum next state, when using the decision policy of (12).
Specifically, we derive an upper bound on this probability, which

10The expectation is taken over the randomness in the simulation stage of
MCTS, as well as over the random selection when multiple next states have an
infinitely large second term in (9) due to ns′ = 0.

shows that it converges to zero and characterizes its convergence
speed. We first present two results from [28], which will be used
in our proof.

Theorem 4. [28, Th. 3]: There exists some positive constant ρ
such that for state s and any of its immediate next states s′ ∈ Cs,
ns′ ≥ ρln(ns).

Theorem 5. [28, Th. 4]: For state s, the following
bounds hold for any given δ > 0, provided that ns is suffi-
ciently large: P (X̄s,ns

≤ E[X̄s,ns
]− 9

√
2nsln(2/δ)/ns) ≤ δ

and P (X̄s,ns
≥ E[X̄s,ns

] + 9
√

2nsln(2/δ)/ns) ≤ δ.
Theorem 4 shows that the number of visits for a state is lower

bounded by a function of the number of visits of its parent node.
Theorem 5 shows how the average cumulative reward of a state
concentrates to its expectation probabilistically, as the number
of visits increases.

By utilizing these bounds, we next show how to derive an
upper bound on the failure probability.

Theorem 6: For any state s, by using the maximum cumu-
lative reward-based decision policy of (12), the probability of
failing to reach the optimum next state, P (sπ 	=s�), satisfies the
following inequality, provided that ns is sufficiently large:

P (sπ 	= s�) ≤ ρ̃/ln(ns) (13)

where s� is the optimum next state (i.e., s� = argmaxs′∈Cs
X�

s′ ),
sπ is the next state given by the decision policy of (12), and ρ̃ is
a positive constant.

Proof: When X̂s,′ ns′ > X̂s�, ns�
for any s′ ∈ Cs\{s�}, the

next state given by (12) will be different from the optimum next
state, i.e., sπ 	= s�. As such, we have the following upper bound
for P (sπ 	= s�), since the events X̂s,′ ns′ ≥ X̂s�, ns�

∀s′ ∈
Cs\{s�} are not necessarily mutually exclusive

P (sπ 	= s�) ≤
∑

s′∈Cs\{s�}
P (X̂s,′ ns′ ≥ X̂s�, ns�

). (14)

Assume that X�
s� > X�

s′ ∀s′ ∈ Cs\{s�}, i.e., there exists
only one optimum next state. Since X�

s� − E[X̄s�, ns�
] =

O(ln(ns�)/ns�), as shown in Theorem 1, there exists a suffi-
ciently largeN1 such that whenns� ≥ N1, E[X̄s�, ns�

]−X�
s′ ≥

hs′ , for all s′ ∈ Cs\{s�}, where hs′ = (X�
s� −X�

s′)/2.
Given ns� ≥ N1, if X̂s,′ ns′ ≤ X�

s′ and X̂s�, ns�
>

E[X̄s�, ns�
]− hs′ , then X̂s,′ ns′ < X̂s�, ns�

, which leads to

P (X̂s,′ ns′ ≥X̂s�, ns�
)≤P (X̂s,′ ns′ >X�

s′)

+ P (X̂s�, ns�
≤E[X̄s�, ns�

]−hs′)

where it can be easily seen that P (X̂s,′ ns′ > X�
s′) = 0. Further-

more, since X̄s�, ns�
≤ X̂s�, ns�

, we have

P (X̂s�, ns�
≤ E[X̄s�, ns�

]− hs′)

≤ P (X̄s�, ns�
≤ E[X̄s�, ns�

]− hs′).

By setting δ = 1/ns� for state s� by using the result of
Theorem 5, we have

P (X̄s�, ns�
≤ E[X̄s�, ns�

]− 9
√

2ln(2ns�)/ns�) ≤ 1/ns�
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where 9
√

2ln(2ns�)/ns� converges to zero as ns� goes to infin-
ity. As such, there exists a sufficiently large N2 such that when
ns� ≥ N2, we have 9

√
2ln(2ns�)/ns� ≤ hs′ ∀s′ ∈ Cs\{s�}.

