BlueDentist

LGS/CACI Capstone Fall 2019 Presentation
By Zachary Battles, Chris Chan, Griffin Danninger, and Jeff Longo
What is BlueDentist?

Bluetooth monitoring using wide band software-defined radios and GPU processing
A Bit About Bluetooth

- Limited to ~10 m
- Spread spectrum frequency hopping on 79 channels
- Device announces presence when in discoverable mode
- 48 bit unique addresses
Problems / Solutions

- Bluetooth not advertised → BlueDentist identifies and records all activity
- SDRs are labor intensive to reprogram → GPU allows for protocol flexibility
- SDRs output large amounts of data → GPU parallelizes computation
Jeff Longo - Project Lead, Hardware design: board implementation/layout

Chris Chan - Hardware design: part selection, schematic

Zachary Battles - System integration and software design: Radio/SSD integration

Griffin Danninger - Software design: Bluetooth parsing, CUDA processing
Design Overview
Hardware Block Diagram
Key Hardware Components
Bluetooth Radios: XTRX

- Mini PCIe 2.0
 - Max Throughput: 7000 Mbps, 292 Msp/s (Limiting factor)
- 12 bit DAC/ADC Resolution
- Bandwidth: 30 MHz to 3.7 GHz
System GPU: Nvidia Jetson Xavier

- 512-Core Volta GPU with 64 Tensor cores
 - 11 TFLOPS (FP16)
 - 22 TOPS (INT8)
- 8-core Carmel ARM v8.2 64-Bit CPU
- 16GB 256-bit LPDDR4x
- Supports HDMI, USB, PCIe, and Gigabit Ethernet
Supervisor MCU: STM32L4R5ZIT6

- 120 MHz, 2 MB flash, 640 kB RAM
- 4x I2C, 3x SPI, 6x USART, USB OTG
- Readily available Nucleo development board targeting chosen MCU
Key Software Processes
Software Processes

- Data ingestion and processing
- Data storage
- Post-processing and analysis
- Off-device monitoring program (interface over IP)
User Interaction

- Power button
- Record Start/Stop button
- Battery status indicator
- Operating mode indicator
- Interfaceable over IP for:
 - Live monitoring
 - Data analysis and downloading
Progress So Far and Roadmap
Hardware

Transition to Altium, Finish Iteration 1 Schematic
- STM32 power sequencing,
- HDMI/USB/Ethernet
- 1 M.2 slot, 1 PCIe lane

Layout Iteration 1 PCB, Test
- High speed, 6 layer design
- Test Jetson/peripheral functionality

Layout Iteration 2 PCB, Test
- Route additional M.2/PCIe lanes
- Address any concerns from iteration 1
Software

Set up Jetson Xavier for CUDA development
- Learn basics of CUDA
- Set up Jetson dev kit
- Interface with XTRX SDR

Algorithm Development
- Develop data and processing pipeline
- Run proof of concept on dev kit

Hardware Integration / Optimization
- Optimize for embedded hardware
- Expand for use with 2 SDRs and SSDs
Questions?