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Optimization of Mobile Robotic Relay Operation
for Minimal Average Wait Time
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Abstract— This paper considers trajectory planning for a
mobile robot which persistently relays data between pairs of
far-away communication nodes. Data accumulates stochastically
at each source, and the robot must move to appropriate positions
to enable data offload to the corresponding destination. The
robot needs to minimize the average time that data waits at
a source before being serviced. We are interested in finding
optimal robotic routing policies consisting of 1) locations where
the robot stops to relay (relay positions) and 2) conditional
transition probabilities that determine the sequence in which the
pairs are serviced. We first pose this problem as a non-convex
problem that optimizes over both relay positions and transi-
tion probabilities. To find approximate solutions, we propose a
novel algorithm which alternately optimizes relay positions and
transition probabilities. For the former, we find efficient convex
partitions of the non-convex relay regions, then formulate a
mixed-integer second-order cone problem. For the latter, we find
optimal transition probabilities via sequential least squares
programming. We extensively analyze the proposed approach
and mathematically characterize important system properties
related to the robot’s long-term energy consumption and service
rate. Finally, through extensive simulation with real channel
parameters, we verify the efficacy of our approach.

Index Terms— Autonomous robots, unmanned aerial vehi-
cle (UAV), relay systems, communication-aware robotics,
UAV-assisted communication, polling systems.

I. INTRODUCTION

S IGNIFICANT advances in robotics over the past several
years have created new possibilities in the design of com-

munication systems. For example, unmanned vehicles (ground
or unmanned aerial vehicles) may enable, extend, or improve
networks via data muling [1], [2], [3], relaying [4], [5], [6],
[7], or beamforming [8], [9]. Design of these mobility-enabled
communication systems must account for both the motion and
communication aspects of operation. This field is referred
to as communication-aware robotics [10], [11], [12], [13].
Muralidharan and Mostofi [13] provide a recent review of this
area.

In this paper, we consider the operation of a mobile robot
which is tasked with persistently servicing several disparate
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Fig. 1. At each source, data accumulates in a queue which must be
offloaded to the corresponding destination while minimizing the average wait
time. The relay operation is performed by a mobile robot, which needs to
move to an optimum position within each feasible relay region to service
the corresponding queue. After servicing queue i, the robot moves to service
queue j with probability pi,j , which is found based on optimizing a stochastic
robotic routing policy. See the color pdf for better viewing.

communication links each consisting of a source and desti-
nation pair, as shown in Fig. 1. Data arrives stochastically at
each source and must be sent to its corresponding destination,
which is too far away for direct communication. The mobile
robot enables data transfer between each source-destination
pair by creating a two-hop link between them. Examples
of such systems include sensor networks [14] and ad hoc
networks deployed for search and rescue or after a natural
disaster.

To effectively operate, the robot must identify regions,
labeled Relay Regions in Fig. 1, for each source-destination
pair where the link qualities from (to) the source (destination)
are good enough to permit the robot to relay data from the
source to the destination. Then, the robot must plan a trajectory
which repeatedly visits these regions, allowing for persistent
data transfer.

Several factors make this problem interesting and complex.
First, in general, full channel information is not known to
the robot. Therefore, the robot must accurately predict the
relay regions with limited information. Doing so requires
realistic modeling of highly non-convex spatial variations of
communication channels, based only on sparse prior samples,
as simplified models, e.g., disc models, may result in perfor-
mance degradation. Second, as the real-world communication
channels which determine the relay regions are irregular,
the regions become non-convex and disjoint, making path

1536-1276 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 25,2023 at 12:10:05 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9668-6873
https://orcid.org/0000-0003-2670-2214


3734 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 6, JUNE 2023

planning through them challenging. Third, the robot may need
to service some pairs more frequently than others due to
potentially heterogeneous data accumulation rates and spatial
asymmetry. Fourth, the path planning must be co-optimized
with transitional routing probabilities. Finally, persistent oper-
ation calls for infinite horizon planning, requiring careful
trajectory parameterization and resource constraint definitions.

To account for these factors, we employ a realistic, proba-
bilistic channel estimation framework and consider stochastic
trajectories parameterized by a set of relay positions (one per
relay region) and transition probabilities, as shown in Fig. 1.
These stochastic robotic path planning policies allow for arbi-
trary, non-homogeneous service frequencies [15] and provide
security benefits in adversarial settings [16]. Alternatively, they
may be used as a basis for the construction of deterministic
policies [17], which may be difficult to directly optimize.

Utilizing mobile robots to relay data has received consid-
erable attention in recent years [1], [2], [18], [19], [20], [21],
[22], [23]. In these problems, trajectory optimization considers
paths which either move the robot from node to node (data
muling) [1], [2] or move the robot to locations where the
wireless channel quality permits reliable communication [9],
[20], [21], [22], [23]. Closely related are persistent moni-
toring problems, in which a robot senses various locations
in a workspace and transfers the sensed data to a remote
station [24], [25], [26], [27], [28], and communication-aware
variations of the vehicle routing problem (VRP) [29], [30].

However, servicing a number of source-destination pairs
with heterogeneous traffic, and in real-world channel environ-
ments, through visit location optimization and persistent path
planning differentiates this work from the literature. In much
of existing work that addresses the robotic path planning com-
ponent, either simplified channel models, e.g., disc models, are
used [6], [21], [24], [29], or the robot visits a number of sites
directly, i.e., without any communication component [1], [2].1

This greatly simplifies optimization of visiting locations. Other
work focuses on planning tours which visit each site exactly
once [20], [26] rather than considering non-homogeneous visit
frequencies. On the other hand, in most work that consider real
communication issues, either path optimization from point A
to point B is considered and/or only a single source-destination
is assumed with a given starting point [9], [21], [22], [22], [23],
[31]. Optimizing both the stop locations and the stochastic
routing policy in realistic channel environments that result
in highly non-convex relay regions, and while addressing
multiple heterogeneous, persistent sources introduces exciting
new challenges, which motivates the proposed mathematical
framework of this paper.

Our system of interest is also related to polling systems,
in which a single server services multiple queues. In fact,
we use seminal results which characterize average wait times
for Markovian polling systems [32], and we show that polling
system optimization becomes a special case of our problem
of interest. When appropriate, we draw analogies with polling

1Note that the term “relaying” in these papers refers to data muling
(physically picking data up from one location and dropping it off at another)
and differs from what relaying means in this paper.

system problems. However, such work is not in the context
of robotics, so issues related to location optimization and
realistic communication environments are not relevant. Even
without our robotic-related issues, a survey of polling systems
literature shows that finding general optimal operating policies
is an open problem [33], [34], [35], [36], [37], [38]. The
additional considerations of location optimization and realistic
communication environments adds further complexity to our
problem.

We next summarize our contributions.

1) For the highly non-convex and intractable persis-
tent relaying problem described above, we introduce
approximately-optimal robotic relay policies (AORP’s)
and bring a foundational understanding to this problem.
Specifically, we propose a novel approach that iteratively
minimizes the average wait time over both relay posi-
tions and the stochastic Markovian routing policy (i.e.,
robot transition probabilities from one service location
to the next). These stochastic policies may be used as a
basis for the construction of deterministic policies, as we
shall also show.

2) When optimizing the service locations, we show how
each relay region can be predicted and efficiently par-
titioned into a set of convex regions. We then show
how the optimum robot service locations can be found
via an efficient mixed-integer second-order cone pro-
gram (MISOCP) that minimizes the average wait time.
We further show how the optimum Markovian robotic
routing policy can be found via sequential least squares
programming (SLSQP).

3) Using a polling system model of the robot’s operation,
we mathematically characterize the robot’s service time
percentage, average power, and average service rate. Our
findings reveal interesting characteristics of the system
in the long-term as well as the per stage context.

