

about.datadrivenucsb.com

Development Team

Arjun Vinod

Brian Li

Nicholas Tran

Bryan Olivares Hyun Kyum Kim

Web App **PCB** Design

PCB Design Enclosure Design

Firmware Backend

Frontend **Backend Infra**

Frontend **Backend Infra**

Problem Statement

Lost in Translation

Lost in Translation

Cars already talk to us with colorful and creative icons on the dash

Lost in Translation

Cars already talk to us with colorful and creative icons on the dash

But for a team, this **single stream** of information is a **bottleneck**

Lost in Translation

Cars already talk to us with colorful and creative icons on the dash

But for a team, this **single stream** of information is a **bottleneck**

Lost in Translation

Cars already talk to us with colorful and creative icons on the dash

But for a team, this **single stream** of information is a **bottleneck**

The operator of this vehicle has the additional responsibility for **gathering**, **organizing**, and **storing** this data

Lost in Translation

Cars already talk to us with colorful and creative icons on the dash

But for a team, this **single stream** of information is a **bottleneck**

The operator of this vehicle has the additional responsibility for **gathering**, **organizing**, and **storing** this data

Most importantly, to develop **insights** using this data

Proposed Solution

Collect live vehicle data

Data Driven

[12.345°N, 21.345°W, 45 mph, 70°F, ...]

[37.375°N, 19.345°W, 47 mph, 67°F, ...]

[47.342°N, 17.345°W, 55 mph, 57°F, ...]

Collect live vehicle data

Upload it to the cloud

[12.345°N, 21.345°W, 45 mph, 70°F, ...]

[37.375°N, 19.345°W, 47 mph, 67°F, ...]

[47.342°N, 17.345°W, 55 mph, 57°F, ...]

Collect live vehicle data

Upload it to the cloud

Serve to the user

[12.345°N, 21.345°W, 45 mph, 70°F, ...]

[37.375°N, 19.345°W, 47 mph, 67°F, ...]

[47.342°N, 17.345°W, 55 mph, 57°F, ...]

Tracker Module Installation

Web App Overview

Implementation Details

System Block Diagram

Location Data

GPS data is embedded in a PVT (Position/Velocity/Time) frame fetched periodically from the microcontroller's built-in GPS/LTE modem

Location Data

GPS data is embedded in a PVT (Position/Velocity/Time) frame fetched periodically from the microcontroller's built-in GPS/LTE modem

Location Data

GPS data is embedded in a PVT (Position/Velocity/Time) frame fetched periodically from the microcontroller's built-in GPS/LTE modem

Diagnostic data is extracted from the car via the OBD-II diagnostic port

Diagnostic data is extracted from the car via the OBD-II diagnostic port

Diagnostic data is extracted from the car via the OBD-II diagnostic port

Diagnostic data is extracted from the car via the OBD-II diagnostic port

- Speed
- Engine RPM

Diagnostic data is extracted from the car via the OBD-II diagnostic port

- Speed
- Engine RPM
- Fuel Level
- Engine Load

Diagnostic data is extracted from the car via the OBD-II diagnostic port

- Speed
- Engine RPM
- Fuel Level
- Engine Load
- Coolant Temperature
- Intake Air Temperature

Uploading Data to the Cloud

CAN Data: [0x11, 0x22, 0x33, 0x44, 0x55, 0x66]

CAN Data: [0x11, 0x22, 0x33, 0x44, 0x55, 0x66]

GPS Data: [05/22, 5:00PM, 34.41, -119.84, ...]

CAN Data: [0x11, 0x22, 0x33, 0x44, 0x55, 0x66]

GPS Data: [05/22, 5:00PM, 34.41, -119.84, ...]

Accel/Gyro Data: [0, 0, 9.8] [0, 0, 0]

UDP Datagram

CAN Data: [0x11, 0x22, 0x33, 0x44, 0x55, 0x66]

GPS Data: [05/22, 5:00PM, 34.41, -119.84, ...]

Accel/Gyro Data: [0, 0, 9.8] [0, 0, 0]

30s

UDP Datagram

CAN Data: [0x11, 0x22, 0x33, 0x44, 0x55, 0x66]

GPS Data: [05/22, 5:00PM, 34.41, -119.84, ...]