Therefore, given ns� ≥ N2, we have the following for each
s′ ∈ Cs\{s�}:

P (X̄s�, ns�
≤ E[X̄s�, ns�

]− hs′)

≤P (X̄s�, ns�
≤E[X̄s�, ns�

]− 9
√
2ln(2ns�)/ns�)≤ 1

ns�

≤ 1

ρln(ns)

where the last inequality is based on Theorem 4.
Based on (14), we then have P (sπ 	= s�)≤ ρ̃/ln(ns), where

ρ̃ is a constant that depends on ρ and the size of Cs. More-
over, in order to have ns� ≥ max{N1, N2}, we need ns ≥
max{eN1/ρ, eN2/ρ}, based on Theorem 4. Therefore, given ns

sufficiently large, the inequality of (13) holds. �
As we can see in the above theorem, for a state s, the failure

probability is upper bounded by a function of ns, which is
O(1/ln(ns)). In other words, the failure probability converges
to zero at least as fast as ρ̃/ln(ns), as ns increases.

B. Properties of the Optimum Solution

In this part, we mathematically characterize properties of the
optimum spectral efficiencies. First, we define two waypoints
pi1 and pi2 to be in the same segment of the path if they satisfy
one of the following three conditions:

1) kj−1 < i1, i2 ≤ kj ; for some j ∈ {2, . . ., V }
2) i1, i2 ≤ k1; 3) i1, i2 > kV (15)

where kj = min{i ∈ {1, . . ., K} | ‖pi − sj‖ ≤ Δj} ∀j ∈
{1, . . ., V }. In other words, if two waypoints belong to the same
segment of the path, then the robot does not collect new data
when traveling between these two points.

By analyzing the Karush–Kuhn–Tucker (KKT) condi-
tions [36], we can next characterize the optimum transmission
spectral efficiencies for problem (6). Note that in the following
theorem, Υ(q) is the random variable describing the predicted
channel at location q, as defined in Section II-A.

Theorem 7: Consider problem (6). Given a complete path
P , the optimum transmission spectral efficiencies satisfy the
following properties:

1) r�i ≥ r�j , if E[1/Υ(pi)] ≤ E[1/Υ(pj)] and pi, pj belong to
the same segment of the path;

2) r�i = 0, if E[1/Υ(pi)] is above a certain threshold;
3) r�i = rmax, if E[1/Υ(pi)] is below a certain threshold.
Proof: Given a complete path P , problem (6) reduces to

problem (7). Assume D0>0 and the robot does not need to use
the maximum spectral efficiency all the time. There exists some
strictly feasible solution to problem (7), indicating that Slater’s
condition holds [36], and since problem (7) is convex, the KKT
conditions are sufficient and necessary for optimality [36]. The
Lagrangian is then as follows, where υ 
 0, ν 
 0, η 
 0, and

λ are the dual variables:

L(R, υ, ν, η, λ)=

K∑
i=1

(2ri − 1)

Z
E

[
1

Υ(pi)

]
+υi(ri−rmax)

−νiri+

V∑
j=1

ηj

⎛
⎝ kj∑

i=1

ri − 1

tc

j−1∑
z=0

D̃z

⎞
⎠

− λ

⎛
⎝ K∑

i=0

ri − 1

tc

V∑
j=0

D̃j

⎞
⎠ . (16)

For the KKT conditions, in addition to primal and dual
feasibility, we have the gradient condition and complementary
slackness as follows, with the optimum variables marked by �.
∀i ∈ {1, . . ., K}, we have

∇r�i
L =

2r
�
i ln(2)
Z

E

[
1

Υ(pi)

]
+ υ�

i − ν�i +
∑
j∈Vi

η�j − λ� = 0

υ�
i (r

�
i − rmax) = 0, ν�i r

�
i = 0

(17)

where Vi = {j | j ∈ {1, . . ., V } and kj ≥ i}. We also have the
following additional complementary slackness conditions due
to constraint (2) of problem (7):

η�j

⎛
⎝ kj∑

i=1

r�i −
1

tc

j−1∑
z=0

D̃z

⎞
⎠ = 0 ∀j ∈ {1, . . ., V } . (18)

Denote η̃i =
∑

j∈Vi
η�j from the KKT conditions. Then, the

optimum spectral efficiencies can be derived as follows:

r�i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if E [1/Υ(pi)]≥ (λ�−η̃i)Z

ln(2)

rmax, if E [1/Υ(pi)]≤ (λ�−η̃i)Z
2rmax ln(2)

log2

(
(λ�−η̃i)Z

ln(2)E[1/Υ(pi)]

)
, otherwise.

(19)

As η̃i is the same for any two waypoints in the same segment
of the path, it can be confirmed that the three properties stated
in this theorem hold based on (19). �

Theorem 7 shows that within the same segment of the path,
the optimum spectral efficiency should be higher (lower) where
the channel quality is better (worse). The channel quality is
measured by E[1/Υ(pi)], which is lower (higher) for a better
(worse) channel. Moreover, when the channel quality is better
than a certain threshold, the robot should take the maximum
spectral efficiency and when it is worse than a certain threshold,
there should be no transmission.