4) We extensively test the proposed approach in realistic
channel environments (channel parameters from real
data) and show the impact of several different parameters
on the performance of the system. We further compare
with the state-of-the-art and also validate our theoretical
results.

The paper proceeds as follows: Section II introduces models
for communication, channel prediction, data accumulation and
offloading, and robot motion, along with a Markov process
model of the system. Section III formalizes the minimal aver-
age wait time problem, and in Section IV, we propose a novel
algorithm to find approximately-optimal solutions. Section V
provides analytical results on the long-term energy consump-
tion and service rate of the system. Section VI includes
results from extensive simulated experiments which illustrate
the efficacy of our approach. We conclude in Section VII.

II. SYSTEM MODELING

Consider a single robot in an environment with n com-
munication subsystems, each consisting of a pair of source-
destination nodes, as shown in Fig. 1. Data arrives at each
source node in a stochastic manner and must be communicated
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to its corresponding destination with a minimum delay. How-
ever, the source-destination pairs are located such that direct
communication between them is not possible, possibly due to
a large distance or blockage from objects in the environment.
Thus, a mobile robot is tasked with acting as a relay, constantly
planning its path in the area to transfer the information from
each source to its corresponding destination while minimizing
the overall delay. In this section, we present the models for
communication, channel prediction, data transfer, and motion
used in this paper, as well as a Markov chain model useful
for analyzing the system’s long-term properties.

A. Communication and Channel Prediction Model

Communication from a source to its destination involves
data transfer across two channels: the link from the source to
the robot and the link from the robot to destination. When the
source (robot) transmits with power ΓT , the received Signal-
to-Noise Ratio (SNR) at the robot (destination) is given by
SNRrec = ΓT × Υ, where Υ is the Channel-to-Noise Ratio
(CNR). The effects of path loss, shadowing, and multipath
fading result in a spatially-varying CNR.

A minimum Bit Error Rate (BER) or other Quality of
Service (QoS) requirement induces a minimum received SNR
requirement for reliable communication, SNRth. If SNR ≥
SNRth, the source (robot) can communicate with the robot
(destination). Since the robot and the sources are assumed to
have a fixed transmission power, the SNR threshold trans-
lates to a minimum required CNR threshold Υth, and the
spatially-varying channels dictate the connectivity regions.

In order for the robot to constantly plan its path and
relay the information between the source-destination pairs,
it needs to assess the connected region for each communication
link, i.e., the connected regions for communication from each
source node to itself as well as the connected regions for
transmission from itself to each destination. This, however,
requires the robot to predict the channel quality at unvisited
locations over the workspace. In this paper, we utilize our
past work on stochastic channel prediction [39] to enable
the robot to predict its connectivity regions. This approach
uses a spatial stochastic process model that accounts for
the effects of path loss, shadowing, and multipath fading.
More specifically, the channel is characterized by path loss
parameters θ, shadowing power α2, shadowing decorrelation
distance β, and multipath fading power σ2. Given a very small
number of prior channel measurements, the CNR (in dB) at an
unvisited location x, ΥdB(x), can then be best modeled by a
Gaussian random variable with its mean and variance given as
follows:

E[ΥdB(x)] = Hxθ̂ + ΨT (x)Φ−1(Ym − Hmθ̂),
Σ(x) = α̂2 + σ̂2 − ΨT (x)Φ−1Ψ(x), (1)

where Ym = [y1, . . . , ym]T are the m priorly-collected
CNR measurements (in dB), Xmsr = [xmsr

1 , . . . , xmsr
m ] are

the measurement locations, θ̂, α̂, β̂, and σ̂ are the estimated
channel parameters (using Ym), Hx = [1 −10log10(‖x−xb‖)]
with xb denoting either the location of the source in the source-
to-robot channel or destination in the robot-to-destination

channel, Hm = [HT
xmsr
1

, . . . , HT
xmsr

m
]T , Ψ(x) = [α̂2exp(−‖x −

xmsr
1 ‖/β̂), . . . , α̂2exp(−‖x− xmsr

m ‖/β̂)]T , and Φ = Ω + σ̂2Im

with [Ω]i,j = α̂2exp(−‖xmsr
i − xmsr

j ‖/β̂), ∀i, j ∈ {1, . . . , m}
and Im denoting the m × m identity matrix.

This Gaussian process model permits the calculation of the
probability that the CNR exceeds the minimum CNR imposed
by the QoS requirement. At a point x, P(ΥdB(x) ≥ Υth, dB) =
Q((Υth, dB − E[ΥdB(x)])/

√
Σ(x)), where Q(·) is the com-

plementary cumulative distribution function of the standard
normal distribution. The prior channel measurements required
to make this prediction can be provided by static sensors in
the field, gathered in previous operations or at the beginning
of the operation, and/or obtained via crowdsourcing.2

The robot can only service the sources from locations where
the CNR for both the source-to-robot and robot-to-destination
channels exceed the threshold Υth,dB. We call this the true relay
region: Rtrue

i = {x ∈ R2|Υtrue
i,s,dB(x) ≥ Υth,dB, Υtrue

i,d,dB(x) ≥
Υth,dB}, where Υtrue

i,s,dB(x) and Υtrue
i,d,dB(x) are the true CNR in

dB at location x of, respectively, the source-to-robot and robot-
to-destination channels for the ith source-destination pair.

The robot, however, will not know Rtrue
i and must predict

the relay regions with the above channel prediction frame-
work. Assuming independent channels, the probability of a
successful communication between the ith source-destination
pair with the robot at position x is

pi,sd(x) = P(Υi,s,dB(x) ≥ Υth,dB) × P(Υi,d,dB(x) ≥ Υth,dB),
(2)

where Υi,s,dB(x) and Υi,d,dB are the predicted CNR in dB
at location x of, respectively, the source-to-robot and robot-
to-destination channels for the ith source-destination pair.
By applying a threshold to the probability of successful end-
to-end communication, pth, we then have a predicted relay
region: Ri = {x ∈ R2|pi,sd(x) ≥ pth}. Due to the irregular
spatial variations of real-world communication channels, these
regions will be highly non-convex.

All links are assumed to be of bandwidth B Hz, and both
the source and robot transmit with a fixed spectral efficiency
of ξ bps/Hz, e.g., they transmit with a fixed M-QAM constella-
tion. As a result, when servicing, the robot offloads data from
the source at a rate of ξ × B bps.

B. Data Accumulation and Offloading

Let {q1, . . . qn} represent infinite-capacity queues at the
sources. We assume that the data arrive at qi according to
a Poisson process with average rate λi bps. The traffic for a
single queue is denoted by ρi = λiζ. For the entire system,
we have λs =

∑n
i=1 λi and ρs =

∑n
i=1 ρi.

The average wait time, W̄ , is the average duration of time
between the moment a bit arrives in the queue and the moment
it begins to be sent, and the service time, ζ = 1/(ξB),
is the time required to transfer a single bit from source to
the robot, assuming a successful transmission, which will

2The prior channel measurements that the robot can obtain are based on
the downlink channel. When it needs to predict the uplink channel, the prior
measurements can be collected by the remote sensor which can then send the
needed parameters back to the robot for uplink channel prediction.
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be part of the optimization framework. Thus, the average
total time between the moment a bit enters a queue and the
moment it arrives at the destination is W̄ + 2ζ. The service
discipline describes how many bits to service during a single
visit to a source-destination pair. We consider the exhaustive
service policy, in which the robot continues service until the
queue is empty. This service discipline minimizes average wait
time [35].

