
Final Presentation

DEVELOPMENT TEAM

Stefan Crigler

PCB design,

software help,

team lead

Robert Tremewan

PCB design,

software help

Renny Hong

software

design,

RF/DSP

Arthur Lobins

software

design,

RF/DSP

Cynthia Alvarez

software design,

Fusion/UI

BlueFinder is a prototype hardware/software
platform that enables limited-range direction
tracking of Bluetooth devices without requiring
any additional information.

OVERVIEW

▪ Building on last year’s capstone project

BlueDentist, which captured Bluetooth

packet information

▪ Locate Bluetooth devices using XTRX

software defined radios (SDR)

programmed with direction-finding

algorithms

POTENTIAL APPLICATIONS

POTENTIAL APPLICATIONS

Tracking and analysis of ad-hoc
gatherings of customers in a restricted
location

Tracking, tallying, and management of
workers or assets in a workplace

BLOCK DIAGRAM

▪ STM32 controls
power

▪ XTRX SDR send
raw direction data
to Jetson

KEY HARDWARE

Nvidia Jetson AGX Xavier

▪ Runs the software which
processes the raw data
coming in from the radios

▪ Software was developed on
the devboard version while
the custom PCB was
developed

KEY HARDWARE

XTRX

▪ Software-defined radio
programmed to listen on the
Bluetooth frequencies around
2.4GHz

▪ We have two on the board for
up to four potential antennae,
however only one was used in
our current setup

KEY HARDWARE

Antenna Assembly

▪ In order to position the
antennas exactly as required
we had to design and 3D print
a set of mounts

▪ 6.5 cm apart, fixable positions
for consistent antennae
positioning

KEY HARDWARE

Revision 2 PCB

▪ We needed an extra
PCIe slot to
accommodate both
SDRs so we had to
revise the board
designed by the
BlueDentist project
last year

KEY HARDWARE

Revision 2 PCB

▪ We needed an extra
PCIe slot to
accommodate both
SDRs so we had to
revise the board
designed by the
BlueDentist project
last year

Revisions compared

OLD NEW

Revisions compared

OLD NEW

SOFTWARE FLOW DIAGRAM

SOFTWARE FLOW DIAGRAM

▪ The Capture Thread is where we adjust the
radio configuration such as sample size and
frequency

▪ The captured data is placed into a frame,
which acts as a buffer for complex 16-bit
numbers. If the buffer is full, some samples
will be dropped, or sent along with the next
frame

▪ A captured frame is then sent on to the
channelizer thread, which splits the sample
up into the 79 bluetooth channels

Capture and Channelizer Threads

SOFTWARE FLOW DIAGRAM

Filter and Analysis Threads

▪ The Filter thread determines the
time selection of the frame that
contains a Bluetooth signal

▪ The Analysis thread will calculate
the channel power for the frame
and estimate noise floor threshold

▪ If the power of the channel > noise
threshold, then it is possible a
Bluetooth device is in a channel

SOFTWARE FLOW DIAGRAM

▪ If a frame potentially captured a
Bluetooth signal, then it is sent to the
decode thread, where the frame is
decoded for a Bluetooth access code

▪ The access code is estimated based
on the number of bit flips required in
the capture frame to form a valid
Bluetooth access code

Decode thread

SOFTWARE FLOW DIAGRAM

Direction and Save Threads

▪ If a frame is found to contain a
Bluetooth access code, the
frame is forwarded to the
Direction Thread

▪ Calculates AoA estimation
using MUSIC algorithm on the
channelized frame

▪ Finally, data is saved locally on
an SSD.

DATA COLLECTION

▪ Monitoring the 2.4GHz
band for interesting
bursts of signals

▪ The data is processed if it
contains a Bluetooth signal
under a certain noise
threshold

▪ Interesting frames are
decoded and used in our
direction finding algorithm

ANGLE OF ARRIVAL ALGORITHM

▪ Linear array of antennas with known spacing

▪ The bearing angle to the signal source is

determined using phase difference between the

signals received by multiple antennas

▪ MUtiple SIgnal Classification Algorithm (MUSIC)

▪ High Resolution

▪ Possible to estimate AoA for multiple

signals simultaneously

MUSIC ALGORITHM

▪ Signal vectors in the signal subspace must be orthogonal to the noise space

■ Largest eigenvalues and corresponding eigenvectors span the signal subspace

■ The rest corresponds to noise space

▪ Estimate the autocorrelation matrix using an eigenspace method

2. Eigendecomposition

1. Calculate sample covariance matrix

▪ Angle resulting in the highest orthogonality is the estimated direction of the signal source

3. Generate complex sinusoids of various incident angles

4. Measure the level of orthogonality w.r.t. noise space

Thank you for your time!
Questions?

