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SUMMARY

In this paper we consider estimation of dynamical systems over wireless fading communication channels
using a Kalman filter. We show the impact of the stochastic communication noise on the estimation
process. We furthermore show how noisy packets should be handled in the receiver. More specifically, we
illustrate the impact of the availability of a cross-layer information path on the optimum receiver design.
In the absence of a cross-layer information path, it was shown that packet drop should be designed to
balance information loss and communication noise in order to optimize the performance. In the presence
of a cross-layer path, we show that keeping all the packets will minimize the average estimation error
covariance. We also derive the stability condition in the presence of noisy packets and show that it is
independent of the shape of the communication noise variance or availability of a cross-layer information
path. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recently there has been considerable interest in cooperative sensing and control. Advances in tech-
nology have resulted in an abundance of cheap embedded units equipped with sensing, processing,
communication and actuation capabilities. This has resulted in a wide range of sensor network
applications [1, 2]. Such applications bring together different aspects of estimation, communication
and control, necessitating non-traditional and cross-disciplinary approaches.

In such cooperative network applications, sensing and estimation/control may be assigned to
different agents due to the heterogeneity of the agents. For instance, there may be cases where
one agent does the sensing and sends its measurements to another agent, which will be in charge
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of estimation and will possibly produce a control command that will be sent back to the first
agent. Communication plays a key role in the overall performance of cooperative estimation and
control since both sensor measurements and control commands may be transmitted over wireless
links. Among the unreliabilities introduced by digital wireless transmission, impact of quantization
on estimation and control over a communication link has been studied extensively, where the
minimum rate required for stabilization, quantizer design, practical stability and rate/convergence
time trade-offs were addressed [3–7]. To address the inadequacy of the classical definition of
capacity for networked control applications, anytime capacity was introduced and utilized for
stabilization of linear systems [8]. Disturbance rejection and the corresponding required extra rate
were considered in [9].

While characterizing the effect of quantization noise has received considerable attention, the
impact of channel unreliability, such as fading, on control over a wireless link has not been
studied extensively. Fading is the dominant performance degradation factor, making the impact of
quantization negligible. For mobile applications, it can result in noisy reception. The receiver can
then decide to either keep the received packet or drop it. The criteria for making this decision
vary depending on the application. Data networks, for example, are not as sensitive to delays
since the application is not real time. The receiver, therefore, can afford to drop erroneous packets
and wait for retransmission. The amount of tolerable bit error rate is therefore set on the order
of 10−8, which is considerably low [10]. Voice applications such as cellular networks, on the
other hand, are sensitive to delays. In every transmitted bit stream, there are key bits embedded
for synchronization and other crucial tasks. If these bits get corrupted, the receiver drops the
transmitted stream. However, once these bits are received accurately, the rest of the bit error rate is
either corrected through channel coding or tolerated [11] since there is no time for retransmission.
The level of tolerable bit error rate is therefore set considerably higher, on the order of 10−3 [10].

Estimation and control of dynamical systems over wireless links is an emerging application
for which new communication design paradigms should be developed. Control applications are
typically delay sensitive as we may be racing against the dynamics of the system under observation
(such as a moving target). While these applications are, in this sense, more similar to voice
applications, current literature on networked control systems assume a strategy for handling the
received data that is more suitable for data networks by dropping any erroneous received data.
Along this line, impact of packet drop on networked control applications has been studied. Micheli
et al., investigated impact of packet loss on estimation by considering random sampling of a
dynamical system [12]. This is followed by the work of Sinopoli et al., which derived bounds for
the maximum tolerable probability of packet loss to maintain stability [13]. Liu et al., extended
that work to the case of two sensors [14]. The framework adopted in the current work in literature;
however, does not allow for extracting as much information as possible from the received data
and can therefore result in poor performance, excessive delays or waste of transmission power. A
characterization of the tolerable level of bit error rate for networked control applications is therefore
missing, which we will address. In this paper, we consider a mobile sensor that is observing a
dynamical system. It transmits its observation over a wireless link to a remote node that is in
charge of estimation using a Kalman. We are interested in studying the impact of unreliability
introduced by multipath fading channels on estimation of the dynamical system over a wireless
link. Instead of applying data network design principles to such delay-sensitive applications, we
are interested in finding new design paradigms. Inspired by delay-sensitive voice applications, we
take a fundamentally different approach and formulation, which will allow us to provide the right
abstraction for modeling the impact of stochastic communication noise in these systems. We then
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Figure 1. Different applications have different constraints and require different communication strategies.

explore the role of a cross-layer information path and its impact on the optimum design. Figure 1
shows a comparison of the communication requirements of different applications.

We conclude this section with an overview of the paper. In Section 2 we formulate the problem
and provide the abstractions necessary to model noisy packets and packet drop mechanism. In
Section 3, we consider the impact of a cross-layer path and the knowledge of the link quality
on estimation over a wireless link, where we develop receiver design principles for optimizing
the stability and performance. We prove that the receiver should keep all the packets to optimize
the performance in the presence of a cross-layer information path. We furthermore show that
if maximizing the stability range is the only concern, the receiver should keep all the packets
independent of the quality of the link or availability of a cross-layer path. In Section 4 we discuss
further extensions of our work. We conclude in Section 5. The paper complements our previous
work [15], where estimation over a fading channel was considered in the absence of a cross-
layer path.