C. Motion Model

We assume that when in motion, the robot travels at a
constant velocity, and we model the motion power as a linear
function of speed. Specifically, we use a model derived from
experimental studies which holds for a large class of robots
(e.g., Pioneer robots) [40]: Γm(v) = κ1v + κ2 for v > 0 and
Γm(v) = 0 for v = 0, where v is the robot’s speed, and
κ1 and κ2 are positive constants determined by the robot’s load
and mechanical system. We consider trajectories where, for
each pair, the robot chooses a single relay position, ri ∈ Ri,
at which the robot stops to relay, so that when traveling
between two relay positions ri and rj , the motion energy
consumed is given by Em = (κ1 + κ2/v)||ri − rj ||.

The switching time is the duration of time between the
moment the robot completes service for one pair and begins
service at the next. Let S denote the symmetric matrix of
switching times, with si,j denoting the switching time between
qi and qj . The switching times are determined by the relay
positions and the robot’s speed: si,j = ||ri − rj ||/v. We write
S(Xr) to convey the dependency of S on Xr := {r1, . . . , rn}.

The robotic routing policy determines the sequence in which
the pairs are serviced. As discussed in Section I, we are
interested in stochastic robotic routing policies characterized
by an irreducible Markov chain, Q, with a transition matrix
P , where pi,j is the probability of servicing the jth source-
destination pair next, given the robot is currently servicing
the ith pair. We denote with π = [π1, . . . , πn] the stationary
distribution of Q.

D. Markov Chain Model for Persistent Operation

The instant the robot begins to service a queue is referred to
as a polling instant, and the duration of the robot’s operation
may be decomposed into a sequence of stages, with the kth

stage beginning and ending at the kth and (k + 1)th polling
instants, respectively. Let Lk = [L1,k, . . . , Ln,k]T and Qk ∈
{q1, . . . , qn} denote the queue length at each source and the
source being polled, respectively, at the kth polling instant. The
sequence of random variables L := {(Lk, Qk)}k≥0 forms a
Markov chain, and for the robotic routing policy and service
discipline discussed above, the chain is stable, i.e., positive
recurrent, under the mild assumption that ρs < 1 and Q
is irreducible [41]. Thus, empirical time averages of system
properties converge to the expected values indicated by the
unique stationary distribution.

Analyzing the system via the Markov chain’s stationary
regime assumes that robotic operation is of sufficient duration
for system metrics to approach the values predicted by an
asymptotic analysis. We find that, in practice, this time is

typically short. Thus the analysis is valid even when con-
sidering a finite-time operation imposed by a robot’s energy
constraints.

The average wait time in the stationary regime is a function
of the average arrival rates, service time, switching times, and
transition probabilities, leading to the following lemma:

Lemma 1: The average wait time, W̄ , in a polling system
under the exhaustive service policy and a Markovian routing
policy is given by (3), shown at the bottom of the next

page, with s̄ =
∑N

i=1 πi

∑N
j=1 pijsi,j denoting the average

switching time and T̄ki denoting the expected time between
any departure from qi and the most recent previous departure
from qk. Furthermore, T̄ki is a function of P and can be found
by solving a system of n2 equations.

Proof: The proof first decomposes total wait time into
the wait time of an equivalent M/G/1 queue and addi-
tional wait time incurred due to switching. This is then
followed by a long derivation. See Boxma and Weststrate for
details [32]. �

For our relay system, ζ is fixed and given by the spectral
efficiency and communication bandwidth. Switching times,
S(Xr), are determined by the robot’s velocity, v, and the
choice of relay positions, Xr. The relay positions are chosen
from the relay regions, Ri, which are in turn determined by
the spatially-varying channel qualities, the QoS requirements,
and the transmission power Γt. The transition probabilities
P are precisely the robotic routing policy, while the arrival
rates λi are exogenous. Thus, given the spectral efficiency,
ξ, channel bandwidth, B, the robot’s velocity v, and the
robotic relay policy(Xr, P ), we can calculate average wait
time in the stationary regime as W̄ (λ, 1/(ξB), S(Xr), P )
using Lemma 1.

III. PROBLEM FORMULATION

Consider our problem of a robot tasked with relaying data
between n source-destination pairs. As mentioned earlier,
an important performance metric of such a robotic relay
system is the average wait time. Therefore, our objective is
to minimize the system-wide average wait time3 as given in
Eq. (3). Let P be the set of transition matrices describing
irreducible Markov chains. Our problem is then formally stated
as:

mini
Xr ,P

W̄ (λ, ζ, S(Xr), P )

s.t P∈ P , Xr ∈
n∏

i=1

Ri (4)

Remark 1: In Section V, we prove that long-term energy
consumption (i.e., stationary values) does not depend on the
robotic relay policy. On the other hand, as we shall see,
per stage energy consumption is a function of the robotic
relay policy. Sections IV-A and V-B show how our proposed
approach implicitly minimizes average energy per stage.

This problem, however, is challenging to analyze and
solve due to the coupling of robotic path planning and data

3We note that minimizing the maximum wait time can be another objective
of interest, depending on the scenario [42], [43].
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TABLE I

LIST OF KEY VARIABLES

servicing. In fact, simpler versions of this problem, with-
out the robotic component, are still difficult to analyze and
have been the subject of extensive studies in both polling
systems and queuing theory. We next present special cases
of Problem (4) which motivate the rest of this paper and
further put this optimization problem in the context of existing
work.

A. Special Case: No Robotic Position Optimization

In this section, we briefly consider two special cases in
which the robotic operation facet of our problem becomes
irrelevant, so that (4) reduces to problems which have been
studied extensively in queuing theory and polling systems.
First, if the robot need not move at all, the solution to (4)
may be found using results on M/G/1 queues, as stated in the
following theorem:

Theorem 1 (M/G/1 equivalence for the case of no motion):
If I :=

⋂n
i=1 Ri �= ∅, then the {(X∗

r , P ∗)|r∗i =
r∗j ∈ I, ∀i, j; P ∈ P} is the solution set of (4), and
W̄ ∗ = (ρsζ)/(2(1 − ρs) is the optimal value.

Proof: If I :=
⋂n

i=1 Ri �= ∅, then all the predicted
connected regions are overlapping. As such, the robot can
stay in one location to service all source-destination pairs,
i.e., there is effectively no need for an unmanned vehicle.
In this special case, all switching times become zero. As shown
in [32], the polling system’s wait time is minimized when all
switching times are zero. We are thus left with an equivalent
M/G/1 queuing system whose average wait time is given in
the theorem, regardless of the transition probabilities. �

Second, if each region Ri consists of only a single point,
then optimization over relay positions is trivial. From the
angle of minimizing average wait time, the relay system
becomes mathematically equivalent to the polling system
studied in [32]. While [17] and [44] suggest methods to find
approximate solutions, no exact algorithm is known for this
problem.

B. Coupled Path Planning and Communication Problem

While the results in Section III-A help root our work in
existing literature, relay position optimization in those special
cases is trivial. We now focus on the more realistic instances of
Problem (4) in which relay positions must be optimized along
with transition probabilities. Among the many difficulties pre-
sented by this problem is the complex relationship between T̄ki

and P . To better focus on the new dimension of path planning
and avoid repeatedly solving the system of n2 equations that
relate T̄ki and P , we follow a common approach in polling
systems literature [17] and restrict transition probabilities so
that pi,j = pk,j = πj , ∀i, j, k ∈ {1, . . . , n}, which we term a
stochastic robotic routing policy. This permits a closed-form
expression for T̄ki, as we characterize next:

Theorem 2: For a polling system with stochastic routing,
the expected time between any departure from qi and the most
recent previous departure from qk is given by

T̄ki =
ρit̄

πi
+ s̄i +

(ρs − ρk)t̄
πk

+
1 − πk

πk

n∑
h=1

πh

∑
l �=k

πlsh,l ,

(5)

where t̄ is the average stage duration (mathematically charac-
terized in Lemma 3 of Section V), and s̄i is the first moments
of the switching time from any relay position to ri.

