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Abstract— We consider the scenario where an unmanned
vehicle needs to get connected to a remote station (or an-
other robot). More specifically, we consider the case where
an unmanned vehicle is not connected in its current location
and needs to incur motion energy to find a connected spot.
We are then interested in designing robot paths that are
energy efficient (minimum traveled distance) and can result
in guaranteed connectivity in realistic channel environments
that can experience multipath, shadowing, and path loss. In
this paper, we show how this problem can be optimally and
efficiently solved, under mild conditions on the paths, using
tools from stochastic dynamic programming. Our extensive
simulations, with real channel parameters, then confirm that
our approach can significantly reduce the traveled distance to
connectivity, thus minimizing the total energy consumption.

I. INTRODUCTION

Teams of unmanned vehicles have been envisioned to
carry out a wide range of tasks, such as search and rescue,
surveillance, exploration, sensing, and gathering information
about the environment [1], [2]. In many of these scenarios,
establishing connectivity with a remote station, or with
another node, for the transfer of data is of paramount
importance. The mobility of a robot can play an important
role in enabling its connectivity as it can incur motion energy
to move to spots better for connectivity. Since an unmanned
vehicle has a limited energy budget, energy efficiency is
another key consideration in robotic systems. In this paper,
we are interested in utilizing the mobility of a robot to enable
connectivity in an energy-efficient manner.

There has been considerable interest in communication-
aware robotics in recent years [3]–[11]. In [6], an energy-
aware trajectory is designed for a robotic network in order to
enable within-network connectivity. In [7], a controller that
ensures persistent intermittent connectivity is designed for
a robotic network. However, oversimplified and unrealistic
channel models are considered in all the above references
[4]–[7]. In [8]–[11], a realistic channel model and proba-
bilistic prediction framework based on [12] is utilized. In
[8], locations of mobile robotic routers are optimized for
enabling end-to-end connectivity. In [10], an optimal control-
based framework is proposed to co-optimize motion and
communication. In [11], the robots employ distributed beam-
forming, and find locations which satisfy a joint connec-
tivity requirement, while minimizing the traveled distance.
However, only final locations are optimized, and the channel
quality along the path is not considered. In [13], the statistics
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of the distance traveled by a robot, moving along a straight
line, till it gets connected is characterized.

In this paper, we are interested in the energy-aware
path planning of a robot, to ensure reaching a guaranteed
connected spot in a realistic channel environment that experi-
ences multipath fading, shadowing, and path loss. To the best
of our knowledge, this problem has not been optimally solved
before. More precisely, we consider the problem of planning
the path of a robot in order to find a connected spot while
minimizing the expected traveled distance. We note that in a
realistic channel environment, the robot’s knowledge of the
connectivity at any location is stochastic [12]. Hence, the
traveled distance till connectivity is not known a priori, and
is a random variable. Our objective is then to find a path that
minimizes the expected traveled distance till connectivity.
Fig. 1 shows an example of this scenario. In this paper,
we show how this problem can be optimally and efficiently
solved, under mild conditions on the paths, using tools from
stochastic dynamic programming.

The paper is organized as follows. In Section II, we
formally introduce our problem and review relevant literature
on channel modeling and probabilistic channel prediction.
In Section III, we show how to optimally design the path,
using a stochastic dynamic programming framework, where
we place a mild constraint on the solution. Finally, we
confirm the performance and efficiency of our approach
with extensive simulations using real channel parameters, in
Section IV.
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Fig. 1: The robot moves along a path until it gets connected.
The background color at each location represents the corresponding
channel power when transmitting from that location. The objective
is to design a path that minimizes the expected traveled distance
till connectivity.