2. SYSTEM MODEL

Consider a mobile sensor observing a system with the following linear dynamics:

x[k+1] = Ax[k]+w[k]
y[k] = Cx[k]+v[k] (1)

where x[k]∈RN and y[k]∈RM represent the state and observation, respectively. w[k]∈RN and
v[k]∈RM represent zero-mean Gaussian process and observation noise vectors with covariances
of Q�0 and R�0, respectively. Table I contains a list of key variables used throughout this
paper and their definitions. In this paper, we take M=N and C invertible to focus on the impact
of communication noise and leave the case where C is not invertible to the section on Further
Extensions. We are interested in estimating unstable dynamics and therefore we consider cases
where matrix A has at least one eigenvalue outside the unit circle.§ The sensor then transmits its
observation over a wireless fading channel to a remote node, which is in charge of estimation.
This is shown in Figure 2. In practice, there can be several scenarios where there is an incentive to

§The concepts introduced in this paper are also applicable for a stable system.
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Table I. List of key variables.

x state � function relating �2n to �
A dynamical system parameter � probability of packet drop
w process noise G function relating � to �
Q process noise covariance �T Signal to Noise Ratio threshold
y observation �ave average packet loss probability
C observation parameter �2n,ave average communication noise variance
v observation noise �2n,norm normalized average communication noise

variance
R observation noise covariance Np number of symbols per packet
ŷ received observation � quantization step size
x̂ receiver estimate of state h baseband equivalent channel
P estimation error covariance �max spectral radius of A
n communication noise �i i th eigenvalue of A
�2n communication noise variance � probability density function of �
� instantaneous received Signal to Noise

Ratio
E(.) average operator

�ave average received Signal to Noise Ratio

Transmitter Receiver Estimator

ObserverDynamical System

remote node

Wireless
Channel

sensor

Figure 2. System model.

do the estimation at another node. For instance, in some applications, there may be an abundance
of cheap nodes with low computation power and only a few powerful nodes. Therefore, it will be
more efficient to have the nodes with low computation power sense and transmit their observations
to a more powerful node that will produce an estimate based on the gathered information. In this
paper, the term ‘sensor’ refers to the node that is in charge of observation whereas the term ‘remote
node’ denotes the remote node that is in charge of estimation based on the received observation.
Since estimation of dynamical systems over mobile links has not been extensively studied before,
we keep our analysis general by considering mobile channels.

2.1. Physical layer: a brief review of wireless communication [15–17]
In this part we briefly summarize how to model the impact of a time-varying fading wireless
communication channel on the observation. Readers are also referred to [15] for a similar overview.
The sensor quantizes the observation, y[k], transforms it into a packet of bits and transmits it
over a fading channel. The remote node will receive a noisy version of the transmitted data due
to bit flip. Let ŷ[k] represent the received signal. ŷ[k] is what the second node assumes the kth
transmitted observation was. Let n[k] represent the difference between the transmitted observation
and the received one

n[k]= y[k]− ŷ[k] (2)
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where n[k]=nc[k]+nq[k]. In this paper, we refer to n[k] as communication noise. It consists of two
parts, link noise (nc): noise due to the quality of the communication link and quantization noise (nq).
For fading channels, the impact of link noise typically dominates the impact of quantization
noise [17]. However, while estimation/control in the presence of quantization noise has received
considerable attention, impact of fading on estimation and control has mainly remained unexplored.
Therefore, in this paper we will mainly focus on the impact of the link noise.

2.1.1. Multipath fading channel. One of the major performance degradation factors of a mobile
communication environment is multipath fading. ‘Multipath’ is a term used to describe multiple
paths that a radio wave may follow between the transmitter and the receiver. Waves that are received
in phase reinforce each other producing a stronger signal, while those that are received out of
phase produce a weaker signal. Small changes in the transmission paths caused by movements
of the receiver or transmitter can change the phase relationship of the two signals, introducing
a rapidly time-varying fading channel. This is in addition to the distance-dependent attenuation
factor. Signal attenuation and fading can result in bit error rate, i.e. some of the transmitted bits
will be flipped. This will result in an erroneous reception of the transmitted packets, i.e. nc[k] �=0.
Correlation characteristics of fading channels depend on several parameters such as the transmission
environment, speed of the mobile unit and frequency of operation. For instance, for a mobile node
that moves at 25mph and communicates at 1GHz, channel will be uncorrelated after 13.5ms using
Jakes model [17]. Therefore, as long as the time interval between consecutive transmissions is
larger than 13.5ms in a networked control setup, channel can be considered uncorrelated from one
transmission to the next. This time interval corresponds to observing a dynamical system at 74Hz.
As the mobile speed or frequency of communication increases, the channel gets uncorrelated even
faster. Therefore, in this paper we take the channel to be uncorrelated from one transmission to
the next, as it will be the case for several networked control applications, and leave the case of
correlated channel to Section 4 on Further Extensions. There is even more incentive for using such
a model. We have shown in [18] that even for a correlated channel, the link noise (nc[k]), which is
the parameter that reflects the impact of channel on the estimation process, becomes uncorrelated
from one transmission to the next. In this paper the emphasis is on exploring the impact of the
link noise, not the quantization noise, on estimation over fading channels. This is particularly
important since link noise is the dominant factor compared with the quantization noise for fading
channels.¶

2.1.2. Channel Signal-to-Noise Ratio. A fundamental parameter that characterizes the performance
of a communication channel is the received Signal-to-Noise Ratio. Received Signal-to-Noise Ratio
is defined as the ratio of the received signal power divided by the receiver thermal noise power.
Let �[k] represent the instantaneous received Signal-to-Noise Ratio at kth transmission. Then we
will have

�[k]= |h[k]|2�2s
�2T

(3)

¶Quantization noise may or may not be correlated from one transmission to the next. However, its impact will be
negligible for fading channels.
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where h[k]∈C represents the time-varying fading coefficient of the baseband equivalent channel
during the transmission of x[k]. If the channel changes during one transmission, h[k] will repre-
sent the average of the channel during the transmission of the kth observation. �2s =E(|s|2) is
the transmitted signal power and �2T=E(|nthermal|2) is the power of the receiver thermal noise.
�[k] determines how well the transmitted bits of the kth transmission can be retrieved. As the
sensor moves, the remote node will experience different channels and therefore different received
Signal-to-Noise Ratios. In a given area, �[k] can be considered a stationary stochastic process
with �ave representing its average. The distribution of �[k] is a function of the transmission envi-
ronment and the level of mobility of the sensor. In this paper we do not make any assumption
on the probability distribution of �. Only when we want to provide an example, we will take �
to be exponentially distributed, which is a common model for outdoor fading channels with no
line-of-sight paths. Under the assumption that channel becomes uncorrelated from one transmission
to the next, �[k] becomes uncorrelated from one transmission to the next as well.