Proof: See Appendix for the proof. �
Stochastic robotic routing policies still allow for arbitrary

visit frequency and security benefits while reducing the com-
plexity of the design space. Robotic relay policies thus consist
of the tuple (Xr, π), and (4) can be restated as:

mini
Xr ,π

W̄ (λ, ζ, S(Xr), P (π))

s.t
n∑

i=1

πi = 1, πi > 0 , ∀i, Xr ∈
n∏

i=1

Ri. (6)

where P (π) indicates the dependence of P on π.

W̄ (λ, ζ, S, P ) =
ρsζ

2(1 − ρs)︸ ︷︷ ︸
M/G/1wait time

+
1
2s̄

n∑
i=1

πi

n∑
l=1

pijs
2
i,j +

1
s̄ρs

n∑
i=1

πi

n∑
j=1

pijsi,j

∑
k �=i

ρkT̄ki

︸ ︷︷ ︸
additional wait time due to non−zero switching times

(3)
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Algorithm 1 Approximately-Optimal Robotic Relay Pol-
icy (AORP)

Result: πAORP, XAORP
r

For each source-destination pair:
Step 1: Find the predicted relay regions (Ri), using the
channel prediction model of Section II-A.
Step 2: Find ai, the α-shape of Ri.
Step 3: Simplify ai using Ramer-Douglas-Peucker
algorithm.
Step 4: Find convex partition of ai using
Hertel-Mehlhorn algorithm.
Initialize πAORP with Eq. 12. Then iteratively optimize
πAORP and XAORP

r :
Step 5: Solve Problem 10a to update XAORP

r .
Step 6: Solve Problem 11 to update πAORP.
Step 7: Repeat steps 5 and 6 until convergence.

We refer to πi as the visit frequency of qi. We are then
interested in finding the visit frequencies and relay positions
that minimize average wait time, which is simpler than the
original problem in (4). This problem, however, is still quite
challenging and lacks structure that would make it easily
solvable. In the next section, we then show how to find
approximately-optimal solutions.

IV. APPROXIMATELY-OPTIMAL ROBOTIC RELAY POLICIES

The optimization problem in (6) is intractable due to the
highly non-convex nature of the relay regions Ri and the
strong coupling between Xr and π. Thus, it is necessary to
find approximately-optimal robotic relay policies (AORP’s).
To reduce complexity, we propose an iterative approach
which minimizes the average switching time over Xr with
π fixed, then minimizes W̄ over π with Xr fixed. This
may be repeated until convergence. Algorithm 1 outlines
the approach. We denote the variables associated with the
solution to Algorithm 1 with the AORP superscript, so the
visit frequencies, robotic relay positions, and average wait time
corresponding to the AORP are given by πAORP, XAORP

r , and
W̄ AORP, respectively. We next discuss the two stages of this
approach in detail.

A. Optimization of Robotic Path Planning

In the first part of our iterative approach, we fix π and find
the optimal robotic relay positions Xr, simplifying (6) to:

mini
Xr

W̄ (λ, ζ, S(Xr), P (π))

s.t Xr∈
n∏

i=1

Ri , (7)

In general, this problem is non-convex and intractable.
In this section, we then show how we can tackle this problem.
We first note that relay positions, Xr, affect the average
wait time, W̄ , through the switching times, si,j . Specifically,
compared to the wait time of the system with no switching
times (i.e., an M/G/1 queue), the average additional wait time

due to switching times is positive everywhere except when
the average switching time is zero (s̄ = 0), as discussed
in the proof to Theorem 1. Therefore, an intuitive heuristic
simplification for solving (7) is to minimize the average
switching time instead. Furthermore, minimizing the average
switching time amounts to minimizing the average distance
traveled per stage of operation, which is a common objective
in robotics. In fact, as we show in Section V-B, this is
equivalent to minimizing average energy consumed per stage.
Thus, rather than solving (7), we find Xr that minimizes the
average switching time, as follows:

mini
Xr ,S

n∑
i=1

πi

n∑
j=i

πj si,j (8a)

s.t ||ri − rj ||2 =vsi,j , ∀ i, j (8b)

Xr∈
n∏

i=1

Ri . (8c)

The objective is linear, and if (8b) is relaxed, i.e., ||ri−rj ||2 ≤
vsi,j , it becomes a second-order cone constraint which will be
active at the optimal solution. We next show how to partition
the regions Ri so that (8c) can be stated as a combination of
linear and integer constraints, making the problem a mixed-
integer second-order cone program (MISOCP).

1) Relay Region Partitioning: In real channel environments,
each relay region and predicted relay region can be irregular
and non-convex in its shape. However, there are many clear
advantages to optimizing over well defined regions in R2.
Thus, to solve (8a) efficiently, we next propose a procedure,
illustrated in Fig. 2, which converts each set Ri into a
set of convex polygons Ci = {Ci

1, . . . , C
i
mi

} whose union
approximates the predicted relay region Ri.4

i Convert the points Ri to a set of (possibly non-convex
and non-simple) polygons. This may be achieved by
finding the α-shape of the points, as originally proposed
in [45]. The α-shape of a set of points is a set of
polygons that best fit the original set, where the value of
α is chosen based on the granularity of the grid to make
the resulting polygons as tight to the points as desired.

ii Smooth the non-convex polygons using the Ramer-
Douglas-Peucker (RDP) algorithm ( [46], [47]). This
will reduce the number of convex polygons required for
partitioning. Tolerance on the amount of area lost or
added by smoothing is set by the corresponding RDP
parameters.

iii Finally, perform convex partitioning on each of the
smoothed polygons. A number of algorithms exist for
such a partitioning. We elect to use the Hertel-Mehlhorn
algorithm [48], which has a time complexity of O(n)
and is guaranteed to produce at most four times the
minimal number of convex polygons required for the
partition.

This approach produces a reasonable number of convex parti-
tions that fit tightly to the predicted relay region, as illustrated
in Fig. 2. The procedure is performed only once for each

4As seen in Section VI, each Ri is not necessarily a joint set.
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source-destination pair, and the same partitions are then used
in each iteration of Algorithm 1.

2) Mixed Integer Second-Order Cone Problem Formulation:
With the convex partitions, we can now reformulate (8a) as a
MISOCP. First, note that for each convex polygon Ci

k, there
exists Ai

k, bi
k, such that Ai

kri − bi
k ≤ 0n if and only if ri is

in Ci
k, where 0n indicates a vector of length n of all 0’s, and

with an abuse of notation, ‘≤’ is the entry-wise comparison.
Furthermore, we introduce a set of indicator variables ηi

k,
where ηi

k = 1 if ri ∈ Ci
k and ηi

k = 0 otherwise, and η is the
collection of all ηi

k. Then, we have the following mixed-integer
program (MIP):

mini
Xr ,S,η

n∑
i=1

πi

n∑
j=i

πj si,j (9a)

s.t ||ri − rj ||2 ≤vsi,j , ∀ i, j (9b)

ηi
k(Ai

kri − bi
k)≤ 0n, ∀i, k (9c)

mi∑
k=1

ηi
k= 1, ∀i, ηi

k ∈ {0, 1}, ∀i, k . (9d)

where constraints (9c) and (9d) guarantee ri ∈ Ri. However,
the quadratic constraint (9c) contains both continuous and
integer variables, making the problem intractable for many
MIP solvers. We next show how to make (9c) linear.

Let ri,1 and ri,2 denote the first and second coordinates
of ri, respectively, and let Ri,k,min = min{ri,k | ri ∈ Ri}
and Ri,k,max = max{ri,k | ri ∈ Ri}. First, we constrain ri

to be within the bounding box Bi = [Ri,1,min, Ri,1,max] ×
[Ri,2,min, Ri,2,max]. Then for some large constant ci

k >
maxri∈Bi(||Ai

kri||∞), let b̃i
k = bi

k + ci
k1n, Ãi

k = [Ai
k, ci

k1n],
and r̃i

k = [ri, ηi
k]T , with 1n a vector of 1’s with length n.