Consider a data intensive case, where the remaining onboard
data to be transmitted is non-zero all throughout the path, up to
the last segment, with no restriction on the last segment. Then,
property (1) of Theorem 7 holds for any two waypoints in the
path and the optimum spectral efficiencies can be solved using
bisection, as we show next.

Corollary 1: When the remaining data are consistently
nonzero before the robot senses the last site, the optimum
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spectral efficiencies also satisfy: r�i ≥ r�j , if E[1/Υ(pi)] ≤
E[1/Υ(pj)], for any two waypoints in the path. Moreover, the
optimum spectral efficiencies can be solved using bisection.

Proof: When the remaining data are always nonzero before
the robot visits the last site, we have η�j = 0 ∀j ∈ {1, . . ., V }
based on the complementary slackness conditions of (18). The
optimum spectral efficiencies are then as follows:

r�i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if E [1/Υ(pi)]≥ λ�Z

ln(2)

rmax, if E [1/Υ(pi)]≤ λ�Z
2rmax ln(2)

log2

(
λ�Z

ln(2)E[1/Υ(pi)]

)
, otherwise.

(20)

It can then be easily confirmed that the property stated in
this corollary is true. Next, we show how to obtain the op-
timum spectral efficiencies via bisection. Based on (20), we

have r�i = max
(
0, min

(
rmax, log2

(
λ�Z

ln(2)E[1/Υ(pi)]

)))
∀i ∈

{1, . . ., K}. Due to constraint (4) of problem (6),
∑K

i=0 r
�
i −

1
tc

∑V
j=0 D̃j = 0 needs to hold. Therefore, λ� is the solution to

the following:

K∑
i=0

max

(
0, min

(
rmax, log2

(
λ�Z

ln(2)E[1/Υ(pi)]

)))

− 1

tc

V∑
j=0

D̃j = 0

where λ� can be solved via bisection. Given λ�, we can then
calculate the optimum spectral efficiencies from (20). �

Next, we consider a special case where the robot does not
need to sense any sites. This captures several real-world robotic
motion and communication scenarios. The corresponding co-
optimization problem can be formulated as follows:

min.
P,R

Em(P ) + Ec(P, R; Υ)

s.t. (1)T (P) ≤ T, (2) p1 = ps, pK = pf

(3)

K∑
i=1

ritc = D̃0, (4) 0≤ri≤rmax ∀i∈{1, . . .,K}

(21)

where the robot only needs to navigate from the start position to
the destination and transmit the D0 initial data.

The next corollary characterizes the optimum transmission
spectral efficiencies in this special case.

Corollary 2: Consider the special case shown in problem (21).
Given a complete path P , the optimum transmission spectral ef-
ficiencies satisfy all the properties in Theorem 7 and Corollary 1,
and can be solved using bisection.

Proof: In this special case, there are no sensing-related con-
straints. As such, given a complete path P , we no longer have
the terms with η�j in the KKT conditions (see the proof of
Theorem 7). The optimal spectral efficiencies are then given

as follows:

r�i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, if E [1/Υ(pi)]≥ λ�Z

ln(2)

rmax, if E [1/Υ(pi)]≤ λ�Z
2rmax ln(2)

log2

(
λ�Z

ln(2)E[1/Υ(pi)]

)
, otherwise.

(22)

Based on (22), it can be confirmed that the properties stated in
this corollary are true. Furthermore, since we have

∑K
i=1 r

�
i =

D̃0/tc, λ� can be solved via bisection. �

VI. SIMULATION EXPERIMENTS

In this section, we solve the co-optimization problem (6) in
realistic 2-D wireless channel environments using our proposed
approach. We first consider a scenario that involves sensing,
communication, and motion, and present the solution obtained
by using our proposed co-optimization approach. We further
extensively compare it with a benchmark method that separately
optimizes sensing-motion and communication. More specifi-
cally, the benchmark first computes the shortest path that satisfies
the sensing-motion constraints of problem (6) and subsequently,
given the path, optimizes the transmission along this path by
solving problem (7).11 While this benchmark separately opti-
mizes sensing-motion and transmission, it provides the maxi-
mum amount of co-optimization based on the available existing
methods. Finally, we consider the special case of problem (21)
with no sensing and further compare our approach with the best
related state-of-the-art method.