2.1.3. Communication noise variance. Let �2n[k] represent the variance of n[k] at kth transmission.
�2n[k] is a function of �[k]

�2n[k]=E(n2[k]|�[k])=�(�[k]) (4)

where � is a non-increasing function that depends on the transmitter and receiver design principles,
such as modulation and coding, as well as the transmission environment. To keep our analysis
general, in this paper we do not make any assumption on �. Figure 3(a) shows one example of the

0
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Communication noise variance: an example

Quantization noise error floor

Prob. of packet loss:
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Figure 3. Examples of the communication noise variance and probability of packet loss as
functions of Signal-to-Noise Ratio.
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communication noise variance, �2n . In this example, as � goes to ∞, �2n reaches the quantization
noise error floor. It should be noted that the communication noise has a time-varying variance.

2.1.4. Packet drop probability. Depending on the receiver design, there can be a packet drop
mechanism deployed in the receiver. Let �[k] represent the probability that the receiver drops the
kth packet. �[k] can also be represented as a function of �[k] :�[k]=G(�[k]), where function G
is a non-increasing function. Figure 3(b) shows a sample � as a function of � (solid line). It should
be noted that the receiver may not decide on dropping packets directly based on the instantaneous
received Signal-to-Noise Ratio. However, since any other utilized measure is a function of �[k],
we find it useful to express � as a function of this fundamental parameter. G is also a function of
the receiver and transmitter technologies. Functions � and G provide the abstraction necessary to
model the impact of the physical layer in the higher application layer. Experimental results have
shown G to be well approximated as follows [19]:

�[k]=
{
0, �[k]��T

1 else
(5)

This means that the receiver keeps those packets with the received instantaneous Signal-to-Noise
Ratio above a designated threshold �T. This approximation is shown in Figure 3(b) (star line) and
is the model we will use in this paper.

2.2. Estimation at the remote node

The remote node estimates the state based on the received observation using a Kalman filter [20].
Let x̂[k] denote the estimate of x[k] at the remote node. Then P[k] represents the corresponding
estimation error covariance matrix given �[k−1], �[k−2], . . . ,�[0]:

P[k]=E[(x[k]− x̂[k])(x[k]− x̂[k])T]|�[k−1],�[k−2],...,�[0] (6)

This is different from the traditional form of Kalman filtering since P[k] is a function of channel
statistics through �[k−1], �[k−2], . . . ,�[0]. For instance, to obtain E(P[k]), P[k] should be
averaged over the joint distribution of �[k−1], �[k−2], . . . ,�[0].

2.3. Cross-layer information path

A cross-layer information path refers to a path from the physical layer to the application layer
that carries information on the quality of the link (Signal-to-Noise Ratio or communication noise
variance). In other words, the physical layer can let the application layer know, using a cross-layer
path, how much it trusts the accuracy of each received packet. In [15], optimum handling of packet
drop was considered in the absence of knowledge of link quality. In this paper we will consider
scenarios where such a path is available at the receiver supported by the architecture. We show how
the knowledge of link quality can impact estimation of a dynamical system over a wireless link.

2.4. Scenario 1: ideal communication noise [13]
Current work in literature mainly applies data network design principles to networked control
applications by assuming that the receiver drops packets that contain any amount of error. Then
those packets that are kept in the receiver are considered noise free. We refer to this assumption on
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the communication noise as ‘ideal noise’ throughout the paper. Similarly we refer to this design
strategy, which applies data-network type protocols, as ‘scenario 1’. Such an assumption translates
to the following recursion for the estimation error covariance:

P[k+1]= AP[k]AT−AP[k]CT(R+CP[k]CT+S1(�[k]))−1CP[k]AT+Q (7)

where

S1[k]=
{
0, �[k]��T

∞ otherwise
(8)

For a fixed probability of packet drop, authors in [13] found the following stability condition for
the system model introduced earlier in this section:

�scenario1<�−2
max (9)

where �max represents spectral radius of matrix A.

3. ESTIMATION OF A DYNAMICAL SYSTEM OVER A WIRELESS LINK

In Section 2.4 we saw that the current work in the literature assumed a receiver that drops those
packets that contain any amount of error. For non real-time applications like data networks, the
receiver can afford to drop erroneous packets and wait for retransmission. Considering packets to be
noise free once they are kept in the receiver, therefore, is a reasonable model for these applications.
However, estimation of a rapidly changing dynamical system is delay sensitive. Dropping erroneous
packets can result in loss of information, can reduce the useful transmission rate and can lead to
instability. Therefore, the receiver cannot afford to wait for receiving noise-free packets.

In this section, we will consider the impact of stochastic communication noise and will derive
receiver design theories for real-time estimation over wireless links. To keep the analysis general,
we will not make any assumption on the communication noise variance or Signal-to-Noise Ratio
distribution. Instead of finding a globally optimum design, we will find optimum designs given
constraints and limitations of a receiver. More specifically, we consider the following two cases:

(1) Scenario 2: The receiver cannot provide a cross-layer path.
(2) Scenario 3: The receiver is equipped with a cross-layer path that can constantly update the

application layer with information on link quality.

