The Team

Matthew Speck - Project Lead, Parts selection, PCB/Schematic
Amber Du - Data Collection, Signal analyst
Ahmed Saied - Software Development
Kevin La - Network Development
What is BLIPS?

BLIPS stands for Bluetooth Low energy Indoor Positioning System. Our goal is to track the movement of doctors, nurses, and equipment in an operating room using Bluetooth Low Energy receivers that are placed in the employee’s ID card holders.
How does BLIPS work?

- 3 - 6 Bluetooth beacons are placed at known locations on the ceilings of the room.
- The BLIPS badge records Received Signal Strength Indicator (RSSI) values from the beacons.
- RSSI Values correlate to distance to the receiver on the BLIPS badges.
- Several of these distances can be combined to calculate location.
- An Inertial Measurement Unit (IMU) is used to ensure long battery life.

An example of a location calculation.
Overview

- Location tracking of people in a room using Bluetooth Low Energy signals
 - IMU interrupt-driven
- Sending data real time to a server, which displays data on a web application, via WiFi

BLiPS operation flow

- **Badge Detects Movement**
- **IMU sends interrupt to Processor**
- **Badge scans for nearby beacons**
- **Badge sends RSSI data to server**
- **Server calculates Badge location**
- **Location displayed on Web-App**
Disassembled BLIPS Badge
Bluetooth Low Energy (BLE) Beacons

BLE Module: Nordic nRF52832 running custom firmware

- Uses iBeacon BLE protocol for transmission
- Transmits 15 packets per second
- Strobes between signal strengths for added location accuracy
- Always on
- Powered by 2500 mAH Li-ion battery
 - Battery life expectancy of a year from single charge
- Located in fixed known locations
 - Ex: room corners, center of room
BLIPS Badge Block Diagram

- Lithium Ion Battery
- Battery Control Circuit
- ESP32 SOC
 - WiFi
 - Bluetooth/BLE
- IMU
 - Gyroscope
 - Magnetometer
 - Accelerometer

- 32 bit microprocessor
- 32 bit microprocessor
Parts: Microprocessor

ESP32 BLE and WiFi module

- Xtensa 32 bit microprocessor
- Dual core
- 160 MHz
- 448 Kb of ROM, 520 Kb SRAM
- Ultra low power co-processor for sleep @ 8Mhz
- 150 mA max current draw
Parts: IMU

LSM9DS1

- IMU chip, contains gyroscope, accelerometer, magnetometer
- Connects through I2C
- 9 Degrees of freedom
- Used to wake CPU from low power state
- 15 mA max current draw
Schematic
Software Development (Badge side)

- Badges use an interrupt driven software structure
 - High energy processor state is costly, so we only transmit/collect on a change in position
- Accomplished via the inertial measurement unit (IMU) on our board
 - Using accelerometer/gyroscope, we can tell when a badge has shifted its location drastically
Interrupt Handling

- Interrupt handling is done through RTOS (real time operating system)
- An interrupt is triggered by the LSM9DS1 IMU by setting a pin high, which wakes the ESP32 so data collection can begin.

IMU sends interrupt to **Processor**
Processor enters **High power state**
Badge scans for nearby **beacons** (1.5 S)
Badge connects to server and **sends data**
Processor enters **low power state**
User Interface

- Our interface is a MeteorJS web-app running on a separate server
- A user can add a new badge, give it a name, and have it assigned a badge number so that it would appear on the web app display
- Position is recorded (in meters) at all times whenever badges are present, as seen through the X and Y coordinates
- Entry and exit to the room can also be read based on if we are properly receiving bluetooth data on the badge side
Client - Server Communication

Client Side:

- ESP32 (badge) CPU has a built in WiFi module
 - Once data is recorded we send it off to be dealt with on the server side
 - High energy state is minimized
- Client - Side code is compartmentalized and cleans up data as much as possible
- We use TCP to transmit data from client to server
- Each TCP packet includes data for every beacon it can see (less transmissions)

An example of a TCP packet that might be sent
Client - Server Communication

Server-Side

- Receives RSSI values and IMU data from the badges and stores it
- Processes the data received, and displays it on a map showing where the badges are
- Constantly process new data received, continuously updating location of badges

An example of the server side terminal
Challenges

We faced many challenges in developing this project, here are some we worked on solving:

- BLE receivers need an almost direct line of sight to receive signals
- Unstable signal strength from BLE
- BLE signal does not drop consistently with distance
- Problems with BLE signals reflecting off walls gives inaccurate RSSI readings
- Implemented Wi-Fi based tracking as an attempt to improve accuracy
 - Wi-Fi doesn’t send data management frames often enough to calculate distance reliably from multiple routers
- Inability to accurately track badges located in the center of the room
Problems with RSSI: Unstable Strength

Problem: Wild variations in signal strength
 ● Bluetooth signal strength naturally fluctuates wildly, also very easily influenced by external conditions

Solution: Kalman Filtering
 ● A way of normalizing the received signal strengths
Problems with RSSI: No consistent power drop with distance

Problem: BLE Signal strength drops inconsistently

Solution: artificially attenuate the signal strength by strobing the transmit strength

- Every third signal sent changes power level
- -8, -12, -16 Db transmission levels
- Each power level gives hard cutoff for how close to transmitter badge is
Problems with Wi-Fi based tracking

In addition to BLE tracking we implemented a Wi-Fi sniffing based tracking system. This however had its own complications:

- Tracking was accomplished via measuring received power of Wifi management frames
 - Too few management frames received at any given time led to inability to accurately find location
- Wi-Fi sniffing extended the time the badge processor was in a high power state
 - Shorter battery life
 - Halved number of locations able to be recorded by server in a given time
Despite the stated issues with the project here is what is successfully accomplished:

- Interrupt driven badge system for whole day battery life
- Tracking when people enter and leave the room
- Accurately tracking BLIPS badge wearers who are located close to BLE emitters
- Simultaneously tracking multiple BLIPS badge wearers in the same room
BLiPS

Indoor Positioning System
Thanks (again) to:

- Our Sponsor: Arthrex
- Our Instructor: Yoganada Isukapalli
- Our TA’s:
 - Brandon Pon
 - Carrie Segal