A. Cooptimizing Sensing, Communication, and Motion

We validate our proposed approach using a realistic sim-
ulated 2-D wireless channel environment, where the channel
parameters (obtained from real wireless measurements [34]) are:
θ̂ = [−41.34, 3.86], α̂ = 3.20, β̂ = 3.09 m, and σ̂ = 1.64. The
robot predicts the channel with 1% prior channel measurements
from random locations in this environment, based on the predic-
tion framework of Section II-A. The required BER is 10−6. The
communication bandwidth is 20 MHz. The receiver noise power
is−100 dBm. The maximum spectral efficiency is 6 b/s/Hz. The
motion parameters are: κ1 = 7.4 and κ2 = 0.29, based on real
power measurements of a robot [35]. The robot uses a constant
speed of 1 m/s. The workspace is 50 m × 50 m with a grid size
of 2 m × 2 m. We use the eight-neighbor setting: the robot can
move to one of the eight neighboring grids that is within the
workspace from its current grid in one step. We set the number
of MCTS iterations for each step to be NI = 50.

In this experiment, the robot’s starting position is [48, 2] and
the final position is [2, 48]. The three sites are located at [46, 16],
[44, 30], and [24, 48], respectively, and the sensing ranges for

11Obtaining the shortest path that satisfies the motion constraints in prob-
lem (6) requires solving a traveling salesman problem with neighborhoods, and
with the start and final positions directly connected in the tour. Given such a tour,
we then remove the edge between the start and final positions in order to obtain
the path from the start position to the final one. We utilize a self-organizing
map-based algorithm to compute such a path [37].
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Fig. 2. Paths from solving problem (6) with three sites to sense, by
using our proposed approach (yellow) and the benchmark (green). The
yellow dots and solid curve represent the waypoints and the path,
respectively, as given by our proposed approach. The green crosses
and dashed curve represent the waypoints and the path given by the
benchmark method. The circle and the square indicate the start and final
positions, respectively. The white triangles indicate the site locations and
the white circles indicate the sensing ranges for the sites. The colormap
indicates the true channel power over this environment, where brighter
(darker) colors indicate higher (lower) channel qualities. See the color
pdf for optimal viewing.

Fig. 3. Optimal transmission spectral efficiencies from solving prob-
lem (6) with three sites to sense, by using our proposed approach. The
first and second rows show the actual and the predicted channel powers
at the waypoints, respectively. The third row shows the optimum spectral
efficiencies for the waypoints.

them are 6, 4, and 10 m, respectively. The robot has an initial data
load of 60 b/Hz and needs to transmit 30 b/Hz additional data
after sensing each site. The robot has a total time budget of 110 s.
Fig. 2 shows the resulted path (yellow solid curve) by using our
proposed approach. It can be seen that the robot detours toward
areas with better channel qualities as needed (indicated by the
black arrows in Fig. 2). Even on the path from site 2 to site 3,
where the channel quality is generally poor, the robot is still able
to detour a bit to exploit a slightly better channel (see the color
pdf). Fig. 3 then shows the spectral efficiencies along the path
using our proposed approach. It can be seen that the robot adopts
a higher (lower) spectral efficiency when the channel quality is
better (worse). As the remaining data to be transmitted are never
zero before the last site, this confirms the theoretical result of

TABLE I
AVERAGE ENERGY COSTS BY USING OUR PROPOSED APPROACH AND THE

BENCHMARK METHOD OVER 50 RANDOM PROBLEM INSTANCES

The second, third, and fourth columns show the communication, motion, and
total costs (in Joules), respectively. The last row shows the total energy saving
by using our method, as compared to the benchmark.

Corollary 1. On the other hand, since the benchmark separately
optimizes the path and the transmission, its path (green dashed
curve in Fig. 2) is unaware of the channel. This makes the robot
traverse in areas with poor channel qualities, resulting in a large
total energy cost of 10910 J. In contrast, the total energy cost
by using our proposed approach is 4757 J, which is 56% lower.
It takes our approach 47.59 s to solve the co-optimization in
this case (on a 3.40 GHz i7 PC). Although the benchmark takes
only 5.30 s to compute the solution, the resulting total cost is
significantly higher.

Next, we more extensively compare the performance of our
proposed approach with the benchmark, over 50 problem in-
stances. In these problem instances, the number of sites ranges
from 1 to 4. In each problem instance, we use a different realiza-
tion of the channel, and the site locations, sensing ranges, and the
amount of data to be transmitted are randomized. Table I shows
the energy costs (in Joules) by using our proposed approach
and the benchmark, respectively, averaged over the 50 problem
instances. It can be seen that overall, our proposed approach
significantly reduces the total energy cost by 55%, as compared
to the benchmark. This is because our approach is able to
properly cooptimize sensing/motion and communication. For
instance, our approach significantly reduces the communication
cost by having the robot detour to areas with a better channel
quality as needed, at the expense of a slightly higher motion
cost.