Scenario 2 was considered in [15]. In this part we first briefly summarize the results of [15],
which will provide a benchmark and will be used in the mathematical derivations of scenario 3. Our
main focus will then be scenario 3. Scenario 3 basically refers to the case where the information
on the link quality is available and can be utilized in the Kalman filter. We will see the impact of
this information on the optimum handling of the received packets.

3.1. Scenario 2: case of no cross-layer path [15]
In order to provide a base for comparison, in this part we briefly summarize the optimum design
for the case where the receiver does not support a constant cross-layer path. Then the application
layer (i.e. the Kalman filter) does not have any knowledge of the quality of the communication link.
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The details of the derivations of this part can be found in [15]. To ease mathematical derivation of
this scenario, we assume that the observation noise is negligible compared with the communication
noise.‖ The estimation using a Kalman filter will then be as follows:

x̂[k+1]=
{
Ax̂[k] if kth packet is dropped

AC−1y[k] if kth packet is kept
(10)

The estimation error will be as follows using Equation (1):

x[k+1]− x̂[k+1]=
{
A(x[k]− x̂[k])+w[k] if kth packet is dropped

w[k]−AC−1v[k] if kth packet is kept
(11)

This will result in the following recursion for the estimation error covariance:

P[k+1]= AP[k]AT+Q− AP[k]AT−�2n(�[k])A(CTC)−1AT

S2[k] (12)

where �2n is the communication noise variance as defined in Section 2 and

S2[k]=
{
1, �[k]��T

∞ otherwise
(13)

As the mobile node moves in a given area, it will experience different Signal-to-Noise Ratios. Aver-
aging Equation (12) over �[k],�[k−1], . . . ,�[0] will result in the following recursion for average
estimation error covariance (note that the channel is taken uncorrelated from one transmission to
the next as discussed in Section 2):

E(P[k+1])=�ave(�T)AE(P[k])AT+Q+�2n,ave(�T)A(CTC)−1AT (14)

�ave and �2n,ave represent average probability of packet loss (spatial averaging) and average commu-
nication noise variance that entered the estimation process, respectively:

�ave(�T)=E(�)=
∫ �T

0
�(�)d� (15)

and

�2n,ave(�T)=
∫ ∞

�T

�2n(�)�(�)d� (16)

where � represents probability density function of �.

Lemma 1 (see Kailath et al. [20])
Consider the following Lyapunov equation with � Hermitian

�=���T+� (17)

‖The analysis can be similarly carried out under the condition that the knowledge of observation noise covariance,
R, is not available in the estimator. Then �2n IN should be replaced by �2n IN +R throughout the analysis.
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The following holds:

(a) If � is a stable matrix (spectral radius less that one), � will be unique and Hermitian and
can be expressed as follows:

�=
∞∑
i=0

�i�(�T)i (18)

(b) if {�,�1/2} is controllable and ��0, then � will be Hermitian, unique and positive definite
iff � is stable.

3.1.1. Stability.

Definition 1
We consider the estimation process stable as long as average estimation error covariance stays
bounded.

Using Lemma 1(b), it can be easily seen from Equation (14) that the stability condition will be
as follows:

�ave,scenario 2<�−2
max (19)

where �max represents the spectral radius of matrix A. Intuitively, the instability of the estimation
process can also be thought of in terms of the communication link. An unstable estimation
process means that the rate of the changes of the dynamical system, or equivalently the incoming
information rate to the communication channel, is higher than the outgoing rate of the channel.

3.1.2. Optimum performance. Figure 4 shows examples of average probability of packet drop and
average communication noise power that entered the estimation process. We can see that increasing
�T, on one hand, will increase the average probability of drop and therefore the information loss
rate. On the other hand, it will decrease the amount of noise that enters the estimation process.
Therefore, there should be an optimum �T (optimum way of dropping packets) that will minimize
the asymptotic average estimation error covariance for this case. If �T is too low, the receiver will
keep most of the packets but the estimation will be too noisy. On the other hand, if �T is too
high, the receiver will be strict about the quality of the packets that it will keep. This reduces the
amount of communication noise that enters the estimation process but will result in high packet
loss rate and therefore information loss rate. Then the optimum �T will be the one that provides
a balance between information loss and communication noise.

The asymptotic average estimation error covariance will be as follows as long as the stability
condition of Equation (19) holds:

E(P[∞])=�ave(�T)AE(P[∞])AT+�2n,ave(�T)A(CTC)−1AT+Q for �ave(�T)<�−2
max (20)

Let �T1,opt represent the optimum way of dropping packets, which will minimize the spectral norm
of the asymptotic average estimation error covariance matrix

�T1,opt=arg min‖E(P[∞,�T])‖ (21)
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Figure 4. Examples of the average probability of packet drop and average communication noise variance.
As �T increases, average probability of packet drop increases whereas average communication noise

power that enters the estimation process decreases.

Let �T2,opt represent the optimum way of dropping packets, which will minimize the determinant
of the asymptotic average estimation error covariance:

�T2,opt=arg min detE(P[∞,�T]) (22)

Theorem 1 (Balance of information loss and communication noise (see [15] for the proof))
Consider the system model of Figure 2, with C=�IN , Q=q IN and A= As, where As is a
symmetric matrix, i.e. As= AT

s and IN represents an N×N identity matrix. Consider a receiver
that is equipped with a packet drop mechanism described by Equation (5) and does not support a
cross-layer path. Then �T1,opt will be as follows:

�T1,opt=
{

�∗
T1, �∗

T1�0

0 otherwise
(23)

where �∗
T1 is the unique solution to the following equation:

�ave(�
∗
T1)︸ ︷︷ ︸

information loss

+ �2n,norm(�∗
T1)︸ ︷︷ ︸

communication noise

+ �2q

�2max�
2
n(�=�∗

T1)
=�−2

max (24)

where �2n,norm refers to the normalized average communication noise variance

�2n,norm(�∗
T1)=

�2n,ave(�
∗
T1)

