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Abstract—In this paper, we propose a deep learning pipeline to
predict the signal strength map of a wireless channel at unvisited
locations over the space, based on very sparse channel samples.
Our goal is to enable prediction in complex indoor environments
where channels can experience drastic spatial variations. We
show how to build a comprehensive large training dataset based
only on simulated data that we generate through two complemen-
tary approaches: RF propagation simulation and probabilistic
channel generation. By employing a fully convolutional neural
network, we then develop a channel predictor that 1) does
not require any environmental information (e.g., area map,
transmitter location), 2) does not make any assumptions on the
distribution or characteristics of the channel, and 3) can handle
environments of different sizes. We conduct extensive evaluations
on a large real-world indoor test set that consists of many different
areas, as well as on a realistic ray-tracing test set consisting of
225 different environments. Our results show that our proposed
approach can predict channel spatial details well, and further
outperforms the state-of-the-art considerably in both accuracy
and computation time.

Index Terms—Spatial Prediction of Channel, Channel Signal Strength
Map, Machine Learning, Deep Learning, Convolutional Neural Network

I. INTRODUCTION

Predicting the signal strength of a wireless channel at
unvisited locations over the space (i.e., the signal strength
map) is useful for many applications. In robotics, for instance,
it is critical for unmanned vehicles to maintain connectiv-
ity in order to ensure a satisfactory task completion. Real-
world wireless channels, however, do not provide reliable
connectivity at every location. The channel signal strength
varies spatially and depends on several factors, such as the
locations and material properties of the objects in the space.
Such complex spatial dynamics present a challenge for robots
to stay connected as they traverse the environment. Thus, in
order to properly plan its actions and maintain connectivity, it
is key for a robot to predict the wireless channel strength at
unvisited locations over the space. The robot can then plan its
trajectory such that it can stay within the connected regions
while carrying out its tasks. In case it has to traverse the
disconnected areas, the robot can then predict for how long it
will lose connection, or where to go to recover its connection.

Predicting the channel signal strength map at unvisited
locations is also important for other non-robotic applications.
For instance, if for a given transmitter location, we can predict
the resulting channel signal strength over the workspace, we
can then properly optimize the placement of the router in order
to achieve the desired signal strength map, without the need
to exhaustively measure the channel over the whole space.
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Motivated by the need for robotic channel prediction as
well as other applications in the fixed wireless domain, there
has been a considerable interest in predicting the channel
signal strength map in recent years [1]–[3]. Formally speaking,
given a few sparsely-collected measurements of a 2D wireless
channel map, the objective is to predict the channel strength
map at unvisited locations over the entire space. Fig. 1 shows a
visualization of this problem. These sparse channel measure-
ments could have been collected from previous operations,
sparsely-deployed static sensors, and/or crowdsourcing.

In order to solve this problem, earlier work [1] adopts
a disk model which assumes connectivity within a certain
distance from the transmitter (Tx), with no connectivity out-
side. However, this over-simplified model can result in a poor
performance in practice. As such, researchers have employed
more realistic models to predict the signal strength map. For
instance, in our past work [2], we have developed a Gaussian
Processes (GP)-based approach for channel prediction, by
using the three underlying dynamics of path loss, shadowing,
and multipath fading. Such a GP-based approach has been
utilized and extended by others, e.g., [3]–[6], and remains the
state-of-the-art for spatial channel mapping [5]–[8]. However,
it has a few drawbacks. First, it assumes stationary underlying
channel parameters over the whole prediction space (e.g.,
fixed shadowing power/correlation coefficient, fixed path loss
parameters, etc.) and as such it may not perform well (or
needs to be extended) in more complex/larger areas where
channel parameters change spatially. This is important as the
robot, for instance, can group the sparse measurements with
different underlying parameters together for channel mapping,
which can result in an erroneous prediction. Furthermore, it is
computationally expensive, and does not scale well with the
area size since it involves matrix inversions (more on this in
Sec. IV-F). Finally, the underlying Gaussian model assumption
may not be valid in all environments, and the three dynamics
of path loss, shadowing, and multipath fading may not suffice
to model all the channel details.

