

# Abstract

Smart gloves are available in various forms, but they often lack accuracy or are overly specialized. Hand gestures and motions offer an intuitive form of control, yet there isn't a reliable interface that fully captures them. We developed a smart glove that precisely tracks hand movements, and can connect to any application via Bluetooth.

# Overview

The glove will utilize individual modules for each finger, with IMUs tracking finger data and a flex sensor monitoring thumb web flexion and palm flexion. An additional IMU on the main unit captures holistic hand movements, while a built-in Bluetooth module transmits the data.



# **Block Diagram**

**IMU Tip PCB**: Equipped with a BMI323 IMU and a JST connector for detecting fingertip motion

**IMU Base PCB**: Equipped with a BMI323 IMU and a JST connector for detecting finger base motion

## UC SANTA BARBARA College of Engineering



# **Chirality:** A Smart Glove Solution Diego Jerez | Ananth Pilaka | Jonathan Wilcox | Phil Wang | Yusheng Su





ADS1115 Flex Sensor

ADS1115 Flex Sensor: Located on the palm side used to detect the curvature of the hand

PCB Adapter: Connector for the JST ports to the main microcontroller

Microcontroller: STM32WB55RG The controller for processing IMU data and sending values through bluetooth to the 3D model

Acknowledgements: Special Thanks to Professor Yogananda Isukapalli, Eric Hsieh, Alex Lai, Brian Li

STM32WB55RG Microcontroller

# Software Development

## **Internal Representation:**

Represent fingers with two angles: the curl of the finger itself, and the bend of the finger relative to the palm Represent the palm bend via base thumb knuckle

**rotation** around the center of the palm

#### **Sensor Fusion:**

Derive **rotation data** from the IMU Combine rotational data and weighted average

## Virtual Model:

Rendered using real-time positional data from the smart glove

Each joint in the model uses relative rotational data from the nearest IMU and a reference position on the palm



## Software Flowchart

# Virtual Model

#### Three.js framework:

Real-time finger movements, palm and fingers in 3D space

#### Custom hand/finger data type:

Relative positioning of each segment, dynamic joints for geometric continuity

#### **Real-time updates**:

IMU data via Bluetooth, Chrome Web Bluetooth API, custom Bluetooth packet for system

# dynamically





