The Team

Alex Berlanga
Hardware Development
PCB Design

Eduardo Olmos
Software Development
Android Application

Juan Reyes
Software Development
Peripheral Integration

Miguel Berlanga
Hardware Development
PCB Design

Oscar Wang
Project Leader
System Design
Outline

➤ Purpose
➤ Functionality
➤ Device Details
 ◆ Parts
 ◆ Software Structure
 ◆ Printed Circuit Board
➤ Conclusion
➤ Demonstration
Purpose

Problem Statement
Our Solution
Problem
Solution

- Design a glove to improve intuitive interactions between humans and machines
 - Add additional functionality through haptic feedback
 - Interface new sensors into drone flying experience
 - Combine all components into small circuit design
Human-Machine Interaction – on human terms!
Functionality

Sensors and IC Usage

Device Interface
Sensors and IC Usage

- Capture motion of the hand through Inertial Measurement Units and stretch sensors
- Transmit motion data to drone to control drone flight:
 - Throttle
 - Roll
 - Pitch
 - Yaw
- Provide haptic feedback to user for use of throttle and axial movements
Device Interface
Parts

<table>
<thead>
<tr>
<th>IMU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haptic driver</td>
</tr>
<tr>
<td>Stretch sensor</td>
</tr>
<tr>
<td>nRF52</td>
</tr>
</tbody>
</table>
• IMU (inertial measurement unit)
 ○ SPI
 ○ Orientation calculations
 ○ Gyro + Accelerometer + Compass
• Haptic driver
 ○ I2C
 ○ Vibrating motor disc
 ○ User feedback
Stretch sensors

- Analog output
- Stretching changes capacitance
- Functional control of drone
- nRF52840 SoC
 - I2C & SPI
 - Bluetooth 5
 - 32-bit ARM Cortex-M4
Software

Peripherals

Android App
● IMUs
 ○ Read quaternion values
 \[
 q_0 = q_w = \cos(\alpha/2) \\
 q_1 = q_x = \sin(\alpha/2)\cos(\beta_x) \\
 q_2 = q_y = \sin(\alpha/2)\cos(\beta_y) \\
 q_2 = q_z = \sin(\alpha/2)\cos(\beta_z)
 \]
 ○ Convert quaternions to yaw, pitch, and roll

 \[
 \text{yaw} = \text{atan2}(2(q_0q_1 + q_2q_3), 1 - 2(q_1^2 + q_2^2)) \\
 \text{pitch} = \text{asin}(2(q_0q_2 - q_3q_1)) \\
 \text{roll} = \text{atan2}(2(q_0q_3 + q_1q_2), 1 - 2(q_2^2 + q_3^2))
 \]
• **Stretch sensors**
 ○ Measuring capacitance via RC charge timing
 ○ One charge pin in series with 50KΩ resistor and stretch sensor

• **Haptic driver**
 ○ Selecting waveform
 ○ Soft and stronger buzzes
Let's Fly

Glove Connect
Connect glove to smartphone through Bluetooth

Calibration
Capture the glove and drone's positional space

Flight
Select GO FLY and have fun!

Download App
Arveng Drone Glove application available on the Google Play Store

Drone Connect
Connect drone to smartphone through WiFi

Tutorial
Explore how the drone understands the glove
Power Requirements

- Voltage Requirements: 1.7v to 3.3v operation (LIPO Battery)

PCB Dimensions

- Width - 2.000in
- Height - 1.715in
- Board Thickness - 0.056in
Schematic: Haptic/Inertial Unit

AD0/SDO defaults to 0V. This sets the I2C address to 0b101000 (0x68) and leaves the AD0/SDO PTH disconnected. Connect to AD0/SD0 PTH to change externally. Pull high to set address to 0b1101001 (0x69).
Schematic: nrf52840 Block/Connections
PCB Layout
Simulated Physical Layout
Conclusion

Winter

Spring
Winter
Integrate Sensors
Android Application
PCB
Integrate Sensors

- Stretch Sensors
- Haptic Driver
- IMU

Android Application

- User Interface
- Control Algorithm
- Bluetooth
- WiFi
PCB

- Peripherals
- Featherboard
- SoC
Spring

Android Application

Test Drone
Android Application

- User Interface
- Control Algorithm
- Bluetooth
- Wifi

Test Drone

- Android Application
- Controls
- Additional Features
Demo

Stretch Sensors
Inertial Measurement Unit
Haptics
A Special Thanks To:

- Yogananda Isukapalli, Capstone Instructor
- Brandon Pon, TA
- Carrie Segal, TA
- Magnus Arveng, Sponsor
Questions?