Then Ãi
kx̃i

k − b̃i
k ≤ 0n if and only if ηi

k(Ai
kri − bi

k) ≤ 0n, and
the problem can be rewritten as a MISOCP:

mini
Xr ,S,η

n∑
i=1

πi

n∑
j=i

πj si,j (10a)

s.t ||ri − rj ||2 ≤vsi,j , ∀ i, j (10b)

Ãi
k r̃i

k − b̃i
k ≤ 0n, ∀i, k, ri ∈ Bi, ∀i (10c)

mi∑
k=1

ηi
k= 1, ∀i, ηi

k ∈ {0, 1}, ∀i, k . (10d)

The constraints in (10c) are now linear, so this problem can
be solved with mathematical solvers which provide guarantees
of optimality and finite time convergence.

B. Optimizing the Stochastic Robotic Routing Policy

In the second part of our iterative procedure, we fix Xr to
focus on finding the optimum stochastic robotic routing policy
π. As a result, the optimization problem of (6) simplifies to:

mini
π

W̄ (λ, ζ, S(Xr), P (π))

s.t
n∑

i=1

πi = 1, πi > 0, ∀i . (11)

This problem is mathematically similar to the stochastic
polling system optimization problem, and as discussed in

Section III-A, no exact algorithm is known for solving it
in its general form. Thus, similar to [17], we use succes-
sive quadratic approximations to find approximate solutions.
Specifically, we use sequential least squares programming
(SLSQP), which finds a local minimum. We next briefly
discuss a special case from polling systems literature for which
a closed form solution to (11) does exist, and discuss its
potential relevance to our robotic routing problem.

1) Square Root Rule Approximation: For a polling system
with exhaustive service, Poisson arrivals, and a stochastic
robotic routing policy, if all switching times are identical, then
average wait time becomes convex in π, and a closed-form
solution exists for the optimal visit frequencies, as stated in
the following lemma:

Lemma 2: Let π∗ be the visit frequencies which minimize
the average wait time in a polling system with exhaustive
service, Poisson arrivals, and stochastic routing. If si,j =
sk,l, ∀i, j, k, l ∈ {1, . . . , n}, then

π∗
i =

√
ρi(1 − ρi)∑n

j=1

√
ρj(1 − ρj)

. (12)

Proof: See [17]. �
While Eq. (12) results in a closed-form solution, it requires

identical switching times. In our robotic routing context,
this will only hold if all switching times are zero since
si,i = 0. This then results in the trivial case discussed in
Theorem 1. As such, this special case does not directly apply
to our scenario. However, we have observed from extensive
simulations that Eq. (12) is a good approximation when all
switching times except the self-loops, si,i, are similar, i.e.,
when si,j ≈ sk,l, ∀i, j, k, l ∈ {1, . . . , n}, i �= j, k �= l. In other
words, Eq. (12) may be a good approximation if the optimum
robotic relay positions become approximately equal distanced.
We leave rigorous investigation of this approximation to future
work.5

2) Observed Transition Probabilities: The visit frequencies
π found by solving (11) are with respect to the discrete time
Markov chain produced by taking snapshots of the system
at polling instances, i.e., Q. Consider the robot immediately
after it completes servicing source qi. With probability πi,
the robot then transitions back to servicing qi. However,
under the exhaustive service policy adopted in this paper
(see Section II-B), qi will be empty at this point, resulting
in the robot eventually finding another source to service
instantly (i.e., no time expires). As such, it makes sense
to exclude the self loops for simplicity, as summarized
next:

Remark 2: The observed stochastic robotic routing policy
is Markovian with transition probabilities P̃ given by

p̃ij =

{
πj�

k �=i πk
if j �= i,

0 otherwise.
(13)

5Note that even if we assume there is some form of delay that results in
non-zero si,i’s, such values would be negligible as compared to the time it
takes for the robot to travel from one relay region to the next, which is what
differentiates this problem from polling systems.
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Fig. 2. Extraction of a convex partition of the predicted relay region. First, evaluating the probability of connectivity across a fine grid produces a set of
points R1 at which p1,sd > pth. Here pth = 0.7, and R1 is shown shaded in grey on top of the true relay region, shown in red. (Left) Extracting the α-shape
of R1 produces several non-convex polygons, 5 in this case. Then the resulting polygons are partitioned into convex regions using the Hertel-Mehlhorn
algorithm. (Center) Without RDP smoothing, this produces 113 convex polygons. (Right) Using RDP to smooth before performing the partition reduces the
number of polygons to 11. See the color pdf for better viewing.

Consequently, the robot is always observed leaving a
relay position immediately upon service completion, and the
observed visit frequencies, π̃, may be found by finding the sta-
tionary distribution associated with P̃ , i.e., π̃T P̃ = π̃T . These
observed transition probabilities give clearer descriptions of
the robotic relay’s behavior and are used in Section VI to
analyze the results of the simulated experiments.

C. A Derived Deterministic Robotic Relay Policy

After convergence, an additional step may be taken to
produce a routing table policy based on the AORP in which
the relay positions and visit frequencies are the same but the
robot visits the pairs according to a deterministic, periodic
(not cyclic) sequence determined by πAORP, using the Golden
Ratio rule [49]. We refer to this policy as the AORP-Table
(AORPT). The AORPT policy eliminates the need to select
the next source to service on the fly while ensuring the same
visit frequencies. As the traditional state-of-the-art in robotics
route design is also deterministic, we use the AORPT for
comparison in Section VI. We next give a brief example.

Consider the case with four source-destination pairs with
π = [1/2, 1/4, 1/8, 1/8]. The Golden Ratio Rule produces the
following visit sequence for the robot to follow repeatedly:

(q1, q2, q1, q3, q1, q2, q1, q4) . (14)

This policy is periodic but not cyclic. Furthermore, it spaces
visits evenly throughout the period. To illustrate, consider an
alternative sequence which satisfies the visit frequencies π:

(q1, q2, q1, q2, q1, q3, q1, q4) . (15)

Here the two visits to q2 both occur in the first half of the
sequence whereas in (14), the visits are evenly distributed.

In summary, in this section, we showed how to find
approximately-optimal solutions to the optimization problem
in (6). Our proposed approach first finds an efficient convex
partition for each predicted relay region. It then iteratively
optimizes the robotic relay positions to minimize average
switching time while fixing the robotic routing policy, fol-
lowed by optimizing average wait time over the routing policy
(i.e., visit frequencies) while fixing the relay positions. After
convergence, the visit frequencies can further be translated to a
deterministic policy for efficient robotic operation in the field.

V. LONG-TERM AVERAGE POWER

CONSUMPTION AND SERVICE RATE

In this section, we present important system properties
regarding the long-term average power consumption and ser-
vice rate. The results further motivate the choice used for
the optimization problem formulation of the past sections.
Our analysis focuses on average values when operating in the
stationary regime. Thus, the results hold both in expectation
across an ensemble of realizations over a finite number of
stages, with initial conditions drawn according to the stationary
distribution of the Markov chain L, and in averaging asymp-
totically over time for any realization of the process, regard-
less of initial conditions. We first prove that the percentage
of time spent servicing is independent of the robotic relay
policy (Xr, P ). We then use this finding to derive key results
regarding average power consumption and service rate.

