
Project Dragonfly

UCSB CE CAPSTONE 2022-2023

Development Team

Danny Cardenas Teagan
Connon

Noah
Lutz

Jesus Oviedo Marko Ristic

What is Project Dragonfly?
● Project Dragonfly serves as a way to consolidate several low-profile sensors into a

single, peripheral device, which attaches via USB to an drone in order to provide
an estimation of state while keeping the device as small as possible

● In doing so, we hope to create a modular, more cost effective way of providing
state estimation, reducing the individual sensor configuration workload for drone
manufacturers and hobbyists

Project Overview
Hardware Firmware Software

Project Overview
Hardware Firmware Software

PCB to connect all
necessary data lines
and signals to MCU
from sensors as well as
power

Project Overview
Hardware Firmware Software

PCB to connect all
necessary data lines
and signals to MCU
from sensors as well as
power

Manages data-ready
signals from sensors

Packages data w/
timestamp and sends
over USB

Project Overview
Hardware Firmware Software

PCB to connect all
necessary data lines
and signals to MCU
from sensors as well as
power

Manages data-ready
signals from sensors

Packages data w/
timestamp and sends
over USB

Retrieves data and
implements ROS for
virtual drone flight
visualization as well as
state estimation.

Hardware Overview

● Block Diagram

● Printed Circuit Board Overview & Challenges

● Sensor Functionality & Motivation

Block Diagram

(Jetson Nano)

Printed Circuit Board

Printed Circuit Board

GPSIMU
Barometer

Magnetometer

Airspeed
Sensor

Microcontroller

Microcontroller Specifications
● STM32L412RBT6

○ 64 pins
○ 10mm x 10mm
○ 128Kb Flash

● Supported
Communication Interfaces
○ 3x I2C
○ 3x USART
○ 2x SPI

● Price: $4.13

Inertial Measurement Unit
-BMI088
● Accelerometer:

○ 16-bit precision
○ ±2, ±4, ±8 or ±16 g range

● Gyroscope:
○ 16-bit precision
○ ± 125°/s, ± 250°/s, ± 500°/s,±

1000°/s, or ± 2000°/s range
○ Data Output Rates: 12.5 Hz ... 2

kHz
● SPI protocol
● Dimensions: 3.0mm x 4.5mm x 0.95mm
● Price: $3.46

Magnetometer
- IIS2MDCTR
● Gives 3-axis digital magnetic

direction
● I2C protocol
● 16 bit data output
● Price: $2.82

Air Speed Sensor
- 45525DO
● Differential pressure sensor that

is used to find airspeed
● I2C protocol
● Output: 14 bit differential

pressure, 11 bit temperature
● V = ½ (K(Δ p))^1/2
● Accuracy: ±0.25% of span
● Dimensions: 24.7mm x 16.8mm
● Price: $72.25

Barometer
- DPS310XTSA1
● Temperature and pressure

readings used to calculate
altitude

● I2C protocol
● 24-bit data output
● Accuracy: ±0.06 hPa ±0.5℃
● Dimensions: 2mm x 2.5mm x

2mm
● Price: $2.83

GPS
- NEO 6M
● Outputs Latitude and Longitude

of current position
● UART protocol
● Accurate within 2.5 meters
● 5 Hz update rate
● Optionally get current speed
● Price: $10.99

Firmware Overview

● USB Data Packet Structure

● Software Flow Diagram
○ Sensor Timing & Interrupt Handling

○ USB Data aggregation

○ USB packet timing

USB Packet Header Fields

Stale Bits

7 6 5 4 3 2 1 0

X X IMU Accel IMU Gyro Mag Airspeed Barometer GPS

Device ID

7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 1

General USB Packet Structure

● IMU data: 24 bytes
● Magnetometer Data: 12 bytes
● Barometer Data: 12 bytes
● Differential Pressure Data: 8 bytes
● GPS Data: 8 bytes
● Total Packet Size: 72 bytes

Device ID Stale

Byte

IMU Data Mag Data Barometer

Data

DP

Data

GPS Data

Software Flow

Software Overview

● ROS Background

● ROS Overview

● State & State Estimation Background

● Using robot_localization and RViz for Visualization

What is ROS (Robot Operating System)?

● NOT an operating system

● Set of software frameworks for robot software development

● Open-sourced collection of software libraries and pre-built packages

● Used for robot functionality
○ Control, perception, simulation, state estimation, etc

How We Use ROS

● The data packet reaches Jetson Nano via USB

● Use ROS to publish data for each sensor as its own topic

● Subscriber nodes subscribe to the sensor they wish to read from

● Data is sent to the visualization setup for the virtual drone to mirror the

movement of the PCB
● Robot_localization nodes utilize

sensor data to perform state estimation

What is State?
● In UAV systems, the state (x) of the aircraft is represented by position and

orientation, as well as its first and second order derivatives
● We define x ∈ R5x3,

○ x = (<x,y,z>, <yaw, pitch, roll>, d<x,y,z>/dt, d<yaw, pitch, roll>/dt,
d2<x,y,z>/dt2)

● We use an Extended Kalman Filter to process noisy sensor data and create an
estimation of state

State Estimation
● Our device performs state

estimation using an
Extended Kalman Filter,
which seeks to minimize the
equation that defines our
state estimation covariance

● The algorithm works in 2
phases: predict & update

● Using robot_localization
ROS library

Predict

Update

Triggered by

new data

Generate

prediction using

previous state

and most recent

data

How We Use ROS (cont.)
● Open-source and readily available ROS Melodic packages

○ robot_localization EKF and NavSatTransform Nodes

○ ROS IMU+Mag Filter Node

○ RViz visualization of state

○ Standard ROS message formats (IMU, MagneticField, NavSatFix, etc.)

DEMO VIDEO

Dr. Yogananda Isukapalli

Jimmy Kraemer

Alex Lai

Venkat Krishnan

Phil Tokumaru

Tiziano Fiorenzani

Warren Ward

AeroVironment

Thank You
Team Sponsor

● Phil Tokumaru
○ AeroVironment Project Advisor

Acknowledgements

Any
Questions?