II. PROBLEM SETUP
In this section, we formally define our problem of interest.

We first provide an overview of probabilistic channel model-



ing and prediction [12], [14]. We then introduce our problem
of interest: Planning the optimum path for the robot
that minimizes the expected distance till connectivity. Our
main contribution is proposing a computationally efficient
approach that can find the optimal path, under mild con-
ditions, using tools from stochastic dynamic programming
literature.
A. Channel Modeling [12], [14]

A communication channel is best modeled as a multi-
scale random process with three major components: path
loss, shadowing and multipath fading [12], [14]. Let ΓdB(q1)
denote the received channel power (in dB) from a transmitter
at location q1 ∈ R2 to the remote station located at the
origin. It can then be expressed as ΓdB(q1) = ΓPL,dB(q1) +
ΓSH,dB(q1)+ΓMP,dB(q1) where ΓSH,dB(q1) and ΓMP,dB(q1) are
random variables denoting the impact of shadowing and mul-
tipath respectively, and ΓPL,dB(q1) = KdB−10nPL log10 ‖q1‖
is the distance-dependent path loss with nPL representing the
path loss exponent. ΓSH,dB(q1) is best modeled as a Gaussian
random variable with an exponential spatial correlation:
E {ΓSH,dB(q1)ΓSH,dB(q2)} = σ2

SHe
−‖q1−q2‖/βSH where σ2

SH is
the shadowing power and βSH is the decorrelation distance.

The shadowing or large-scale fading component is the
result of attenuation through large stationary objects in the
environment, such as buildings or hills. We thus assume that
the path loss and shadowing component stay constant with
time. Multipath fading or small scale fading, on the other
hand, is the result of the additions of multiple paths. Thus,
small changes in the positions of reflectors and scatterers in
the environment can cause large changes in the multipath
fading signal. To account for this, we then assume that the
multipath component is time-varying. This then implies that
the multipath value at any location during the operation phase
of the robot, is independent of its corresponding value when
the prior measurements were collected [15]–[17].

We next briefly describe the probabilistic channel predic-
tion framework of [12], which is based on a few prior channel
measurements in the workspace. These measurements could
have been collected by the same robot during prior opera-
tions, or collected by other robots in the past.

B. Realistic Channel Prediction [12], [14]
Let Γq,dB represent the vector of m a priori-gathered

received channel power measurements (in dB) in the same
environment, where q = [q1 · · · qm]T denotes the vector of
the corresponding positions.

Lemma 1 (See [12] for proof): A Gaussian random vec-
tor, ΓdB(r) = [ΓdB(r1) · · ·ΓdB(rk)]

T ∼ N
(
ΓdB(r),ΣdB(r)

)
can best characterize the vector of channel power (in the dB
domain) when transmitting from locations r = [r1 · · · rk]T,
with the mean and covariance given by

ΓdB(r) = Hrϑ̂+ Ψr,qΦ
−1
q

(
Γq,dB −Hqϑ̂

)
,

ΣdB(r) = Φr −Ψr,qΦ
−1
q ΨT

r,q,

where ϑ̂ = [K̂dB, n̂PL]T , Hr = [1k − Dr],
Hq = [1m − Dq], 1m (1k) represents the m-
dimensional (k - dimensional) vector of all ones,

Dq =
[
10 log10(‖q1‖) · · · 10 log10(‖qm‖)

]T
and

Dr =
[
10 log10(‖r1‖) · · · 10 log10(‖rk‖)

]T
. Furthermore,

Φq , Φr and Ψr,q denote matrices with entries[
Φq
]
i1,i2

= σ̂2
SHe
−‖qi1−qi2‖/β̂SH + σ̂2

MP δi1,i2 ,
[
Φr
]
j1,j2

=

σ̂2
SHe
−‖rj1−rj2‖/β̂SH + σ̂2

MPδj1,j2 and
[
Ψr,q

]
j1,i1

=

σ̂2
SH e−‖rj1−qi1‖/β̂SH , where i1, i2 ∈ {1, · · · ,m},

j1, j2 ∈ {1, · · · , k} and δi,j =

{
1, if i = j
0, else .

The ˆ symbol denotes the estimate of the corresponding
parameter. These underlying channel parameters are esti-
mated based on the a priori measurements as well. See
[12] for more details on this channel prediction framework,
as well as its performance with real data and in different
environments. It should be noted that [12] focuses on the
case where the multipath component is time-invariant. It
can be easily extended to account for the case where the
multipath component of the operation phase is independent
of its corresponding prior measurement value, as mentioned
earlier in Section II-A.

We next describe our problem of interest and show how
it can be posed as a graph-theoretic problem. The aforemen-
tioned channel prediction framework will then be used to
estimate the probability of connectivity at any location in
the workspace.