More recently, researchers have started to utilize machine
learning to predict various aspects of the wireless chan-
nel, such as temporal prediction [9], predicting Angle-of-
Departure [10], and predicting the received Channel State
Information from the Tx side [11]. See recent surveys on
using deep learning for various aspects of wireless commu-
nications [12], [13] (not including spatial channel prediction,
which is an emerging topic). More related to this paper are
those work on the spatial prediction of the channel map.
Along this line, [14]–[16] focus on predicting the path loss
and not the entire channel, using machine learning. [17] uses
machine learning to predict the received signal strength for an
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Fig. 1: Visual demonstration of the problem of interest – Given a few sparsely-collected measurements of a wireless channel, the objective
is to design a prediction function that utilizes these sparse measurements and predict the channel strength at unseen locations over the space.

urban city-like outdoor wireless channel with a pixel resolution
of 4 meters. However, this method is not tested with real
data, is limited to outdoor urban environments that do not
experience rapid fading channel variations, and requires the
environment map as part of the input, which may not always be
available. From a technical aspect, it further requires a fixed-
size input (i.e., height and width), which can limit its practical
applicability. Similarly, [18]–[22] also focus on outdoor urban
channels. Among them, [18]–[21] are not tested with real data
and [22] requires real measurements for training.

In this paper, we propose a general Deep Learning (DL)-
based approach for the spatial prediction of the channel signal
strength map, with an emphasis on capturing detailed rapid
variations that are common in complex indoor settings. Our
method does not require the map of the environment or the
Tx location, does not assume a single Tx, and can be applied
to the more challenging indoor environments. Furthermore, by
utilizing a fully convolutional network, our proposed approach
can be used for environments with various sizes. We conduct
extensive evaluations on a real-world indoor wireless test set,
as well as on a realistic simulated wireless test set generated
by a commercial ray-tracing software. The results demonstrate
that our approach can predict the channel spatial map with a
high quality, and further outperforms the state-of-the-art, in
terms of both accuracy and run time.

We next summarize the contributions of this paper.
1. We propose a DL-based pipeline for predicting the chan-

nel strength map at unvisited locations over the workspace,
based on very sparse channel samples (i.e., problem of Fig. 1).
Our goal is to enable prediction in challenging complex
indoor environments where channels can experience dras-
tic spatial variations (in addition to outdoor environments
that typically experience slower variations). Moreover, we
show how to develop a comprehensive training dataset, based
solely on simulated data, which we generate through two
comprehensive pipelines: RF propagation simulation in many
different environments and probabilistic channel generation.
This is important as relying on collecting real channel data
for training purposes limits the generalizability of the trained
network. Finally, our approach does not require the transmitter
position or the environment map.

2. By modifying U-Net [23], we utilize a fully-convolutional
network to handle inputs of different sizes and shapes, making
our pipeline more widely applicable.

3. We conduct extensive evaluation on both a real-world
indoor test set and a realistic ray-tracing test set, and show that

our proposed approach can well predict channel spatial details,
and further outperforms the state of the art in both accuracy
and computation time. To the best of our knowledge, this is
the first time that a DL-based approach is shown to provide
accurate spatial channel prediction in real-world environments.

II. SPATIAL PREDICTION OF WIRELESS CHANNEL

In this section, we first describe the problem of predicting
the wireless channel strength over the space, based on a small
number of channel measurements previously collected in the
same environment. We then present our proposed DL-based
prediction approach, which utilizes a deep fully-convolutional
network (DFCN) architecture that only takes the sparse chan-
nel measurements as input and provides the predicted wireless
channel strength over the space as the output.

