BlueFinder

Fall Quarter Design Review
Development Team

Stefan Crigler (Team Lead) Hardware Design, PCB
Robert Tremewan Hardware Design, PCB
Renny Hong Software Design, RF/DSP
Arthur Lobins Software Design, RF/DSP
Cynthia Alvarez-Preciado Software Design, Fusion/UI
Eric Nystrom (Lead), James Cook, Chris Chan CACI Mentors
Introduction

BlueFinder will locate Bluetooth devices using only information from the signals they emit.
Project Description

- Locate Bluetooth devices using software defined radios (SDR) programmed with direction-finding algorithms
- Display current location and location history on Android app in an easy-to-use interface
Why is this problem important?

- A Bluetooth solution for location tracking allows
 - Indoor localization of tracking devices where GPS struggles
 - Higher energy efficiency compared to Wi-fi tracking

- Examples
 - Security
 - Notifications
 - Ecommerce
Why is this problem important?

- Advantages: Low cost implementation and leverages existing Bluetooth technology in smartphones

- Disadvantages: Requires a Bluetooth device on each asset
- Uses XTRX and Jetson AGX Xavier
- Monitors the 2.4GHz band to find and store Bluetooth packets as it finds them
- We’re going to add location estimation for the detected devices
- PCB base to build upon
Angle of Arrival (AoA)

- Angle of arrival
 - Calculate the angle to the signal source using phase shift between the same signal received by two or more antennas (antenna array)

\[\theta = \arcsin\left(\frac{c}{2\pi f} \cdot \frac{\Delta \varphi}{d} \right) \]

- The more antennas in an antenna array, the better the estimation.
Angle of Arrival (AoA)
Time Difference of Arrival (TDoA)

- Time difference of arrival
 - Calculate the distance to the signal source using the difference of time the same signal is received by two or more antennas
- Like GPS, three antennas required to determine location
Time Difference of Arrival (TDoA)
Combined

Angle + Distance = Location
AoA + TDoA
PCB

- 8 layers, 7” x 7”
- Our plans:
 - Update schematics
 - PCIe mini
 - HDMI
 - Ethernet/RJ45
 - Add a second PCIe mini port for a second XTRX
 - Additional goals
 - Make board more compact
 - Add a third XTRX
XTRX

- Software Defined Radio
 - Used to capture the Bluetooth signals
 - Can be programmed to pick up packets from the 2.4GHz spectrum
- PCIe connection - PCB/Jetson Xavier
- We will be using at least two XTRX
- Each XTRX will have 2 antennas
Jetson AGX Xavier

- PCIe connection to XTRX
- GPU for signal processing
 - Speeds up DSP calculations
- We’re using the dev-board version to develop and test software
STM32L4R5 Microcontroller

● Similar to the STM32L476VGT6 we used in 153B
 ○ The ...76VGT6 from 153B belongs to the STM32L4 series
 ○ The ...76VGT6 in our project belongs to the STM32L4+ series
 ■ Higher clock speeds, more memory

● Used for power-up sequencing and power management
Critical Goals

● The most important goal is to have a machine that locates Bluetooth devices using two XTRX
● We have a professional and useable UI to convey the information to the user
● Update the existing PCB, software, etc.
● We make optimizations after the core functionality is working robustly
● Finally, small improvements and add-ons
Schedule Fall quarter

- Hardware
 - Learn Altium through sponsor mentor instruction + 2 week online course
 - Go over PCIe, HDMI, RJ45 specification to revise associated designs
 - By end of quarter
 - schematics finished
 - BOM sent in to CACI
Schedule Fall quarter

● Hardware
 ○ Learn Altium through sponsor mentor instruction + 2 week online course
 ○ Go over PCIe, HDMI, RJ45 specification to revise associated designs
 ○ By end of quarter
 ■ schematics finished
 ■ BOM sent in to CACI

● Software
 ○ Learn CUDA coding
 ○ Understand the BlueDentist software
 ○ Implement AoA/TDoA
Schedule Winter quarter

● Hardware
 ○ First five weeks is PCB layout design
 ■ Adding 2nd XTRX (“the hardest part”)
 ■ Making board smaller
 ■ Adding extra features
 ○ Next few weeks is verifying layout
 ○ Inflexible deadline: submit gerber files to CACI by week 8 to have PCB manufactured
 ○ Last two weeks work on firmware

● Software
 ○ Adjust processing step for direction finding
 ○ Implement comms to send data to Fusion/UI
Acknowledgments

Dr. Yoga Isukapalli
Boning Dong
Trenton Rochelle

Eric Nystrom
Chris Chan
James Cook
Questions?