C. Minimizing the Expected Distance till Connectivity

Consider the scenario of a robot that does not have
connectivity to a remote station at its current location and
thus needs to find a connected location. In order to do so,
the transmission would have to satisfy a Quality of Service
(QoS) requirement, such as a target bit error rate (BER),
which would in turn imply a minimum required received
channel power given a fixed transmit power. Thus, in order
for the robot to successfully establish connectivity, it needs
to find a location where the channel power in transmission
from that location would be greater than the minimum
required channel power. As shown in Section II-B, the robot’s
knowledge of the channel is stochastic. Its goal is thus to plan
a path such that it minimizes the expected traveled distance
till connectivity.

We next describe how to pose this in a graph-theoretic
framework. We first represent the workspace as an undirected
graph. More specifically, we discretize the workspace of the
robot into cells, where each cell serves as a node in the
graph. Each cell is assigned a probability of connectivity
that is estimated by the robot based on the channel prediction
framework of Section II-B. A cell is said to be connected
if there exists a location in the cell that is connected. For
instance, consider a cell that consists of locations r =
[r1, · · · , rk]T . The probability of failure of connectivity of
the cell is then given by Pr(ΓdB(ri) < Γth,dB,∀i ≤ k), where
ΓdB(r) = [ΓdB(r1) · · ·ΓdB(rk)]

T ∼ N
(
ΓdB(r),ΣdB(r)

)
is a Gaussian random vector, as described in Section II-
B, and Γth,dB is the minimum required channel power for
connectivity.

Let G = (V, E) be the undirected graph constructed from



the workspace, where V denotes the set of nodes and E
denotes the set of edges. Let pv ∈ [0, 1] be the probability
of connectivity at node v ∈ V , and let duv denote the
weight of the edge (u, v) ∈ E . The edge weight duv is the
minimum physical distance between the nodes u and v. The
connectivity of a node is independent of the connectivity of
the other nodes in the graph.1 Let vs ∈ V denote the starting
node of the robot. The objective is to produce a path starting
from node vs that minimizes the expected traveled distance
till connectivity. The optimization is then expressed as:

minimize
P

E [traveled dist on P]

subject to Connected
P is a path on G
P[1] = vs.

(1)

In other words, the average traveled distance on the optimal
path till the robot gets connected is smaller than the average
distance till connectivity on any other possible path on the
graph. Note that the robot may only traverse part of the
entire path produced by its planning, as its planning is based
on stochastic knowledge, and connectivity may occur at any
point along the path.

For the expected distance till connectivity of a path to be
well defined, the probability of not being connected after
traversing the path must be 0. This implies that the path’s
final node must be one where connectivity is guaranteed, i.e.,
a v such that pv = 1. We call such a node a terminal node
and let T = {v ∈ V : pv = 1} denote the set of terminal
nodes. We assume that the set T is non-empty, i.e., there
exists at least one node in the workspace that is guaranteed to
be connected. This is a valid assumption since the robot will
get connected if it gets close enough to the remote station. A
feasible path thus has a terminal node as its end node. Fig.
2 shows a toy example as well as a feasible solution path.
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Fig. 2: A toy example along with a feasible solution path starting
from node 1.

We next characterize the expected distance first for paths

1This assumption is only for the purpose of mathematical derivations.
When testing our proposed approach in Section IV, we consider realistic
channel realizations which may result in a spatially correlated connectivity,
depending on the environment.

where nodes are not revisited, and then generalize it to all
possible paths. Let the path P = (v1, v2, · · · , vm = t) be
a sequence of m nodes such that no node is revisited, i.e.,
vi 6= vj , ∀j 6= i, and which terminates at a terminal node
t ∈ T . Let C(P, i) represent the expected traveled distance
till connectivity, from node P[i] = vi onward. We can write
C(P, 1) as follows,

C(P, 1) =pv1 × 0 + (1− pv1)pv2dv1v2 + · · ·

+

[ ∏
j≤m−1

(1− pvj )

]
pvm(dv1v2 + · · ·+ dvm−1vm)

=(1− pv1)dv1v2 + (1− pv1)(1− pv2)dv2v3 + · · ·
+
[
(1− pv1) · · · (1− pvm−1

)
]
dvm−1vm

=

m−1∑
i=1

∏
j≤i

(1− pvj )

 dvivi+1
. (2)