A. Problem Formulation
Consider a 2D wireless channel environment, W ⊂ R2.

For each spatial location, x ∈ W , the corresponding wireless
channel strength is y. Given a small number of channel mea-
surements previously collected in W , our objective is to pre-
dict the wireless channel strength at the remaining unobserved
locations, as illustrated in Fig. 1. We denote the set of prior
measurements as Ω = {(xo1, yo1), (xo2, y

o
2), ..., (xoM , y

o
M )},

where M is the total number of available measurements. Then,
given the set of unvisited locations X = {xu1 , xu2 , ..., xuK}, we
want to find a function, fθ, to predict the channel strength
Y = {yu1 , yu2 , ..., yuK} at their respective locations in X:
Ŷ = fθ(X |Ω), where θ denotes the parameters of the
prediction function, f . In the case of a GP-based approach
(e.g., [2]), θ contains the estimated channel parameters such as
path loss parameters, shadowing power/decorrelation distance,
and multipath power. Due to space limitations, we skip the
signal model and technical details of this approach. See [2]
for more details. As for our DL-based method, θ denotes the
trainable parameters of the neural network.

B. Prediction Using Deep Convolutional Neural Network
Given the complex spatial dynamics of the wireless channel,

it is intractable to analytically derive the prediction function.
We then utilize a deep fully-convolutional neural network

for the prediction function fθ. Our approach does not impose
any assumption on the distribution of the wireless channel
and as such can be generalized to any environment. While it
is typically expensive to train a deep neural network, running
the network for inference/prediction is fast and simple during
the operation phase, as we shall see.
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Our proposed network (shown in Fig. 2) is a modified
version of U-Net [23], which has been shown to be an
effective architecture for 2D visual prediction tasks, such as
segmentation [24] and depth estimation [25]. This architecture
consists of an encoding stage, which progressively reduces the
dimension of the input via convolution and pooling operations,
and a decoding stage, which then increases the dimension
via both transposed convolution and regular convolution. This
allows the network to learn to distill the key information from
the input and further be robust to noise during training. In early
encoder-decoder neural networks, fully-connected layers are
present between the encoding and decoding stages, which then
require all the inputs to have the same size. In our architecture,
on the other hand, we have no such layers which makes our
model a fully-convolutional network that can handle variable-
size inputs. This is important as we need to predict the channel
in environments with different sizes.1 Since our problem
requires the prediction of continuous channel strength values,
a regression output layer (i.e., a 1×1 convolution layer which
generates a 2D output) is included at the end of the network.
In order to provide higher-resolution features to the decoding
stage and improve gradient flow during backpropagation, skip
connections are used, which combine encoding-stage features
with decoding-stage features via concatenation.

III. TRAINING AND TEST DATA

We construct a large training set consisting of realistic
simulated spatial wireless channel data. For evaluation, we
construct two test sets. The first one contains realistic simu-
lated wireless channels generated by a ray tracing software
while the second one contains real-world wireless channel
measurements collected from a complex indoor environment.

A. Training Data
A large dataset with sufficient variety is required to properly

train a deep neural network. However, it is extremely costly to
construct such a large training set by collecting real wireless
channel measurements from a variety of environments. As
such, we utilize realistic simulated wireless channel data for
training. More specifically, we utilize two types of simulated
data. Our first set of data is generated by using Wireless
InSite [26]. Wireless InSite is a high-fidelity EM solver and RF
propagation simulator. This software is commercially available
from Remcom and is commonly used for both academic
research and industrial applications. Given a floor plan with
its associated objects, the Tx location, and the propagation
parameters (e.g., number of reflections, diffractions), Wireless
InSite simulates the resulting spatial wireless channel based
on ray tracing. It also has a library of several different floor
plans/objects and can further allow importing new ones.

We further generate additional realistic simulated training
data by using a probabilistic channel simulator [27]. This

1Although an input to the network should be in a rectangular shape in
our current setup, we can handle a non-rectangular area by padding it to the
closest rectangle. Given the channel prediction over this rectangle, we then
simply take the prediction values over the region of interest and ignore the
remaining values.

