Team

- Byron Aguilar
 - AFE Design
 - Team Leader
- Boning Dong
 - FPGA Design
 - Subsystem Interface Design
- Cesar Gonzalez
 - AFE Design
 - Power Management
Wireless Oscilloscope

- Appearance of a pen,
 - Easy use with one hand
- Measure arbitrary voltage waveforms
 - Up to 50Vpp
 - Up to 20MHz Bandwidth
- Data Transmitted via WiFi to PC
- Software will provide functionalities of a regular bench-top oscilloscope
Project objective

- Provide engineering hobbyists and students with an alternative tool for their study.
- Design should be
 - Convenient
 - Functional
 - Elegant
 - Affordable
Design Breakdown

01 Analog Front End Design: Handle initial input and convert it to acceptable differential voltages that will be fed into the ADC

02 ADC/FPGA/Memory: ADC samples differential signal and transmits data to FPGA. Data is stored and then sent to Wi-Fi module

03 Software Programming: Receives data and reconstructs the signal. Displays signal
Block Diagram
System Overview

INPUT → Analog Front End → ADC → FPGA → WiFi

Multiplexer Control

ADC Offset

RAM
AFE Design Requirements

- Input can be almost anything
 - Protection must be included against too high voltages
- Ideal AFE should not distort or modify the general form of the original signal
- AFE should be able to scale an input to the best possible voltage range for the ADC
Analog Front End (AFE)

- Input 200Vpp to 750mVpp
- 10M Ohm input impedance
- 1:10 Compensated Attenuation
- 20MHz Bandwidth

Multiplexer Control
- x_1
- $x_{0.3}$
- $x_{0.15}$
- $x_{0.075}$

2nd Buffer
- +3.3V
- -3.3V

Differential Signal: Centered at 1.7V, 0.375V amplitude

Both multiplexers shown are in one part.
AFE Schematic
Analog Front End (AFE)

1M Ohm input impedance

Input

20Vpp to 750mVpp

20MHz Bandwidth

Both relays are in the same part

1:1

x0.025 Compensated Attenuation

SPDT Relay

SPDT Relay

Buffer

Variable Gain Amplifier

Single to Differential Converter

To ADC

Differential Signal: Centered at 1.7V 0.375V amplitude

DAC SPI

DAC

Buffer

AttenCTR

Buffer

+3.3V

+3.3V

-3.3V

-3.3V

+3.3V

+3.3V
FPGA and Subsystem Interfaces

- Understand FPGA interface
 - FPGA Architecture
 - IO Standards
 - Resources Evaluation

- Under all subsystem interface
 - DDR2 Memory
 - ADC
 - JTAG
 - WIFI (ongoing)
 - MCU (ongoing)
1. FPGA Interface

a. FPGA Architecture
 - IOs within the same bank are powered by the same power source.
 - Some interface such as memory interface cannot cross banks.

a. IO Standards
 - LVCMOS: Low Voltage CMOS
 - LVDS: Low Voltage Differential Signals
 - SSTL: Stub Series Terminated Logic

a. FPGA Resources Evaluation
 - Implemented a memory controller to check the resources usage.
2. Subsystem Interface

a. DDR2 Memory
 - SSTL_18 IO Standard
 - Controlled using Vivado MIG IP Core.
 - [PCB] Requires impedance & length matching
a. ADC
 - Using LVDS_18 IO Standard
 - SSTL: Stub Series Terminated Logic
 - [PCB] Requires differential pairs.
a. JTAG
 - Pin definition has been given out.
 - May need serial resistors for voltage conversion.
Schematics - DDR2 Memory

Package Pinout

FPGA Bank 34 & 35 IO assignments for the RAM
Schematics - DDR2 Memory

DDR2 Memory & Memory Power Supply
Schematics - ADC

Clock Source & ADC

FPGA Bank 14 IO assignments for the RAM
Power Tree

3.7V (battery nominal voltage)

-3.3V

-12V

12V

3.3V

5V

1V

1.8V

1V
3.7V → 5V Boost Converter
5V → 1V, 1.8V, 3.3V Buck Converters
5V → 12V Boost Converter
5V → -12V Inverting Converter
5V → -3.3V Buck Boost Inverting Converter
Goals

- Create main test and coding platform which combines all subsystem modules
 - Currently we are designing each subsystem PCB separately and we will combine them into one at the end of this quarter
- Begin testing of overall system
- Begin planning of software architecture
Current Progress

- Reworking AFE design
- Beginning layout work for the FPGA Subsystem
- Beginning main schematic for main system board
Acknowledgements

Thanks to:

- Professor Yoga
- Professor Brewer
- Adi
- Kyle
Any Questions?