For a path which contains revisited nodes, the expected
distance can then be given by

C(P, 1) =

m−1∑
i=1

 ∏
j≤i:vj 6=vk,∀k<j

(1− pvj )

 dvivi+1

=
∑

e∈E(P)

 ∏
v∈V(Pe)

(1− pv)

 de,
where E(P) denotes the set of edges belonging to the path P ,
and V(Pe) denotes the set of vertices encountered along P
until the edge e ∈ E(P). Note that this expression becomes
the same as (2), when there are no revisited nodes in the
path.

Moreover, C(P, i) can be expressed recursively as

C(P, i) =

 (1− pvi)
(
dvivi+1 + C(P, i+ 1)

)
,

if vi 6= vk,∀k < i
dvivi+1

+ C(P, i+ 1), else
.

(3)

We utilize this recursive expression in the dynamic program-
ming formulation of the next section.

The optimization of (1) can then be formally expressed as

minimize
P

C(P, 1)

subject to P is a path on G
P[1] = vs

P[end] ∈ T.

(4)

III. STOCHASTIC DYNAMIC PROGRAMMING SOLUTION

Finding the solution to the problem formulation of (4)
efficiently is challenging in general. One can show that
(4) can be posed in a stochastic dynamic programming
framework. However, the resulting state space is exponential
in the number of nodes of the graph, and it is thus not
feasible to solve efficiently. In this section, we place a mild
requirement that a feasible solution path must satisfy. We
then show how to find the optimal path efficiently among the
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Fig. 3: A DAG is imposed which only allows “outward” motion
from the starting node.

set of paths that satisfy this requirement using a stochastic
dynamic programming formulation.

More specifically, we consider the following requirement
that a feasible solution must satisfy: Each successive node
on the path must be further away from the starting node vs.
This implies that for a path P = (v1 = vs, v2, · · · , vm), the
condition dmin

vsvi > dmin
vsvi−1

must be satisfied, for all i, where
dmin
vsvi is the shortest distance between vs and vi on the graph.

In the case of a grid graph with a single terminal node, this
implies that a path must always move towards the terminal
node, which is a reasonable requirement to impose.

It can be seen that imposing this requirement is equivalent
to imposing a directed acyclic graph (DAG) on the original
graph G = (V, E). The imposed DAG, GDAG = (V, EDAG),
has the same set of nodes V , and the set of edges is given
by EDAG = {(u, v) ∈ E : dmin

vsv > dmin
vsu} where (u, v)

represents a directed edge from u to v. As a concrete example
consider an n × n grid workspace, where neighboring cells
are limited to {left, right, top, down} cells. This would result
in an n × n DAG. The resulting DAG would be such that
only outward flowing edges from the start node are allowed.
In other words, the start node vs serves as the center. We
then form outward moving edges for each quadrant. In the
first quadrant only right and upward edges are allowed, in
the second quadrant only left and upward edges are allowed,
and so on. Fig. 3 shows an example of this, where several
feasible paths from the start node to a terminal node are
shown.

A. Proposed Path Planning Strategy

We next show that the problem of finding the path on
GDAG, with a minimum expected distance, can be formulated
as an infinite horizon Markov Decision Process (MDP) with
an absorbing state, a formulation known in the stochastic
dynamic programming literature as the stochastic shortest
path (SSP) problem [18]. In this part, we first provide a
brief summary of the SSP formulation. We then show how
our problem of finding a shortest path to connectivity can be
formulated as an SSP, which can then be efficiently solved,

as we shall see.
The stochastic shortest path problem (SSP) is a general

mathematical formulation in dynamic programming [18],
which is specified by a state space S, control/action con-
straint sets A(s) for s ∈ S, state transition probabilities
Pss′(a) = Pr(sk+1 = s′|sk = s, ak = a), an absorbing
termination state st ∈ S, and a cost function g(s, a) for
s ∈ S and a ∈ A(s). The goal is then to obtain a policy that
would lead to the terminal state st with the probability of 1,
and with minimum expected cost.