We next experiment with different settings of our algorithm
to further study its computational aspects. First, we reduce
the number of MCTS iterations at each step from 50 to 10.
This considerably reduces the computation time by 78% while
still providing a much smaller total cost (e.g., 5751 J in the
experiment of Fig. 4) when compared to the benchmark. In
addition, it takes less than 0.5 s to compute each step, making our
algorithm promising for real-time use. Next, we study the effect
of a higher spatial resolution. We experiment with a smaller grid
size of 1 m× 1 m. This results in slightly smaller total costs (e.g.,
4299 J in the experiment of Fig. 4) while increasing the runtime
by 3.9× and the memory usage (i.e., tree size) by 2.6×, when
compared to using 2 m × 2 m grids. This indicates that a very
fine-grained spatial resolution can be computationally expensive
and may not lead to significant performance gains.

B. Special Case of Co-optimization Without Sensing

We now consider the special case of problem (21), where
there is no sensing. The 2-D environment, the motion and
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Fig. 4. Resulting path when using our proposed approach to solve
problem (6) for the case of no sensing. The yellow curve shows the path
and the yellow dots indicate the waypoints. The green dashed curve
further shows the path obtained by using the method of [26]. The circle
and the square indicate the starting and final positions, respectively.
The colormap indicates the true channel power over this environment,
where brighter (darker) colors indicate higher (lower) channel qualities.
See the color pdf for optimal viewing.

Fig. 5. Optimum transmission spectral efficiencies from solving prob-
lem (6) when there is no sensing, by using our proposed approach. The
first and second rows show the actual and the predicted channel powers
at the waypoints, respectively. The third row shows the optimum spectral
efficiencies for the waypoints.

communication parameters, and the number of MCTS iterations
for each step are the same as in Section VI-A. In this experiment,
the robot starts from the initial position [24, 36] and plans a path
to the destination [48, 20], with an operation time budget of 55 s.
The robot needs to transmit a total of 80 b/Hz initial data to the
remote station by the end of the trip.

Fig. 4 shows the resulting path (yellow) by using our proposed
approach. It can be seen that the robot detours into a region with
a better channel quality, before finally reaching the destination.
Fig. 5 shows the optimum spectral efficiencies along this path
given by our proposed approach, which are higher (lower) for
waypoints with a better (worse) channel quality. This confirms
the theoretical results of Corollary 2. In this experiment, the total
energy cost by using our proposed approach is 1642 J, while the
benchmark costs 10 721 J, which is over 6× as much as that of

our proposed approach. It takes our approach 16.73 s to compute
the solution in this case.

While for the general case with sensing, there is no exist-
ing approach that can cooptimize motion, communication, and
sensing, for the special case of no sensing, the work of [26] coop-
timizes motion and communication using a different approach.
More specifically, [26] formulates the trajectory-transmission
co-optimization as an optimal control problem and employs a
numerical algorithm to solve it.12 As compared to our proposed
approach, [26] does not guarantee convergence to the optimum
solution, has a higher total energy cost, and requires more
computation time. For instance, in this experiment, the total
energy cost by using [26] is 3140 J, which is almost 2× as much
as that of our approach. Their algorithm takes 43.92 s to compute
the solution, which is over 2.5× slower than ours. The resulting
path by using [26] is also shown in Fig. 4 (green). While this
generated path is able to exploit the good channel regions while
traversing to the final point (as indicated by the brighter blue
colors near the path), this method is not able to steer the robot
toward the best regions where the robot can minimize the total
motion-communication cost.

Overall, these results demonstrate that our proposed approach
is capable of cooptimizing sensing, communication, and mo-
tion for the complex optimization problem (6). Furthermore,
our approach considerably outperforms the benchmark, which
separately optimizes motion and communication.

VII. CONCLUSION

In this article, we studied the co-optimization of a robot’s
sensing, communication, and motion in a realistic wireless chan-
nel environment. In order to solve this complex optimization
problem, we proposed a novel approach where we transformed
the co-optimization problem into a specially designed MDP and
utilized MCTS to solve it. More specifically, we showed that
by iteratively optimizing the sensing/motion and the communi-
cation parts in different stages of MCTS, we can equivalently
solve the original challenging co-optimization problem very ef-
ficiently. We then mathematically proved the convergence of our
proposed approach, and characterized its convergence speed as
well as other key properties of the optimum solution. Finally, we
demonstrated the efficacy of our proposed approach in realistic
2-D wireless channel environments via extensive simulations.

As part of future works, it would be interesting to explore
the real-time deployment of our proposed algorithm and further
extend it to multirobot scenarios.
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