Fig. 2: Our deep fully-convolutional network architecture for spatial
wireless channel prediction (modified from U-Net). Our network can
handle inputs of different sizes due to not having fully-connected
layers. Orange blocks indicate data (e.g., input, feature maps, and
output), with the numbers indicating the sizes of the depth dimension.
The arrows indicate different operations. DoubleConv consists of two
3 × 3 convolutional layers, each followed by a batch normalization
layer and a ReLU activation. MaxPool is 2×2 max-pooling. UpConv
is 2 × 2 transposed convolution. PointConv is 1 × 1 convolution.
We use concatenation for the skip connection, where green blocks
indicate copies of the corresponding features from the encoding part.
See color PDF for better visibility.

simulator generates a channel whose statistics are dictated by
a given set of underlying path loss, shadowing, and multipath
parameters, and the associated GP model. More specifically,
given the Tx location and a set of wireless channel parameters
(path loss constant/exponent, shadowing power/correlation,
multipath fading power), the simulator generates a correlated
2D Gaussian process whose statistics satisfy the prescribed
channel parameters. These two types of simulated data com-
plement each other in the following sense. The ray-tracing
data provides channels based on the given floor plans, while
the probabilistic channel simulator generates channels that
can cover many different scenarios by randomly sampling the
underlying parameters from a large range, thus adding more
diversity to the training pool. Fig. 3 (a) shows a sample ray-
tracing-based channel generated by Wireless InSite, for the
floor plan of the left figure, while a sample simulated channel
generated by the probabilistic simulator is shown in Fig. 3 (b).
We next discuss these two sets in more details.

1) Training Data Based on Ray Tracing: Our ray trac-
ing training set consists of 10,000 channels, based on 200
unique floor plans extracted from [28], with varying sizes
and structures. For each floor plan, we randomly populate it
with additional walls and daily objects (e.g., desks, chairs,
which are acquired from a public database [29]), and randomly
place the Tx in the environment. We generate 50 scenarios
per floor plan (including 10 no-object cases to capture the
empty indoor scenarios). Given these populated floor plans
and the corresponding Tx locations, we then simulate the
corresponding wireless channels using Wireless InSite.
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Fig. 3: Generating massive channel data for training – (a) A
sample simulated wireless channel based on ray tracing in an indoor
environment whose floor plan is shown in the leftmost figure. (b) A
sample simulated wireless channel using a probabilistic simulator. A
brighter (darker) color indicates higher (lower) channel strength in
the Received Signal Strength (RSS) map.

2) Training Data Based on Probabilistic Channel Simula-
tor: Given the path loss, shadowing, and multipath parameters,
and the Tx location, this simulator generates a plausible spatial
wireless channel whose joint Gaussian PDF satisfies the input
channel parameters (see [27] for more details). We generate
10,000 such channels by randomizing the environment size,
the Tx location, and the wireless channel parameters, including
the path loss constant and exponent, the shadowing power and
decorrelation distance, and the multipath fading power.

For all the simulated wireless channels, the signal strength
is clamped to the range of [−80, −5] dBm and the spatial
resolution is set to 5 cm per pixel. During training, the inputs
to the network are then the sparsely-sampled versions of
these generated channels. More specifically, each generated
channel is sparsely sampled with many different sampling
rates ranging from 1% to 30% (and with several different
random realizations for each rate), to provide the inputs for
training, while the full channel provides the ground-truth data
for training the network to predict the channel at unseen
locations. For each generated channel, the sparsely-sampled
channel values are normalized to [0.5, 1], while values of the
unseen locations that need to be predicted are set to 0.

B. Test Data
Our evaluation dataset consists of two parts: 1) a test

set based on ray-tracing simulated data and 2) a real-world
wireless channel test set.

1) Test Data Based on Ray Tracing: We use 9 unique floor
plans for this test set, which are different from the floor plans
used in training. We randomly place a Tx in each space and
populate it with objects (25 random realizations per floor plan).
In total, this test set consists of 225 channels.

