

HOMEFLOW

Project Overview

Table of Contents

Project Features

Microcontroller

Weather Sensor

Medical Thermometer

Inertial Measurement Unit (IMU)

Heart Rate / Blood Oxygen Sensor

Volume Sensor

Display Module

UI Components

6-layer design and dimensions of 35 x 50 mm

- 6-layer design and dimensions of 35 x 50 mm
- EMI shielding with GND planes

- 6-layer design and dimensions of 35 x 50 mm
- EMI shielding with GND planes
- Embedded capacitance:
 - Alternative to decoupling capacitors for noise reduction
 - Utilizes capacitance between PWR and GND planes

- 6-layer design and dimensions of 35 x 50 mm
- EMI shielding with GND planes
- Embedded capacitance
 - Alternative to decoupling capacitors for noise reduction
 - Utilizes capacitance between PWR and GND planes
- Reference planes
 - Provides a direct return path for currents from signal layers
 - Helps to reduce EMI output and further mitigate noise

PCB Layout

PCB Layout

Hardware Construction

Enclosure Design

Enclosure Design

Rotary encoder mount omeliow Vent hole Charging port Apple Watch band connector

Embedded Software Design

UI State Machines

From all on alert trigger Refresh CW OR CCW Alerts Heart Rate & Blood Oxygen CW CW CCW CCW Refresh Weather & Air Body Start Quality Temperature CCW CCW CW CW Steps & Activity Refresh

Rotary encoder debouncing

Wearable user interface

Wearable User Interface

Custom Display Drivers

<pre>const uint8_t font[85][5] = { // Digits 0-9</pre>			
_	0x49, 0x45, 0x3E}, // 0		
{0x00, 0x42,	, 0x7F, 0x40, 0x00}, // 1		
{0x42, 0x61,	, 0x51, 0x49, 0x46}, // 2		
	, 0x45, 0x4B, 0x31}, // 3		
{0x18, 0x14,	, 0x12, 0x7F, 0x10}, // 4		
{0x27, 0x45,	, 0x45, 0x45, 0x39}, // 5		
{0x3C, 0x4A,	, 0x49, 0x49, 0x30}, // 6		
{0x03, 0x71,	, 0x09, 0x05, 0x03}, // 7		
	, 0x49, 0x49, 0x36}, // 8		
{0x06, 0x49,	, 0x49, 0x29, 0x1E}, // 9		
// Uppercase Alphabet A-Z			
{0x7E, 0x09,	, 0x09, 0x09, 0x7E}, // A		

$$x = 16\sin^{3} t$$

y = 13 cos t - 5 cos (2t) - 2 cos (3t) - cos (4t)

- Optimize pixel drawing with buffers
- Customizable font with digit/text drawing
- Parametric equations to draw shapes

Android Application

Firebase

奈 (default)	📕 sensorData \Xi 🗄	2024-05-31 19:22:58
+ Start collection	+ Add document	+ Start collection
sensorData	> 2024-05-31 19:22:55	+ Add field
	2024-05-31 19:22:56	blood0xygen: 0
	2024-05-31 19:22:57	bodyTemperature: 78.26
	2024-05-31 19:22:58	gas: 8012
	2024-05-31 19:22:59	heartRate: 71
	2024-05-31 19:23:00	humidity: 60.2
	2024-05-31 19:23:01	pressure: 89310
	2024-05-31 19:23:02	temperature: 77.96
	2024-05-31 19:23:03	
	2024-05-31 19:23:04	
	2024-05-31 19:23:05	
	2024-05-31 19:23:06	
	2024-05-31 19:23:07	
	2024-05-31 19:23:08	
	2024-05-31 19:23:09	

Final Product

Thank You!

Special thanks to: Our sponsor IFT, and to Dr. Yoga Isukapalli and Brian Li for the guidance

Questions?

Operating Characteristics

- Power consumption:
 - HR sensor and LCD display OFF: 0.15 W
 - LCD display OFF: 0.22 W
 - LCD power draw would be cut by 33% if run of 3.3V instead of 5V
 - All peripherals ON: 1.48 W
- Battery life:
 - 30 minutes with everything enabled
 - Numerous potential improvements
- Operating temperature:
 - ~110 °F on average

2 * 0.555 Wh = 1.11 Wh

Marketability

- Modular \rightarrow easily repairable
- Medical focus provides superior data without unnecessary features
 - No calibration required
- Total cost per device: \$145.34
 - PCB parts: \$46.74
 - HR/SpO2 sensor: \$40.00
 - PCB manufacturing and assembly: \$58.60
 - Easy improvements: Include HR sensor on PCB, use cheaper IMU, eliminate some weather data, order larger batches of both PCBs and parts
- Seamless databasing and data viewing by medical personnel

I2C Communication Code Sample

```
float get_body_temp() {
uint8 t BT ADDR = 0x48;
uint8 t write data1[1] = {0x00};
// Writing 2 bytes to the sensor
int ret = i2c_write(i2c0_dev, write_data1, 1, BT_ADDR);
if (ret < 0) {
    return 0; // Error writing to sensor
// Reading 2 bytes from the sensor
uint8_t data_buffer[2];
ret = i2c_read(i2c0_dev, data_buffer, sizeof(data_buffer), BT_ADDR);
if (ret < 0) {
    return 0; // Error reading from sensor
// Raw temp output
uint16_t temperature = (data_buffer[0]<<8)+(data_buffer[1]);</pre>
float final_temp_F = (temperature / 128.0)*1.8 + 32;
return final_temp_F;
```

}

Difficulties and Future Plans

- Including HR/SpO2 sensor on PCB proved too expensive
 - Total PCB cost was ~\$500 when soldering sensor on
 - Directly using SMD components would cost \$2000 minimum
- Operating temperature can exceed comfortable values
 - Microcontroller has limited power
 - HR/SpO2 sensor and display are drawing more power than necessary
- Potential improvements:
 - Make all components SMD
 - Remedy noise sensor sensitivity issues
 - Add heat management components
 - Reduce size of PCB and enclosure