Background

Astronauts onboard the International Space Station (ISS) follow intricate step-by-step instructions and often encounter maintenance challenges when completing procedures. We propose an automated solution: a procedure-tracking system that uses a computer vision model and sensors to validate user progress.

Camera Capture:

Transforms raw camera data into a workable live video feed

Sensor Capture:

Transforms raw gyro/acc/temp data to usable metrics

Detection Phase:

Computes bounding boxes and angular displacement

Validation Phase:

NASA

Validates detection against ground truth

User Display and Input:

Shows bounding boxes and allows for manual override

P.E.T.E: Procedure Execution Tracking Engine

Hardware Diagram

Software Flow

Special thanks to Professor Yogananda Isukapalli, Alex Lai, Brian Li, Eric Hsieh, and our mentors Jessica Marquez and John Karasinski

Sophie Guan, Anoushka Sawant, Aaron Sin, Spencer Tang, Frank Yao

Computer Vision

Model and Performance: Runs YOLOv7-tiny, a real-time object detection model built for edge devices. This smaller model provides faster inference speed and lower system cost due to reduced parameters (6M). **Dataset and Training Enhancements:** Training dataset were manually collected and labeled and augmented with CutMix augmentation.

COCO dataset.

P5	
P4	CB
P3	
P2	
P1	

Backbone

GUI

Each step in the procedure involves real-time image processing and identification of all elements involved, with specific substeps that must be satisfied before proceeding to the next step.

- Training employed Transfer Learning on top of MS

UC SANTA BARBARA College of Engineering