2) Real-World Wireless Test Data: In order to evaluate our
DL-based pipeline in real-world wireless environments, we
utilize the real wireless channel measurements from [27].2

These measurements are collected in a large, complex base-
ment environment, with rooms of different sizes and several
hallways, as shown in Fig. 4. See [27] for more details.

Sparsely-sampled test channels are scaled to [0.5, 1] when
fed to the trained network, as described in Sec. III-A1. The
predicted channel outputs are then scaled back to their normal
range for prediction error analysis. In addition to testing our

2This dataset is available from: http://dx.doi.org/10.21229/M9159S.

Fig. 4: Floor plan of the basement where the real-world wireless
channels are measured [27]. We test our approach in several areas in
this environment, as marked on the figure.

predictor on individual regions of the basement, such as a
room or a hallway, we also evaluate it on larger areas, each of
which consisting of multiple regions (e.g., over a few rooms
or over a combination of hallways and rooms). Predicting
an indoor channel in a large complex area with multiple
regions is more challenging as the spatial dynamics becomes
more complex and the underlying channel parameters become
spatially varying. While existing approaches (e.g., [2]) can
pool all the sparse samples of a large area to estimate the
underlying channel parameters without knowing the floor plan
and the objects within, this can result in erroneous parameter
estimation. Our DL-based approach, on the other hand, is
immune to such issues as we shall see.

IV. PERFORMANCE EVALUATION

In this section, we extensively evaluate our proposed deep
learning pipeline for spatial wireless channel prediction. We
evaluate our approach on both a realistic ray-tracing test set
and a real-world wireless channel test set, as discussed earlier,
and further compare it with the state-of-the-art.

A. Training Setup
We use Mean Squared Error (MSE) between the predicted

and ground-truth channels as the loss function for training the
network, which is a common choice for regression tasks. We
use the Adam optimizer [30] with a learning rate of 10−5. We
train the network for 400 epochs with a batch size of 32.

B. Evaluation Metric
We use the Normalized Mean Squared Error (NMSE) to

evaluate the prediction quality for a given sparsely-sampled
channel input: 1

Ni

∑Ni

k=1 (fθ(xk)− yk)2/y2k, where Ni is the
number of unmeasured spatial locations for the ith channel,
and the predicted and actual channel strength values are in
dBm. For a given sampling percentage and a specific channel
environment, we then sample the channel according to the
given sampling percentage, and average the NMSE over 20
such randomly-sampled inputs to obtain an average NMSE.

C. Evaluation on a Ray-Tracing Test Set
Fig. 5 shows sample channel prediction performance in

two different environments. Note that each environment is
populated with random objects, which are not shown in the
figure. The input measurement rates are 15% and 5% for the
first and second rows, respectively. It can be seen that our
proposed DL pipeline (last column) can accurately predict the
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Fig. 5: Two sample results of channel prediction over large areas, on the ray-tracing test set. Each row shows the results for a different
channel environment. The first column shows the floor plan and the Tx location, the second column shows the ground-truth ray-tracing-based
channel, the third column shows the GP-based prediction, and the fourth column shows our proposed DL-based prediction. We note that
each environment is populated with several random objects, which are not shown in the figure. See the color PDF for better visibility.

Sampling
Rate

Avg. NMSE (in dB)
for GP-Based [2]

Avg. NMSE (in dB)
for DL-Based (proposed)

1% -15.01 -17.52
5% -16.91 -19.42
10% -17.35 -20.19
15% -17.99 -20.60
20% -18.22 -20.72

TABLE I: Prediction accuracy on ray-tracing test set. Performance
is averaged over 225 different channel environments and 20 different
random sparse sampling realizations for each percentage.

details of the channel, when compared to the true channel
shown in the second column. In particular, spatial channel
variations due to the changes from one area to another are
well captured. The third column also shows the performance of
the state-of-the-art GP-based approach. As mentioned earlier,
this approach uses a Gaussian Process to model the spatial
variations of the channel, based on a model that captures path
loss, shadowing, and multipath fading [2]. As can be seen,
GP-based prediction mainly captures the path loss and slow
spatial variations, and cannot capture the details to the same
level. This is because mathematically modeling the small-
scale rapid variations in an indoor environment is considerably
challenging. Moreover, in larger complex spaces, such as those
in Fig. 5, the underlying channel parameters change spatially,
which makes it challenging for the GP-based approach.