�2n(�=�∗
T1)
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and �T2,opt will be as follows:

�T2,opt=
{

�∗
T2, �∗

T2�0

0 otherwise
(25)

where �∗
T2 is the unique solution to the following equation:

N∑
i=1

�2i
1−�2i �ave(�

∗
T2)

=
N∑
i=1

1

�2n,norm(�∗
T2)+

q�2

�2n(�=�∗
T2)�

2
i

(26)

where �1,�2, . . . ,�N represent eigenvalues of matrix A, where |�1|�|�2|� · · ·�|�N | and �max=|�1|.
Equation (24) (and Equation (26)) may not have a positive solution if process noise is the

dominant noise compared with the communication noise. In such cases, the receiver should keep
all the packets as communication noise is not the bottleneck [15].

Theorem 1 confirms that dropping all the erroneous packets will not minimize the estimation
error covariance and that the optimum receiver would allow some amount of communication noise
in the estimation process in order to avoid high information loss rate.

To see the impact of operating at the optimum �T, Figure 5 shows ‖E(P[∞])‖ as a function
of �T and for different levels of average Signal-to-Noise Ratio, �ave. For this example, Signal-to-
Noise Ratio, �, is taken to have an exponential distribution and the communication noise variance
is taken as follows: �2n(�)=�+�×�(

√
�), where �(d)=1/

√
2	

∫ ∞
d e−t2/2 dt for an arbitrary d .
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Figure 5. Scenario 2: minimums of the curves indicating optimum packet drop mechanism in the absence
of a cross-layer information path.
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This is the variance of the communication noise for a binary modulation system that utilizes gray
coding [18]. The following parameters are chosen for this example:

A=

⎛
⎜⎜⎜⎝

2 0.3 0.45

0.4 0.2 0.5

1.5 0.6 0.34

⎞
⎟⎟⎟⎠ , Q=q I3, C=�I3, q=0.001, �=2, Np =10 and �=0.0391

This results in �=1.27×10−4 and �=533.3. It can be seen from Figure 5 that if �T is too low,
estimation performance degrades due to excessive communication noise. On the other hand, having
�T too high will result in loss of information, which will degrade the performance. The optimum
�T (as predicted by Theorem 1) provides the necessary balance between loss of information
and communication noise, reaching the minimums of the estimation error curves. It can be seen
that dropping packets properly can improve the performance considerably. As �T increases, the
estimation will approach the instability regions, predicted by Equation (19) due to high information
loss. The existing approaches for Kalman filtering over wireless links [12, 13] assume that the
receiver drops any erroneous packets. This implies a considerably high �T in Figure 5, which can
increase the probability of instability and poor performance (as the figure indicates). By keeping
some of the erroneous packets through the optimization of �T, we can improve the performance
of the estimation over wireless links considerably.

3.2. Scenario 3: impact of a cross-layer information path

In this section we show the impact of the availability of the knowledge of the link quality on the
optimum packet drop design. Consider a scenario where the receiver can support a constant cross-
layer path. This means that the Kalman filter will have access to and can utilize the knowledge of
the communication noise variance. We will have the following recursion for the estimation error
covariance:

P[k+1]= AP[k]AT−AP[k]CT(�2z (�[k])+CP[k]CT)−1CP[k]AT+Q (27)

where

�2z (�[k])=
{

�2n(�[k])IN +R, �[k]��T

∞ otherwise
(28)

3.2.1. Stability. Matrix convexity (see Boyd and Vandenberghe [21]): Let f represent a symmetric
matrix-valued function, f :RN×N→RM×M . Function f is convex with respect to matrix
inequality if

f (
�1+(1−
)�2)�
 f (�1)+(1−
) f (�2) (29)

for arbitrary �1∈ and �2∈RN×N and 
∈[0,1].
Lemma 2
Consider �1, �2, �3 and �4∈RN×N . The following can be confirmed:

If �1 and �2 are positive definite, then �1��2 if and only if �−1
2 ��−1

1 (see [22]).
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Lemma 3
Let �1 and �2∈RN×N represent symmetric positive-definite matrices:

(a) Let f :RN×N →RN×N represent inverse of �: f (�)=�−1. f is convex with respect to
matrix inequality (see [23]).

(b) if f :RN×N→RM×M is convex as a function of �1, it can be easily confirmed that
f (�1+�2) is convex for a constant �2∈RN×N .

(c) if f :RN×N →RN×N is convex as a function of �1, it can be easily shown that 	T f (�1)	
is convex for an arbitrary matrix 	∈RN×M .

Lemma 4
Let �1 and �2∈RN×N represent symmetric positive-definite matrices. Let f :RN×N →RN×N

represent the following function f (�1)=�1(�2+�1)
−1�1. f is a convex function of �1.

Proof

f (�1) = �1(�2+�1)
−1�1

= [IN −�2(�2+�1)
−1]�1

= �1−�2+�2(�2+�1)
−1�2 (30)

Using Lemma 3, it can be easily seen that f is a convex function of �1. �

The following two lemmas relate stability region of scenario 3 to those of scenarios 1 and 2.

Lemma 5
The stability region of scenario 1 includes that of scenario 3:

�ave,c,scenario 1��ave,c,scenario 3 (31)

where �ave,c represents the maximum tolerable average probability of packet loss for stability.