We next show how our path optimization problem of (4) on
GDAG can fit into an SSP formulation. Since we’ve imposed
a DAG, any path on GDAG cannot contain revisited nodes.
Then, the recursive expression of (3) for the expected trav-
eled distance on P from node P[i] = vi becomes C(P, i) =
(1−pvi)

(
dvivi+1

+ C(P, i+ 1)
)
, i.e., it can be expressed in

terms of the expected distance of the neighboring node that
the path visits next. Thus, we can see that the optimal path
from a node v, would also contain the optimal path from the
neighboring node that the path visits next. This motivates the
use of a stochastic dynamic programming framework, where
the expected cost to go J(v), of a state v, represents the
expected traveled distance to connectivity from v.

More precisely, we formulate the SSP as follows. Let V ′ =
V \ T be the set of non-terminal nodes in the graph. The
current node v ∈ V ′ of the robot is a state of the SSP. The
state space is thus given by S = V ′ ∪{st} where st denotes
the absorbing termination state. In this setting, st denotes the
state that the robot is connected. The termination state st is
absorbing, i.e., Pstst(a) = 1,∀a ∈ A(st). The action set
A(v) available at state v is given by the set of its neighbors,
i.e., A(v) = {u ∈ V : (v, u) ∈ EDAG}. The state transition
probability given that neighbor a is the selected action is
given as,

Pvu(a) =

 1− pv, if u = f(a)
pv, if u = st
0, else

,

where f(a) =

{
a, if a ∈ V ′
st, if a ∈ T . This implies that at node

v, with probability pv , the robot will get connected. If not, it
will move to the selected neighbor a. The cost incurred when
neighbor a ∈ A(s) is selected at node v is given by g(v, a) =
(1− pv)dva, i.e., the expected traveled distance from v to a
accounting for the fact that the robot can get connected at v.
This stochastic shortest path problem formulation is different
from a traditional shortest path problem.

The minimum expected distance when starting from state
v0 is then given by

J∗(v0) = min
µ

E
{vk}

[ ∞∑
k=0

g(vk, µ(vk))

]
,

where µ is a policy that prescribes what action to take at
a given state, i.e., µ(v) is the action to take at state v. The
policy µ specifies which neighboring node to move to next,
i.e., if at node v, then µ(v) is the next node to go to. The
objective here is to find the optimal policy µ∗, that would



minimize the expected distance on the imposed DAG. Note
that given µ∗, we can obtain the optimal solution path P∗ =
(v1 = vs, v2, · · · , vm), where vk+1 = µ∗(vk), for all k, and
vm ∈ T .

We next show, in the following Lemma, that the optimal
solution can be characterized by the Bellman equation.

Lemma 2: The optimal cost function J∗ is the unique
solution of the Bellman equation:

J∗(v) = min
u∈A(v)

{(1− pv)dvu + (1− pv)J∗(f(u))} ,

and the optimal policy µ∗ is given by

µ∗(v) = arg min
u∈A(v)

{(1− pv)dvu + (1− pv)J∗(f(u))} ,

for all v ∈ V ′ and where J∗(st) = 0.
Proof: It can be confirmed that the formulation satisfies

Assumption 2.1.1 and 2.1.2 in [18]. The proof is then
provided in [18].

The optimal solution with the minimum expected distance
can then be found by running value iteration [18]:

Jk+1(v) = min
u∈A(v)

{(1− pv)dvu + (1− pv)Jk(f(u))} ,

with the policy at iteration k + 1 given by

µk+1(v) = arg min
u∈Av

{(1− pv)dvu + (1− pv)Jk(f(u))} ,

for all v ∈ V ′ and where Jk(st) = 0, for all k.
We next discuss the computational complexity of utilizing

value iteration and show how it can efficiently provide us
with the optimal solution. In the following Lemma, we show
that it converges to the optimal solution in at most the same
number of iterations as there are nodes in the graph.

Lemma 3 (Computational complexity): When we start
from J0(v) =∞, for all v ∈ V ′, the value iteration method
yields the optimal solution after at most |V ′| iterations.

Proof: This follows from the convergence analysis of
value iteration on a SSP problem with a DAG structure,
provided in [18].