Table I next shows the performance averaged over 225
different environments and for different sampling rates. It can
be seen that for all the sampling rates, our proposed approach
considerably outperforms the state-of-the-art GP. For instance,
for 5% channel samples, the GP-based approach has an NMSE
about twice as high as that of ours in the linear scale.

D. Evaluation on Real-World Wireless Data
We next test our approach on real channel data collected

in the environment of Fig. 4. We select several individual and
combined regions to test our approach, as marked in the figure.

Fig. 6 shows the prediction accuracy of our approach
(average NMSE in dB scale) for these test regions. As can
be seen, our approach can accurately predict the channels,

even in large complex indoor areas consisting of multiple
regions. For instance, A3 covers a large area of two rooms
and a hallway while A4 covers two long hallways. Note that
A3 includes A1. A3,5 then refers to prediction over a larger
area consisting of both A3 and A5. The figure also shows the
performance of the GP-based approach. It can be seen that our
approach can increase the accuracy of channel prediction. For
instance, for A1, given 10% prior channel measurements, our
DL-based approach has a significantly lower prediction error
of −25.68 dB, while the GP-based approach has an average
NMSE of −19.91 dB. Overall, this evaluation demonstrates
the efficacy of our method, showing that it can generalize to
real-world environments, although the network has only seen
simulated data during training.

E. Robustness to Sampling Locations
In this part, we study how robust our approach is to the

exact sparse sampling locations. In general, we find the DL-
based approach not sensitive to the exact locations of the prior
samples. Fig. 7, for instance, shows the average NMSE for
Area 2 of Fig. 4, with the standard deviation marked. It can be
seen that the DL-based performance concentrates around the
mean (right sub-figure), while the GP-based approach can be
more sensitive to the sampling locations, with higher variations
around the mean (left sub-figure). This is due to the fact
that the GP-based approach performs better when the prior
samples are more uniformly distributed over the space whereas
more spatially-clustered samples can result in performance
degradation. Our proposed DL-based approach, on the other
hand, is more robust to the exact sample locations.

F. Computation Efficiency
While training a DNN is computationally expensive, run-

ning it at inference time is fast. Fig. 8 shows the inference
run time of our approach as a function of the % of available
measurements, on an Intel i7-9700K CPU. We see that our
approach is scalable as its computation time is not affected by
the number of available measurements, whereas the run time
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Fig. 6: Performance in real indoor channel environments – Prediction
error for sample areas of the basement of Fig. 4.

Fig. 7: Robustness to sampling locations – Vertical lines indicate the
standard deviation (w.r.t. the randomness of the sampled locations)
of the respective prediction errors for a sample environment (A2).

Fig. 8: Average prediction computation times (on CPU).

of the GP approach significantly increases with more samples,
since it involves matrix inversion.

V. CONCLUSION

In this paper we proposed a machine learning pipeline
to predict the channel signal strength map over a region of
interest. Our approach does not require any environmental
information, e.g., area map, transmitter location, and can
handle environments with different sizes. It is furthermore
applicable to both outdoor and indoor settings as it can capture
complex spatial channel variations. Finally, it is trained on
comprehensive simulated data, and tested in real environments
as well as with a realistic large ray-tracing test set. Our results
show that our pipeline can predict the channel spatial vari-
ations well in highly-varying indoor settings. It furthermore
outperforms the state-of-the-art in both computation time and
performance, and is also not sensitive to sampling locations.
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