Proof
Consider a special case of scenario 1, where R=0. Let scenarios 1 and 3 have the same packet
drop threshold. Let P1[k] and P3[k] represent the estimation error covariance matrices of scenario 1
with R=0 and scenario 3, respectively. Using Equation (7) with R=0, we will have

E(P1[k+1])=�aveAE(P1[k])AT+Q (32)

Consider S1[k] as it was defined in Equation (8). We will have

�2z [k]�S1[k]⇒�2z [k]+CP3[k]CT�S1[k]+CP3[k]CT (33)

Using Lemma 2,

AP3[k]CT(�2z [k]+CP3[k]CT)−1CP3[k]AT�AP3[k]CT(S1[k]+CP3[k]CT)−1CP3[k]AT (34)

Therefore,

P3[k+1]�AP3[k]AT−AP3[k]CT(S1[k]+CP3[k]CT)−1CP3[k]AT+Q

⇒E(P3[k+1])��aveAE(P3[k])AT+Q (35)
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which results in the following:

if E(P3[k])�E(P1[k])⇒E(P3[k+1])�E(P1[k+1]) (36)

Therefore, the stability region of scenario 1 includes that of scenario 3. �

Lemma 6
The stability region of scenario 3 includes that of scenario 2:

�ave,c,scenario 3��ave,c,scenario 2 (37)

Proof
Let P2[k] represent the estimation error covariance of scenario 2 for an R �=0. Then no knowledge
of R is available in the estimator for scenario 2 (see footnote of Section 3, part A). Using
Equation (12), E(P2[k+1]) will be as follows:

E(P2[k+1])=�aveAE(P2[k])AT+Q+AC−1�C−1TAT (38)

where �=�2n,ave IN +(1−�ave)R. Let P3[k] represent the estimation error covariance of scenario 3,
as indicated by Equation (27). We will have

E(P3[k+1]|P3[k]) = (1−�ave)E(P3[k+1]|P3[k],�[k]>�T)

+�aveE(P3[k+1]|P3[k],�[k]��T) (39)

Using Lemma 3, it can be easily confirmed that P3[k+1] is a concave function of �2z [k] in
Equation (27). Therefore, using conditional Jensen’s inequality, we will have

E(P3[k+1]|P3[k],�[k]>�T) � AP3[k]AT+Q−AP3[k]CT(E(�2z [k]|�[k]>�T)

+CP3[k]CT)−1CP3[k]AT (40)

Therefore,

E(P3[k+1]|P3[k])�AP3[k]AT+Q−(1−�ave) f (P3[k]) (41)

where f :RN×N →RN×N is as follows: f (P3[k])= AP3[k]CT(E(�2z [k]|�[k]>�T)+CP3[k]CT)−1

CP3[k]AT. We will have

f (P3[k])= AP3[k](P3[k]+C−1E(�2z [k]|�[k]>�T)C−1T)−1P3[k]AT (42)

It can be seen, using Lemma 4, that f is a convex function of P3[k]. Therefore, by applying
Jensen’s inequality,

E(P3[k+1]) � AE(P3[k])AT+Q−(1−�ave)AE(P3[k])CT[E(�2z [k]|�[k]>�T)

+CE(P3[k])CT]−1CE(P3[k])AT (43)

Noting that E(�2z (�[k])|�[k]>�T)=�/(1−�ave), it can be confirmed, after a few lines of deriva-
tions using Equations (38) and (43), that

if E(P3[k])�E(P2[k])⇒E(P3[k+1])�E(P2[k+1]) (44)

Therefore, the stability region of scenario 3 includes that of scenario 2. �
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Theorem 2
Consider the system model of Figure 2. Consider a receiver that is equipped with a packet drop
mechanism described by Equation (5) but can support a cross-layer path. Then the estimation will
be stable as long as the following holds:

�ave,scenario 3<�−2
max (45)

Proof
Lemmas 5 and 6 showed that

�ave,c,scenario 2��ave,c,scenario 3��ave,c,scenario 1 (46)

Noting that scenarios 1 and 2 have the same stability regions proves Theorem 2. �

Theorem 2 shows that availability of a cross-layer path does not impact the stability region.
This suggests, similar to scenario 2, that keeping all the packets will maximize the stability range.

3.2.2. Optimum performance.

Theorem 3
Consider the system model of Figure 2. Consider a receiver that is equipped with a packet drop
mechanism described by Equation (5) but can support a cross-layer path. Keeping all the packets,
i.e. �T=0, will minimize the average estimation error covariance.

Proof
Let P[k] represent the estimation error covariance of a receiver that is equipped with a cross-layer
path, as indicated by Equation (27). P[k] can be written as follows using the same formulation
utilized in the derivation of Equation (30):

P[k+1] = AP[k]AT+Q−AP[k](P[k]+C−1�2z [k]C−1T)−1P[k]AT

= Q+A�[k]AT−A�[k](P[k]+�[k])−1�[k]AT (47)

where �[k]=C−1�2z [k]C−1T. Let P1 and P2 represent estimation error covariance matrices of two
estimators using �T1 and �T2, where �T1<�T2. Then for any received Signal-to-Noise Ratio at
time step k, �[k], we will have

�2z,1(�[k])��2z,2(�[k])⇒�1[k]��2[k] (48)

where �2z,1 and �2z,2 are as defined in Equation (28) for these two estimators. Assume that P1[0]=
P2[0]. It is easy to see that P1[1]�P2[1] for any �[0]. Using Lemma 2, we will have the following
for any given �[0],�[1], . . . ,�[k]:
if P1[k] � P2[k]⇒−(P1[k]+�1[k])−1�−(P2[k]+�2[k])−1⇒−�1[k](P1[k]+�1[k])−1�1[k]

� −�2[k](P2[k]+�2[k])−1�2[k]⇒ A�1[k]AT−A�1[k](P1[k]+�1[k])−1�1[k]AT

� A�2[k]AT−A�2[k](P2[k]+�2[k])−1�2[k]AT⇒ P1[k+1]
� P2[k+1] (49)
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Figure 6. Effect of a cross-layer information path: compare scenarios 2 and 3.