A. Relating Percentage of Time Servicing to System Traffic

We first examine the significance of the system traffic, ρs,
more closely and show that it gives the long-term percentage
of time the robot spends servicing bits in a queue. Recall
that, as presented in Section II-D, robotic operation may be
decomposed into a series of stages demarcated by the polling
instants, and that L is a Markov chain with Lk giving the
state of the system, i.e., the queue lengths and current queue
under service, at the kth polling instant. Recall further that the
robotic relay system is stable in the sense that L is positive
recurrent if and only if ρs < 1 and Q is irreducible. We are
now ready to present the following lemma:

Lemma 3: For any stable robotic relay policy, average
stage duration in the stationary regime, t̄, is given by t̄ =
s̄/(1 − ρs), where s̄ is the average switching time.

Proof: Under the assumption of stability, the average
number of bits entering the system in a stage, t̄λs, equals
the average number leaving, (t̄ − s̄)/β. The result follows
directly. �

As s̄ is determined by our robotic relay policy, the average
stage duration and the average time spent servicing during a
single stage are likewise determined by the policy. However,
Lemma 3 also indicates that the proportion s̄/t̄ is fixed (equal
to ρs) regardless of robotic relay policy, and similarly, the
long-term percentage of time spent servicing is independent
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of the policy, as stated in the following theorem. Here and
throughout the rest of the section, we use ‘

a.s.= ’ to indicate
almost sure equality, and to is the time of operation.

Theorem 3: Under any stable robotic routing policy, the
system traffic ρs gives the long-term percentage of time spent
servicing, i.e., limto→∞ φ(to)/to

a.s.= ρs, where φ(to) is the
total time spent servicing during operation.

Proof: φ(to) may be decomposed into the sum of all ser-
vice times completed during the full stages and an additional
service time completed for the current, incomplete stage. to
may be decomposed similarly so that

lim
to→∞

φ(to)
to

= lim
to→∞

(∑K(to)
k=1 φk + φε

)
/K(to)(∑K(to)

k=1 tk + tε

)
/K(to)

a.s.= lim
K→∞

(∑K
k=1 φk

)
/K(∑K

k=1 tk

)
/K

a.s.=
(t̄ − s̄)

t̄
= ρs ,

(16)

where K(to) is the number of complete stages after operation
of duration to, φk is the time spent servicing during the kth

stage, φε is any additional service time, tk is the duration
of the kth stage, and tε is any additional time. The second
equality holds because tε and φε are almost surely finite and
the remaining equalities hold due to the positive recurrence of
L as guaranteed by the assumption of stability. �

B. Energy Consumption and Average Power

Consider average energy consumption over a single stage of
operation, including both communication and motion energy.
We have the following theorem:

Theorem 4: For any stable robotic relay policy, the average
energy consumed over a single stage while in the stationary
regime, Ēst, is given by Ēst = t̄(Γm(v)(1 − ρs) + Γtρs).

Proof: Note that Ēst = s̄ Γm(v) + (t̄ − s̄)Γt. The result
follows directly from Lemma 3. �
Recalling from Lemma 3 that t̄ is a linear function of s̄, we see
the energy per stage is a linear function of average switching
time s̄, which is in turn determined by the robotic relay policy
(see Section II-B). In other words, the optimization problem
in (7) amounts to minimizing the average energy consumed
per stage, which is an important metric in robotics literature.
We next move from stage-level analysis to formally consider
the robot’s long-term average power consumption.

Theorem 5: Let E(to) be the energy consumed during oper-
ation of duration to. Then under any stable robotic relay policy
limto→∞ E(to)/to = a.s.= Γm(v)(1 − ρs) + Γtρs.

Proof: With E(to) = (to −φ(to))Γm(v)+φ(to)Γt, where
the first and second terms give the motion and communication
energy, respectively, the result follows from Theorem 3. �

While Theorem 5 is an asymptotic result, in practice it holds
for a long enough period of time (corroborated by simulation
results of Section VI), as summarized next:

Remark 3: For operation over a sufficiently large but
finite duration to, E(to) is well approximated by E(to) ≈
(Γm(v)(1 − ρs) + Γtρs)to.

C. System Long-Term Average Service Rate

The average number of bits serviced during a stage must
equal the average number of bits that enter the system for any
stable policy (see Lemma 3), which leads to the following:

Theorem 6: Under any stable robotic relay policy,
limto→∞ d(to)/to

a.s.= λs, where d(to) is the total number of
bits serviced during operation.

Proof: From the assumption of stability, data in and data
out must be equal in the long-term. �

While Theorem 6 is an asymptotic result, we find in practice
that the empirical service rate converges quickly to λs, which
leads to the following remark:

Remark 4: The total bits serviced during operation over a
sufficiently large but finite duration to is well approximated by
dout(to) ≈ λsto.

Importantly, systems with identical average long-term ser-
vice rates may have vastly different average wait times. As a
trivial example, consider two systems which each service a
single bit during operation over a fixed amount of time. The
first services the bit immediately and then idles the remainder
of the time, while the second idles for a time and then services
the bit at the very end of operation. While the average service
rate of the two systems is identical, the first system results
in less wait time. As such, the average wait time is the key
metric to consider when optimizing robotic operation.

A consequence of Remarks 3 and 4 is that for a robot
with a constrained energy budget of E , the total operation
time and total throughput of the system may be well approx-
imated by to ≈ E/(Γm(v)(1 − ρs) + Γtρs) and dout ≈
(1/ζ)E/(Γm(v)(1−ρs)+Γtρs) for any stable routing policy.

VI. SIMULATION RESULTS

In this section, we demonstrate the performance and effi-
cacy of our approach with extensive simulations in realistic
channel environments. First, we discuss channel prediction and
the extraction of convex partitions from the predicted relay
regions. We then extensively study the performance of our
approach by showing the effect of various system parameters
on the AORP. We further show that our proposed approach
can significantly reduce the average wait time compared to
the state-of-the-art. Finally, we discuss the average service
rate and energy consumption of the AORP to corroborate
Theorems 6 and 5.

In our implementation of Algorithm 1, (6) is solved using
the SLSQP solver of SciPy 1.7.1, and (10a) is solved with
IBM CPLEX 12.9. To initialize π, we use the approximation
in (12), and in all simulations, we keep the following system
parameters fixed: channel bandwidth B = 2 Mhz, spectral
efficiency ξ = 8 bits/s/Hz, robot’s constant velocity v = 1 m/s,
and motion power parameters κ1 = 7.2 N and κ2 = 0.29 W.

A. Relay Region Prediction

We first generate the source-robot and robot-destination
communication channels using realistic channel parameters
derived from real-world measurements in downtown San
Francisco. The following channel parameters, introduced in
Section II-A, are extracted from the real channel measurements
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Fig. 3. Sample generated (a) source-to-robot and (b) robot-to-destination channels. The spatial variation of the channel is highly non-convex, as can be
seen. (c) True relay region (red) and contours of predicted probability of successful end-to-end communication psd. (d,e) Final convex partitioning given two
threshold probabilities pth. Predicted relay regions (blue) are overlaid on the true relay region (red). (Bottom) The table shows pc, the probability that a point
in the predicted relay region is in the true relay region, and |C|, the number of convex partitions, for three values of pth. See the color pdf for better viewing.

of [50]: α2 = 16, β = 2.09 m, θ = [5.2 dB,−7.5]T and
σ2 = 1.96. Then, different channel instances are generated
based on these parameters using the probabilistic channel
generator described in [51]. Briefly, [51] utilizes a given set of
path loss, shadowing and multipath parameters to generate a
2D channel whose underlying parameters match the given set.
The robot and sources transmit with a power of Γt = 100 mW,
the receiver noise power is −85 dBm, and the acceptable SNR
threshold for all the channels is set to 33 dB. Given the transmit
power, the SNR threshold translates to a CNR threshold of
Υth, dB = 13 dBm. This then dictates the true relay regions,
which the robot does not know but needs to predict.