Accel/Gyro Data: [0, 0, 9.8] [0, 0, 0]

Processing Data in the Cloud

Data

Serving Data to the User

Serving Data via API

Amazon RDS

Processed Data

CAN Data: [6 mph, 200 rpm, 14.22%, 44°F, 55s, 65°C]

GPS Data: [194.2312°N, 23.4534°W]

Accel/Gyro Data: [2 m/s^2, 0 m/s^2]

Serving Data to the Front-End

/live/{car_id} Read Nom

V

~

Web App

• **Track** vehicles live on an interactive map

- **Track** vehicles live on an interactive map
- Monitor vehicle parameters live \bullet by selecting individual vehicles on the map

- **Track** vehicles live on an interactive map
- Monitor vehicle parameters live \bullet by selecting individual vehicles on the map
- Search for parameters available \bullet from the dynamically populated sidebar

Web App: Data Visualization

Web App: Data Visualization

Plot vehicle data parameters

 \bullet

Web App: Data Visualization

- **Plot** vehicle data parameters
- Supports selecting multiple vehicles for comparing data parameters in a date range

PCB Design

Layout

4-layer PCB

- Top Layer
- GND
- PWR
- Bottom Layer

131 components

Layout

4-layer PCB

- Top Layer
- GND
- PWR
- Bottom Layer

131 components

3D Rendering

Final Product

Few modifications made between PCB being sent out and rendering 3D model were left out

Design Challenges

• RF circuitry is **very sensitive**

- RF circuitry is **very sensitive**
- Learning & applying **best practices** on the fly

- RF circuitry is **very sensitive**
- Learning & applying **best practices** on the fly
- Keeping track of **dynamic** requirements
 - Reworked GNSS & LTE RF circuitry from onboard antenna to external antennas

- RF circuitry is **very sensitive**
- Learning & applying **best practices** on the fly
- Keeping track of **dynamic** requirements
 - Reworked GNSS & LTE RF circuitry from onboard antenna to external antennas
 - Accelerometer went **out of stock**

- RF circuitry is **very sensitive**
- Learning & applying **best practices** on the fly
- Keeping track of **dynamic** requirements
 - Reworked GNSS & LTE RF circuitry from onboard antenna to external antennas
 - Accelerometer went **out of stock**
 - MicroSIM on nRF reference board was costprohibitive, so we pivoted to Nano SIM

- RF circuitry is **very sensitive**
- Learning & applying **best practices** on the fly
- Keeping track of **dynamic** requirements
 - Reworked GNSS & LTE RF circuitry from onboard antenna to external antennas
 - Accelerometer went **out of stock**
 - MicroSIM on nRF reference board was costprohibitive, so we pivoted to Nano SIM
- **Coordinating** efforts within the team (not easily parallelizable)

Live Tracking Demo

 Modular design made it easy to develop each part of the system independently

- Modular design made it easy to develop each part of the system independently
 - Web App
 - $\circ \quad \mathsf{API}$
 - UDP Listener
 - Tracker

- Modular design made it easy to develop each part of the system independently
 - Web App
 - o API
 - UDP Listener
 - Tracker
- Learned a lot in every level of the technology stack: Web to Firmware to PCB design

- Modular design made it easy to develop each part of the system independently
 - Web App
 - o API
 - UDP Listener
 - Tracker
- Learned a lot in every level of the technology stack: Web to Firmware to PCB design
- Got working PCBs in the **first spin**
 - On-board RF added significant complexity to the design process

• More **test points**

- More test points
- **Better labels** for non-power TPs, like SPI, I2C, etc. signals

Data

Driven

- More test points
- **Better labels** for non-power TPs, like SPI, I2C, etc. signals
- One **incorrect resistor** used for OBD-II power supply, soldered an external resistor

- More test points
- **Better labels** for non-power TPs, like SPI, I2C, etc. signals
- One **incorrect resistor** used for OBD-II power supply, soldered an external resistor
- One board didn't have functioning UART, cause is TBD

- More test points
- **Better labels** for non-power TPs, like SPI, I2C, etc. signals
- One incorrect resistor used for OBD-II power supply, soldered an external resistor
- One board didn't have functioning UART, cause is TBD
- Would've used separate LTE and GPS modem so we could use streaming protocols like MQTT

Next Steps

Acknowledgements

EVER VIGILAN

Dr. Yogananda IsukapalliBrian CantyAustin HwangAlex LaiStefan CriglerDavid McCarthyJimmy KraemerMartin FayEric NystromVenkat KrishnanDuane GardnerJohn Buckley