This shows that using a lower threshold will result in a lower estimation error covariance. Therefore,
keeping all the packets, i.e. �T=0, will minimize the estimation error covariance (and its average
over the distribution of �). �

We can see that keeping all the packets not only prevents instability but also minimizes estimation
error covariance in the presence of a cross-layer path.

To see the impact of a cross-layer path, Figure 6 shows spectral norm of the average estimation
error covariance after 300 time steps for the system parameters of Figure 5 and for both scenarios 2
and 3. By comparing the corresponding curves for these cases, it can be seen that a cross-layer path
can improve the performance considerably even when compared with operating at the optimum �T
of scenario 2. Furthermore, it can be seen that keeping more packets will reduce the norm of the
estimation error covariance for scenario 3. In general, scenario 3 is more robust to the changes in
�T due to the availability of a cross-layer path, as can be seen from Figure 6. Finally, the stability
condition of scenario 3 is confirmed to be the same as predicted by Theorem 2.

3.2.3. Analytical performance evaluation: an example. In this part we are interested in finding
an analytical expression characterizing the optimum performance in the presence of a cross-layer
information path, which will be achieved when all the packets are kept in the receiver. While
finding a general expression is beyond the scope of this paper, in this section we will derive it for
a special case. Consider a single-input–single-output system that is equipped with a cross-layer
information path with �T=0. Consider the following communication noise variance∗∗:

�(�[k])= �

�[k] (50)

∗∗See [24] for conditions that result in such a variance.
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for ��0, where �[k] is exponentially distributed (a common model in outdoor environments).
To focus on the communication noise, in this section we take A=a>1, C=1, R=0 and Q=0.
We are interested in finding an analytical expression for the average estimation error variance,
E(P[k]). Since cross-layer path is available in the receiver, the Kalman filter has the knowledge
of the communication noise variance. Inserting the aforementioned parameters and channel noise
model in Equation (27) with �T=0, will result in the following recursion for P[k]:

P[k+1]= a2�P[k]
�+�[k]P[k] (51)

Lemma 7
Let � be an exponentially distributed random variable with =1/E(�). Then we will have the
following for arbitrary �, �>0 and d>0:

E

(
�

�+d�

)
= �

d
e�/dExpint

(�

d

)
(52)

where ‘Expint’ represents exponential integral: Expint(�)=∫ ∞
� e−t/t dt .

Proof

E

(
�

�+d�

)
= �

∫ ∞

0

e−�

�+d×�
d�

= �

d
e�/d

∫ ∞

�

e−z/d

z
dz

= �

d
e�/dExpint

(�

d

)
(53)

�

Lemma 8
Let � be an exponentially distributed random variable with =1/E(�). Let �(�)=e�Expint(�)

for an arbitrary �, and d and � represent positive scalars where d�. Then we will have

E[�(d�+�)]= 

−d
�(�)− 

−d
�

(�

d

)
(54)

Proof

E[�(d�+�)] = E[ed�+�Expint(d�+�)]

=
∫ ∞

0
e(d−)�+�Expint(d�+�)d�

= 

d−
e(d−)�+�Expint(d�+�)|�=∞

�=0 + d

d−

∫ ∞

0

e−�

d�+�
d�
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= − 

d−
e�Expint(�)+ 

d−
e�/dExpint

(�

d

)

= 

−d
�(�)− 

−d
�

(�

d

)
(55)

�

Theorem 4
Consider the system model of Figure 2, a receiver that keeps all the packets and is equipped with
a cross-layer path, the noise variance of Equation (50) and an exponentially distributed Signal-to-
Noise Ratio. Then the average estimation error variance will be as follows for N =1, A=a>1,
R=0, Q=0 and C=1:

E(P[k+1])=
k∑

i=0
B[i,k]e�/(a2i P[0])Expint

(
�

a2i P[0]
)

(56)

where =�−1
ave. B[i,k] for 0�i�k is calculated using B[i,k−1] for 0�i�k−1 as follows:

B[i,k]=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
k−1∑
z=0

B[z,k−1]
�z+1

, i=0

B[i−1,k−1]
�i

, i �=0

(57)

where �i =1−1/a2i and B[0,0]=a2�. This means that E(P[k+1]) can be found recursively
using the coefficients of E(P[k]).
Proof
Let E(P[k+1, i]) refer to the case that P[k+1] is averaged over �[k], �[k−1], . . . ,�[k−i] and
E(P[k+1])=E(P[k+1,k]). We can take averages over �[i]s for 0�i�k one at a time since they
are assumed independent (see Section 2). Averaging Equation (51) over �[k], using Lemma 7 with
�=�, d= P[k] and �=a2�P[k], will result in the following:

E(P[k+1,0]) = a2��

(
�

P[k]
)

= a2��

(
(�+�[k−1]P[k−1])

a2P[k−1]
)

(58)

where �(.) is as defined in Lemma 8. By inserting �=�/(a2i q) and d=/a2i in Equation (54),
we will have the following for a ϑ>0 and an exponentially distributed random variable � with
=1/E(�):

E

[
�

(
(�+ϑ�)

a2iϑ

)]
=

�

(
�

a2iϑ

)

1− 1

a2i

−
�

(
�

ϑ

)

1− 1

a2i

, i�1, |a|>1 (59)
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By applying Equation (59) with i=1 and ϑ= P[k−1], we will have

E(P[k+1,1])=
a2��

(
�

a2P[k−1]
)

1− 1

a2

−
a2��

(
�

P[k−1]
)

1− 1

a2

(60)

It can be seen from Equations (58) and (60) that we will have the following after m+1 steps of
averaging:

E(P[k+1,m])=
m∑
z=0

B[z,m]�
(

�

a2z P[k−m]
)

(61)

where B[0,0]=a2�. The goal is to find B[z,m] for m=k. Let

Ok[z,m]=�

(
�

a2z P[k−m]
)