The robot then uses 1% apriori channel samples for
each channel to predict the channel over the rest of the
workspace, which is unvisited. Using the approach outlined in
Section II-A, the robot predicts the relay regions by calculating
the probability of successful end-to-end communication, pi,sd,
based on the CNR threshold (see Eqs. (1) and (2)).

B. Relay Region Convex Partitioning

We next show the process of extracting the convex partitions
as proposed in Section IV-A.1, which plays a central role in the
optimization of robotic relay positions. Fig. 3 (a,b) shows an
example of source-to-robot and robot-to-destination channels,
generated with the aforementioned real-world parameters. The
robot then uses 1 % a priori channel samples and predicts the
channel at the rest of the workspace in order to calculate
pi,sd across a fine grid of points. The relay region consists
of the points for which pi,sd ≥ pth. Fig. 3 (c-e) shows a true
connected region and two samples of the predicted regions
for two values of pth. As can be seen, for pth = 0.9, the
prediction framework is more conservative in declaring a
location as connected, resulting in a smaller predicted relay
region. As expected, fewer convex partitions are required for
pth = 0.9.

The table then compares the probability of true connectivity
as well as the number of associated convex partitions for
three values of pth. As can be seen, the predicted relay

regions provide good approximations of the regions where
the robot may successfully communicate with both the source
and destination, i.e., Rtrue

i . In particular, we see that the
probability that a point in Ri is in Rtrue

i becomes higher as the
threshold increases, as expected. We furthermore observe that
the probability of true connectivity is larger than the threshold
probability, i.e., for pc = P(x ∈ Rtrue

i |x ∈ Ri), we have
pc > pth. Finally, the number of convex partitions reduces
as pth increases, as expected.

Overall, as pth increases, the chance that locations in the
predicted relay region are truly connected goes up, and the
number of convex polygons required to partition the region
decreases, simplifying optimization problem (10a). However,
increasing pth makes the channel prediction more conservative
and can lead to inefficient robotic operation as larger areas of
the true relay region are excluded from the predicted region
(see Fig. 3 (d,e)). As a result, the robot travels longer distances
than needed between relay positions. In the rest of the paper,
we use pth = 0.7 for the prediction of all relay regions.

C. Impact of System Parameters

This section explores the impact of several system para-
meters on our proposed approach. We start with a system
of three source-destination pairs in order to show the impact
of several different system parameters on the performance.
We then increase the complexity and show the performance
for a system consisting of six source-destination pairs.

1) Traffic: To isolate the effect of traffic distribution, con-
sider the three-queue system with symmetric placement of the
subsystems shown in Fig. 4 (we note that the relay regions’
irregularity always introduces some asymmetry). In all three
cases, system traffic is held constant at ρs = 0.5 while
ρ1 is varied, where ρi is the traffic at the ith source (see
Section II-B). The remaining traffic is split evenly between
ρ2 and ρ3. The AORP transition probabilities are shown on
the routes, observed visit frequencies and traffic are labeled on
each subsystem, and the relay position within each predicted
relay region is marked.
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Fig. 4. Effect of traffic distribution on the AORP probability transitions and relay positions. The green squares indicate the relay positions, and the observed
transition probabilities, p̃AORP

i,j , are labeled on the arrows along each edge while the thickness of each edge corresponds to p̃AORP
i,j as well. Each subsystem is

labeled with both the corresponding incoming traffic, ρi, and the resulting visit frequency, π̃AORP
i . For each subsystem, the predicted relay region (in black)

is overlaid on the true connected region. Moving from left to right, the increase in ρ1 is reflected in the AORP transition probabilities and visit frequencies,
as can be seen. See the color pdf for optimum viewing of this figure.

Intuitively, as the traffic ρi at qi increases, π̃AORP
i should

increase. As can be seen, with ρ1 = 0.1, q1 receives only
half the traffic received by either q2 or q3. Then, under
the AORP, the robot mainly moves back and forth between
q2 and q3, visiting q1 on average only once every four visits.
When increasing ρ1 so that the traffic of each queue is
0.17, π̃AORP

1 increases so that the robot services each queue
with approximately equal frequency. Finally, when ρ1 = 0.4,
q1 receives four times the combined traffic of q2 and q3.
As can be seen, about half the visits are made to q1 while
the remaining are split between q2 and q3. Furthermore, the
relay positions rAORP

2 and rAORP
3 move farther away from each

other to be closer to rAORP
1 since the robot will rarely switch

between q2 and q3. In summary, when a queue accounts
for a greater proportion of the total system traffic, the visit
frequency to that queue increases, and the relay positions
may shift to account for certain switches occurring more
frequently.

2) Subsystem Placement: The relative placement of each
source-destination subsystem also greatly impacts the AORP,
as shown in Fig. 5. To isolate the effect of subsystem
placement, we keep the traffic at all subsystems equal. The
subsystems are first placed so that midpoints between each
source-destination pair form the vertices of an equilateral
triangle. The first subsystem is then increasingly offset in the
direction of the positive y-axis, as shown.

When the placement is symmetric (Fig. 5 (left)), each
queue is serviced with approximately the same frequency.
The slight difference in visit frequencies can be explained by
the particular shape of the predicted relay regions, which are
naturally different from each other. In other words, although
the source-destination pairs are positioned symmetrically, dif-
ferent shapes and locations of the predicted relay regions result
in rAORP

2 and rAORP
3 being placed closer to one another than

either can be to rAORP
1 , thus making the switching time to

q1 relatively longer. As a result, q1 is visited less frequently.
As the first subsystem is offset by first 20 m and then 40 m

in the subsequent figures, π̃AORP
1 drops to 0.25, then 0.22,

respectively. Intuitively, the optimum switching times s2,1,
s1,2, s3,1 and s1,3 increase as q1 moves farther away, so visits

to q1 lead to greater wait times in q2 and q3. Thus, q1 is visited
less often as it becomes more isolated.

3) Impact of Both Traffic and Subsystem Placement: Fig. 6
shows the impact of both subsystem placement and varying
traffic. An offset of 0 indicates the system is configured
symmetrically, as in Fig. 5 (left), and increasing the offset
moves the q1 subsystem away from the original configuration,
as shown in Fig. 5 (center, right). The overall system traffic
ρs is constant across all experiments, and ρ1/ρs gives the
percentage of incoming traffic through q1, which is varying.
The remaining traffic is split evenly between q2 and q3 so
that traffic is symmetric when ρ1/ρs = 0.33 . The figure then
shows the AORP observed visit frequency of the first subsys-
tem (π̃AORP

1 ). As can be seen, regardless of the distribution of
traffic, moving subsystem one farther away, decreases π̃AORP

1 .
Likewise, when less traffic arrives at q1, π̃AORP

1 decreases
regardless of offset.

4) Velocity: We next discuss the impact of the robot’s
speed on the performance of the AORP. Switching times scale
linearly with the inverse of robot’s velocity, i.e., 1/v, and as
such, v significantly impacts the average wait time of the
AORP. Specifically, Eqs. (3) and (5) indicate that wait time
W̄ is an affine function of 1/v for any stochastic policy. This
is seen in Fig. 7 (right), which shows the average wait time of
the AORP as a function of the robot’s speed in the three-queue
system shown in Fig. 4 (right). Interestingly, as v → ∞,
si,j → 0, ∀i, j ∈ {1, . . . , n}, and consequently W̄ converges
to the wait time of an M/G/1 queue (see Theorem 1).

Fig. 7 further shows the queue lengths over the last four
minutes of a two-hour operation for v = 1 m/s (left) and
v = 2 m/s (right). Doubling the velocity reduces all switching
times by half, and as this shortens average queue lengths,
the time spent servicing during a single stage decreases, too,
as mathematically characterized in Section V. This results in
the completion of approximately twice as many stages (i.e.,
polling instances), as can be seen.