IV. NUMERICAL RESULTS

Consider a scenario where a robot is located in a 50 m
× 50 m workspace with the remote station at the origin as
shown in Fig. 4. The initial location of the robot is at the
corner of the workspace as shown in Fig. 4. The channel is
generated using the probabilistic channel model described
in Section II-A, with the following parameters that were
obtained from real channel measurements in downtown San
Francisco [15] : nPL = 4.2, σSH = 2.9 and βSH = 12.92 m.
Moreover, the multipath fading is taken to be uncorrelated
Rician fading with the parameter Kric = 1.59. In order
for the robot to be connected, a minimum received power
of PR,th,dBm = −80 dBmW is required, and the maximum
transmission power of the robot is taken to be P0,dBm = 27
dBmW [19].

The robot is assumed to have 5 % a priori measurements
in the workspace. It then utilizes the channel prediction
framework described in Section II-B to predict the channel
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Fig. 4: The optimum path based on our proposed approach
for a channel realization. The background color plot denotes the
predicted probability of connectivity, which is used by the robot
for path planning. Readers are referred to the color pdf for better
visibility.

at any unvisited location. We discretize the workspace into
cells of dimension 1 m × 1 m, and each such cell serves
as a node in the graph. The actions available to the robot
at every node are {left, right, top, down}. This gives us a
grid graph of dimension 50 × 50. We obtain an estimated
probability of connectivity for every node, as described in
Section II-C, which will be utilized by the robot for its path
planning. We also add a new terminal node in the graph with
the probability of connectivity 1, which represents the remote
station at the origin. The node closest to the remote station
in the workspace is attached to this new terminal node with a
edge weight equal to the expected distance till connectivity
when moving straight towards the remote station from the
node. This can be calculated based on the work in [13].

Our approach Baseline heuristic
Avg distance (m) 37.33±24.10 67.63±40.89

TABLE I: The average traveled distance along with the corre-
sponding standard deviation, for our proposed approach and for the
baseline heuristic approach. The average is obtained by averaging
over 500 channel realizations. We can see that our approach results
in a significant reduction in the traveled distance.

We next compare our proposed approach with a baseline
heuristic of moving straight towards the remote station.
The performance of the approaches are evaluated based on
the true probability of connectivity of a node calculated
based on the true value of the channel. Fig. 4 shows the
solution path produced by our proposed approach for a
sample channel realization. The background plot denotes the
robot’s prediction of the probability of connectivity in the
workspace. We see that the optimum path takes a detour,
from its route to the remote station, in order to visit areas of
good probability of connectivity. Table I shows the expected
distance along with the corresponding standard deviation, for
our proposed approach and the baseline heuristic, averaged
over 500 channel realizations. We see that the our approach
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Fig. 6: Histogram of the average distance for our proposed
approach and the baseline heuristic, over 500 channel realizations.

outperforms the baseline heuristic significantly and provides
an overall 45% reduction in the expected traveled distance.
Fig. 5 shows the distribution of the percentage decrease in the
traveled distance, obtained by using our approach instead of
the baseline heuristic. As can be seen, our proposed approach
can result in a significant reduction in the traveled distance.
In a small fraction of the cases however, there is an increase
in the expected cost when using our approach. This arises due
to a mismatch between the true and the predicted probability
of the connectivity map. Finally, Fig. 6 shows the histogram
of the traveled distance using 500 channel realizations. We
can see that our approach can reduce the traveled distance
and thus the total motion energy consumption significantly.

V. CONCLUSIONS

In this paper, we considered the scenario where an un-
manned vehicle, that is not currently connected, needs to
utilize its mobility to find a connected spot to a remote
station (or another unmanned vehicle), in an energy effi-
cient way. More specifically, we considered a robotic path
planning problem in realistic communication environments
(e.g., multipath, shadowing, path loss), where the robot needs
to find a connected spot while minimizing its expected
traveled distance. We showed how this problem can be
posed in a graph-theoretic framework. Then, by utilizing

tools from the stochastic dynamic programming literature,
we showed how it is possible to obtain the optimal solution
to this challenging problem, by putting a mild condition
on the paths. Finally, we confirmed the efficiency of our
proposed approach with extensive simulations, using channel
parameters obtained from real channel measurements. Our
results showed a significant saving in the traveled distance
when compared to baseline heuristic approaches.
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