Then,

E(P[k+1,m])=
m∑
z=0

B[z,m]Ok[z,m] (62)

Substituting P[k−m] as a function of P[k−m−1] and averaging over �[k−m−1] (using
Equation (59)) will result in the following for −1�m�k−1:

E(P[k+1,m+1]) =
m∑
z=0

B[z,m]
�z+1

Ok[z+1,m+1]−
m∑
z=0

B[z,m]
�z+1

Ok[0,m+1]

=
m+1∑
i=1

B[i−1,m]
�i

Ok[i,m+1]−
[

m∑
z=0

B[z,m]
�z+1

]
Ok[0,m+1]

=
m+1∑
i=0

B[i,m+1]Ok[i,m+1] (63)

where �z =1−1/a2z and the last equality is written using Equation (62). Therefore for 0�i�m+1,

B[i,m+1]=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
m∑
z=0

B[z,m]
�z+1

, i=0

B[i−1,m]
�i

, i �=0

(64)

Then E(P[k+1])=E(P[k+1,k]) will be as written in Equation (56), where B[i,k] for 0�i�k is
calculated using B[i,k−1] for 0�i�k−1 using†† Equation (57). �

††A similar equation can be derived for cases where |a|<1.
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4. FURTHER EXTENSIONS

In this paper we derived new design paradigms for estimating dynamical systems over wireless
links. There are several possible extensions for this work. For instance, we made two assumptions
in our derivations: channel gets uncorrelated from one transmission to the next and matrix C
is invertible. Here we discuss scenarios where these are not the case. We also summarize other
possible extensions of our work.

4.1. Correlated channel

As we discussed in Section 2, channel coherence time, time between consecutive transmissions
and the makeup of the environment are among key factors that determine if (and to what extent)
the channel stays correlated from one transmission to the next. In a rich scatterer environment with
no LOS path, channel correlation function can be represented by a zero-order Bessel function as
follows [17]:

E(h(t)h∗(t− t1))=E(|h(t)|2)J0
(
2	smobFc

c
t1

)
(65)

where J0 represents zero-order Bessel function, Fc is the frequency of operation, smob is the speed
of the mobile unit and c is the speed of light. To see the impact of such correlation characteristics
on the estimation performance, we look at a case where channel stays correlated even after three
transmissions with the correlation coefficient of 0.3 after three consecutive transmissions. Figure 7
shows the spectral norm of the average estimation error covariance of this system (obtained through
simulations) for a single-input–single-output system with A=2, C=1, �ave=20dB, Fc=1GHz
and smob=25mph. The time between consecutive transmissions is taken to be 10ms in this
example. Comparing the correlated case with the uncorrelated one shows that this amount of
channel correlation has negligible impact on the performance and optimum threshold.
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Figure 7. Impact of channel correlation on the performance.
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If the mobile node is in a deep fade for a period of time, then channel can be considerably
correlated from one transmission to the next. In case of such error bursts; however, maintaining
an acceptable performance can be difficult while in deep fade independent of the receiver design.
Then it will be more important to have a fast recovery once out of deep fade. Analyzing the impact
of a general channel correlation characteristic on estimation over wireless links in general, and on
the optimum design in particular, is one possible extension of the work presented in this paper.
In communication literature, channel time variation for correlated channels is sometimes modeled
with a linear dynamical system. Such an approach is compatible with estimation and control
formulation and can be utilized to incorporate the impact of channel correlation in estimation and
control of linear dynamical systems over wireless links.

4.2. Non-invertible C matrix

In general, deriving analytical expressions for performance evaluation, stability analysis and
optimum packet drop threshold is more challenging if C is not invertible. It is important to consider
the impact of such cases on the optimum design as, depending on the application, the system may
be under-estimated for instance. The concepts introduced in this paper, such as balance of infor-
mation loss and communication noise or impact of a cross-layer path on the optimum design, are
all applicable for any general C matrix. Thus, deriving mathematical foundations of such general
cases is among possible extensions of this work. For instance consider the system parameters
of Figure 5 but with C=[1 2 3] at �ave=20dB. The optimum packet drop threshold for this
under-estimated system is found to be �T,opt=12+� where −1<�<1 through simulations. By
comparing it with the corresponding case in Figure 5 (the optimum is 14 in this case), it can be
seen that the optimum packet drop criteria of the two systems are close for this example. To draw
any general conclusion, however, further analytical investigations of non-invertible C cases are
necessary and are among possible future directions.

4.3. Other extensions

There are other possible avenues for extending the current framework. The theoretical framework
can be extended to embrace more general scenarios. For instance, we considered one transmitter
and one receiver in this paper. There may be cases where a number of nodes share the bandwidth
to perform networked estimation. The analysis and results of this paper can be extended to such
scenarios by replacing Signal-to-Noise Ratio by signal to interference and noise ratio. In this paper
we considered the impact of a wireless fading channel on the performance of a Kalman filter.
Intuitively, the derived design strategies should be applicable when considering the performance of
a controller. Proving this analytically is among possible extensions of this work. Also finding the
optimum controller in the presence of a wireless fading channel is an important issue that needs
to be addressed.

5. SUMMARY

In this paper we considered estimation over mobile communication channels using a Kalman filter.
We showed that the communication protocols suitable for other already existing applications like
data networks may not be entirely applicable for estimation and control of a rapidly changing
dynamical system. We derived stability conditions and investigated the performance of different
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receiver designs. We proved that in order to maximize the stability range, the receiver should keep
all the packets independent of the quality of the link or availability of a cross-layer path. In the
presence of a cross-layer path, we proved that this design will also optimize the performance.
We furthermore derived an analytical expression for the estimation error covariance of Kalman
filtering over a wireless link in the presence of a cross-layer path.
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