5) A More Complex System: To illustrate how the proposed
AORP works in more complex scenarios, we next consider
the system of six source-destination pairs shown in Fig. 8.
The system consists of three high traffic queues (q1, q2, and
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Fig. 5. Effect of subsystem placement on the AORP probability transitions and relay positions. The green squares indicate the relay positions, and the
observed transition probabilities, p̃AORP

i,j , are labeled on the arrows along each edge while the thickness of each edge corresponds to p̃AORP
i,j as well. In all

cases, the traffic at each queue is ρi = 0.17. For each subsystem, the predicted relay region (in black) is overlaid on the true connected region. Moving from
left to right, subsystem one is moved farther away from the rest of the subsystems, and the impact of its increased isolation is then reflected in the AORP
transition probabilities and visit frequencies, as can be seen. See the color pdf for optimum viewing of this figure.

Fig. 6. Impact of subsystem placement on the observed visit frequency of
the first subsystem under the AORP (π̃AORP

1 ) for different traffic values, i.e.,
for various values of the ratio ρ1/ρs in the three-queue system.

q3) and three low traffic queues (q4, q5, and q6). Furthermore,
the second and fifth subsystems are placed towards the center.

The table shows that while the relative traffic at each
queue is somewhat reflected in the AORP visit frequencies,
they are not exactly proportional due to different locations
of the subsystems as well as the underlying space-varying
channel quality. The three high traffic queues are visited most,
and the edges traversed most frequently form a triangle with
vertices given by the relay positions rAORP

1 , rAORP
2 , and rAORP

3 .
Among the high (low) traffic queues, q2 (q5) is visited most
often as it is located more centrally compared to q1 and q3

(q4 and q6). Consequently, when the robot moves from q1 to
q3, it will frequently stop at q2 along the way. Furthermore,
the particular channel realizations in the first, second, and
third subsystems results in the second relay position, rAORP

2 ,
being placed closer to rAORP

1 than rAORP
3 . As a result, q1 is

visited more frequently than q3 despite their symmetry in
traffic and subsystem placement. Thus, we again see that the
AORP accounts for the differing arrival rates, the relative
positioning of the subsystems, and the specific shape of the
communication channels, even in more complex systems.

D. Comparison to the State-of-the-Art

We next compare our proposed robotic routing policy
with a baseline approach that would be consistent with the

Fig. 7. Impact of robot velocity on wait times and queue lengths in a
three-queue system. (Top) Sample realization of queue lengths during the
last four minutes of a two-hour operation period for two sample velocities.
The peaks (troughs) indicate polling (switching) instants. Larger v results in
shorter stages and queue lengths. (Bottom) Increasing v also reduces overall
average waiting time at a rate of 1/v.

state-of-the-art. To the best of our knowledge, the problem of
interest to this paper is solved neither in the robotics nor in the
communication literature, so we will use the solution proposed
for a similar problem in the literature as a baseline. Specif-
ically, visiting different relay regions in an efficient manner
resembles a category of robotic path planning problems known
as traveling salesperson problems with neighborhoods, which
continues to be the basis of proposed solutions to several data
gathering problems in robotics literature [1], [3], [26], [29],
[52], [53], [54]. We then compare our approach with this
baseline.

Consider the three-queue system shown in Fig. 9, with
ρ1 = 0.32, ρ2 = 0.04, and ρ3 = 0.04. Since the baseline
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Fig. 8. (Top) The AORP for a six-queue system. For each subsystem, the
predicted relay region (in black) is overlaid on the true connected region.
The transmitter and receiver locations for each source-destination pair are
marked, and green squares indicate the relay positions. The observed transition
probabilities p̃AORP

i,j are labeled along each route. (Bottom) The table gives the
percentage of traffic, ρi/ρs, and observed visit frequency, π̃AORP

i , for each
queue. See the color pdf for optimum viewing.

is a deterministic policy, we compare it with AORP-Table
as discussed in Section IV-C. For each policy, we simulate
twenty two-hour operation periods with the queues initially
empty. As shown in Fig. 9, the wait time under the baseline
policy is 92.89 s, while under the AORP, it is 66.05 s. Thus the
average wait time under the baseline policy is 26.84 s (41 %)
longer than the average wait time under the AORP. This is
achieved through a proper design that jointly considers the path
planning and communication aspects of the problem, as we
have proposed in this paper. We note that given the conserva-
tive bias of our prediction framework as discussed earlier, the
probability of the relay positions being truly connected is very
high. As such, the relay positions are assumed connected for
both our approach and the baseline in the analysis of Fig. 9.

E. Confirmation of the Theories of Section V

Theorems 5 and 6 characterized the robot’s average ser-
vice rate and average operation power under a stable policy.
We next confirm these theorems with our simulated data.
Consider the three-queue system of Fig. 9. Again, we run
twenty two-hour simulations, and for each simulation, record
the average power and service throughput. The average power
across all simulations is 4.58 W, consistent with the 4.53 W
predicted by Theorem 5. Similarly, the average service rate
from simulated data is 6.34 Mb/s, while Theorem 6 predicts it
to be 6.40 mb/s.

As discussed in Section V, the overall average power and
average service rate are independent of the robotic routing
policy (assuming the policy is stable) when averaged over
several stages of operation. To this end, we further note that the

Fig. 9. Comparison of our proposed approach (top) and the baseline (bottom)
for a three-pair system with ρ = 0.32 and ρ2 = ρ3 = 0.04. The observed
probability transitions under the AORP, p̃i,j , are labeled along each edge of
the AORP, and the thickness of the line between relay positions indicates
the relative frequency with which the edge is traversed. Under the AORP,
p̃2,3 ≈ p̃3,2 � 0.01, so for ease of presentation, we treat those probabilities
as 0. See the color pdf for optimum viewing.

average power and service rate under the baseline policy were
4.61 W and 6.29 Mb/s, respectively, which is consistent with
the theorems and remarks of Section V. As such, the average
wait time is the right metric to consider when designing robotic
relay policies, as we have done in this paper.

VII. CONCLUSION

This paper considered a mobile robot (ground or UAV)
which relays data between pairs of otherwise far-away source
and destination communication nodes. We posed the problem
of finding the optimal stochastic robotic relay policy, con-
sisting of visiting frequencies and relay positions. To find
approximate solutions to this problem, we proposed a novel
algorithm (AORP) which alternately optimizes average wait
time over the visiting frequencies and average switching
time over relay positions. To minimize the average switching
time, we showed how to decompose the highly non-convex
relay regions into efficient convex partitions, allowing us to
formulate the problem as a MISOCP. Additionally, we math-
ematically characterized a number of important properties of
the system related to the robot’s long-term energy consumption
and service rate. Through extensive simulations with real chan-
nel parameters, we showed how various system parameters
affect the AORP and further compared with the state-of-the-
art.

APPENDIX - PROOF OF THEOREM 2

Proof: We consider each term in the expression

ρit̄

πi
+ s̄i +

(ρs − ρk)t̄
πk

+
1 − πk

πk

n∑
h=1

πh

∑
l �=k

πlsh,l .
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Looking back in time, the process first serviced the data in qi.
From [55], the expected time to do so is ρi t̄/πi (first term).
Immediately preceding this, the robot switched to qi (second
term). With probability πk, the queue serviced immediately
prior to qi was qk. With probability 1 − πk, the queue just
prior to qi was not qk, and we expect 1/πk additional backward
steps before reaching qk. These steps consist of servicing and
switching intervals. None of the servicing intervals occur at
qk, so the expected number of times qj , j �= k, is serviced is
[πj/(1−πk)]/πk. Summing over all j �= k, the contribution to
T̄ki from these intervals is the third term. Similarly, we expect
to have switched away from qj a total of πj/πk times, but none
of those switches will be to qk. Thus the contribution to T̄ki

from all these switching times is the fourth term. �
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