

Chirality: Smart Glove

The Problem

Possible Applications

Behavioral Spec

- Measure rotational position of each finger within 1° of error
- Communicate this data at high frequency via Bluetooth

Block Diagram

Parts on Hand

PCB Layout (Main Board)

4.6cm

........

PCB Layout (IMU_TIP)

1.6cm

chiral

1.9cm

PCB Layout (IMU_BASE)

Components - List

- Bosch BMI323 IMU
- Spectra Symbol Flex Sensor
- NUCLEO-WB55RG STM32 Board
 - STM325WB55RG
- Texas Instruments ADS1115 external ADC
- Antistatic Glove

Components - Microcontroller

STM32WB55RG

- Dual core Arm Cortex-M4 MCU 64 MHz •
 - Built-in Bluetooth Low Energy and Wifi Ο stack
 - 1 Mbyte of flash memory, 256 KB of SRAM

Components - Flex Sensors

FS-L-055-253-MP Flex Sensor

- Angle Displacement Measurement
- Flat Resistance: 10K Ohms $\pm 30\%$
- Bend Resistance: minimum 2 times greater than the flat resistance at 180° pinch bend
- Power Rating: 0.5 Watts continuous, 1 Watt Peak

Flex Sensor

Components - ADC

ADS1115

- Delta-sigma $(\Delta \Sigma)$ ADCs
- 4-Channel, 16-bit, I2C
- 860 samples per second
- Ultra-Small X2QFN Package
 - \circ 2 mm imes 1.5 mm imes 0.4 mm
- Low current consumption and supply voltage
 - $\circ \quad 2V,\,150\mu A$

Software Development

• Represent finger with bend, curl, wag angles

Software Development

- Represent finger with bend, curl, wag angles
- Thumb is same as a finger, but with palm bend as bend

Software Development

- Represent finger with bend, curl, wag angles
- Thumb is same as a finger, but with palm bend as bend
- Hand is collection of fingers and thumb
- Use BLE stack to send real-time data

Data Sources

Gyroscope:

Pros:

- 3-axis rotation data
- Accurate regardless of motion

Cons:

Rate data → discrete integral
→ positional drift

Accelerometer:

Pros:

• Accurate positional data based on gravity

Cons:

- Can only give 2-axis rotation data
- Less accurate for rotation during movement

Sensor Fusion

- Derive rotation data from gyroscope and accelerometer
- Combine gyroscope and accelerometer rotation with dynamically weighted average
- Three tunable hyperparameters:
 - Peak constant
 - Gyroscope bias
 - Gravity magnitude offset (set to 9.8)

4.30000

- acceleromete

ottoscotte:

Relevant Finger Data

Bend:

- Gyroscope: Palm, Base
- Accelerometer: Palm, Base

Curl:

- Gyroscope: Base, Tip
- Accelerometer: Base, Tip

Wag:

- Gyroscope: Palm, Base
- Accelerometer: Palm, Base

Software Flow (Finger Measurement)

Software Flow (Thumb Bend)

Application Development

- Virtual Model rendered from realtime positional data generated by smart glove
- Each joint in virtual model utilizes relative rotational data from nearby IMU and its reference position given by IMU on palm.

Development Team

- Diego Jerez
 - Team Lead
 - Data Parsing & Hardware Processing
- Ananth Pilaka
 - Software Development & Visualization
- Jonathan Wilcox
 - Bluetooth & Communication Protocol Development
- Phil Wang
 - Hardware Testing & PCB Development
- Yusheng Su
 - Hardware Testing & PCB Development

Demo Video

Acknowledgements

Special thanks to:

- Dr. Yogananda Isukapalli, CE Capstone Project Instructor
- Eric Hsieh, Lead TA
- Alex Lai, TA
- Brian Li, TA

Thank you

Q&A