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What is Project Dragonfly?
● Project Dragonfly serves as a way to consolidate several low-profile sensors into a 

single, peripheral device, which attaches via USB to an drone in order to provide 
an estimation of state while keeping the device as small as possible

● In doing so, we hope to create a modular, more cost effective way of providing 
state estimation, reducing the individual sensor configuration workload for drone 
manufacturers and hobbyists
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Project Overview
Hardware Firmware Software

PCB to connect all 
necessary data lines 
and signals to MCU 
from sensors as well as 
power

Manages data-ready 
signals from sensors

Packages data w/ 
timestamp and sends 
over USB

Retrieves data and 
implements ROS for 
virtual drone flight 
visualization as well as 
state estimation.



Hardware Overview

● Block Diagram

● Printed Circuit Board Overview & Challenges

● Sensor Functionality & Motivation



Block Diagram

(Jetson Nano)
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Microcontroller Specifications
● STM32L412RBT6

○ 64 pins
○ 10mm x 10mm
○ 128Kb Flash

● Supported 
Communication Interfaces
○ 3x I2C
○ 3x USART
○ 2x SPI

● Price: $4.13



Inertial Measurement Unit
-BMI088 
● Accelerometer:

○ 16-bit precision
○ ±2, ±4, ±8 or ±16 g range

● Gyroscope: 
○ 16-bit precision
○ ± 125°/s, ± 250°/s, ± 500°/s,±

1000°/s, or ± 2000°/s range
○ Data Output Rates: 12.5 Hz ... 2 

kHz 
● SPI protocol 
● Dimensions: 3.0mm x 4.5mm x 0.95mm 
● Price: $3.46



Magnetometer 
- IIS2MDCTR
● Gives 3-axis digital magnetic 

direction
● I2C protocol
● 16 bit data output
● Price: $2.82



Air Speed Sensor 
- 45525DO
● Differential pressure sensor that 

is used to find airspeed
● I2C protocol 
● Output: 14 bit differential 

pressure, 11 bit temperature
● V = ½ (K(Δ p))^1/2
● Accuracy: ±0.25% of span
● Dimensions: 24.7mm x 16.8mm
● Price: $72.25



Barometer 
- DPS310XTSA1
● Temperature and pressure 

readings used to calculate 
altitude

● I2C protocol
● 24-bit data output
● Accuracy: ±0.06 hPa ±0.5℃
● Dimensions: 2mm x 2.5mm x 

2mm
● Price: $2.83



GPS 
- NEO 6M
● Outputs Latitude and Longitude 

of current position
● UART protocol
● Accurate within 2.5 meters
● 5 Hz update rate
● Optionally get current speed
● Price: $10.99



Firmware Overview

● USB Data Packet Structure

● Software Flow Diagram
○ Sensor Timing & Interrupt Handling

○ USB Data aggregation

○ USB packet timing



USB Packet Header Fields

Stale Bits

7 6 5 4 3 2 1 0

X X IMU Accel IMU Gyro Mag Airspeed Barometer GPS

Device ID

7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 1



General USB Packet Structure

● IMU data: 24 bytes
● Magnetometer Data: 12 bytes
● Barometer Data: 12 bytes
● Differential Pressure Data: 8 bytes
● GPS Data: 8 bytes
● Total Packet Size: 72 bytes

Device ID Stale 

Byte

IMU Data Mag Data Barometer 

Data

DP 

Data

GPS Data



Software Flow



Software Overview

● ROS Background

● ROS Overview

● State & State Estimation Background

● Using robot_localization and RViz for Visualization



What is ROS (Robot Operating System)?

● NOT an operating system

● Set of software frameworks for robot software development

● Open-sourced collection of software libraries and pre-built packages

● Used for robot functionality 
○ Control, perception, simulation, state estimation, etc



How We Use ROS

● The data packet reaches Jetson Nano via USB

● Use ROS to publish data for each sensor as its own topic

● Subscriber nodes subscribe to the sensor they wish to read from

● Data is sent to the visualization setup for the virtual drone to mirror the 

movement of the PCB
● Robot_localization nodes utilize 

sensor data to perform state estimation                                                                                   



What is State?
● In UAV systems, the state (x) of the aircraft is represented by position and 

orientation, as well as its first and second order derivatives
● We define x ∈ R5x3, 

○ x  = (<x,y,z>, <yaw, pitch, roll>, d<x,y,z>/dt, d<yaw, pitch, roll>/dt, 
d2<x,y,z>/dt2)

● We use an Extended Kalman Filter to process noisy sensor data and create an 
estimation of state



State Estimation
● Our device performs state 

estimation using an 
Extended Kalman Filter, 
which seeks to minimize the 
equation that defines our 
state estimation covariance

● The algorithm works in 2 
phases: predict & update

● Using robot_localization 
ROS library

Predict

Update

Triggered by 

new data

Generate 

prediction using 

previous state 

and most recent 

data



How We Use ROS (cont.)
● Open-source and readily available ROS Melodic packages

○ robot_localization EKF and NavSatTransform Nodes  

○ ROS IMU+Mag Filter Node        

○ RViz visualization of state

○ Standard ROS message formats (IMU, MagneticField, NavSatFix, etc.)                                                           



DEMO VIDEO
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