

Project Description
● Create captivating LEGO art piece

depicting Massachusetts Bay
Transportation Authority (MBTA)
map

● Provide real-time information of
the subway system through LEDs
○ Precise locations of trains within the

MBTA network
○ Status of each train station

● Offer commuters and enthusiasts
an interactive and informative way
to experience public transit

Development Team

Jake
Greenbaum

(Team Lead)

Android App
Development,

Bluetooth Control

PCB Design, LED
Display

Integration

LED ProgrammingMap Design &
Construction

WiFi Control, API
Control and Data

Parsing

Chris
Fisher

Zachary
Richards

Sam NgJack
Shoemaker

Block
Diagram

● ESP32-WROOM-32-N4, Microcontroller

● PL9823 Addressable LEDs, Train Station Markers

● Max7219 Dot Matrix, LED Display

Components

PCB

On/Off
Switch

DC Power Jack

Microprocessor

Micro USB Port

Headers Headers

Buttons

PCB Dimensions:
2.5” x 2.5”

Physical Map Design
and Construction

MBTA Map Layout

(48in x 36in)

Map Construction

LED Mounting

LED Mounting Schematics

WiFi Connection
and Data Sources

● 802.11b/g/n capable WiFi Module

● ESP32 connects to local WiFi

network using login information

provided via user input, then sends

HTTPS requests to corresponding

APIs receiving transmitted data

ESP32 Integrated WiFi Module

- Provides live vehicle information in Boston
- Filtered to only contain positions and

directions of the train and subway system
(displayed on LEDs in train mode)

- Information about next train arrival at
chosen stop extracted (displayed on LED
matrix display)

MBTA API

- Provides information about the current
busyness levels at businesses

- Busyness info displayed when selected on
Android application

BestTime API

- Provides real time weather information

- Weather information will be displayed on
the LED matrix when chosen to in the app

OpenWeatherMap API

Train Station LEDs

● PL9823
○ Addressable RGB LED

● Use similar protocol to WS2818
○ Using datasheet as reference

● Communicate to using SPI
○ Each bit of data represented by 3 bits in SPI

■ High = 110
■ Low = 100

○ Each color takes one byte of data, leading
to each color being represented by 3 bytes
in SPI

LEDs

Loading action while waiting for
internet connection:

● Not connected → orange pulse
● Unable to connect → red
● Connected, getting WiFi data

→ green pulse

Map Modes: Connecting

LEDs are lit up according to where
trains currently are and where they are
going:

● White light → train at station
● Green light → train arriving at

station
● No light → no train currently at

station, or no train immediately
arriving at/departing from station

Map Modes: Train Mode

LEDs are lit up according to
traffic around station

● Green = light traffic
● Yellow = light-medium traffic
● Orange = medium-heavy

traffic
● Red = severe traffic

Map Modes: Busyness Mode

Android Application

● BLE on 2.4GHz frequency band connects
Android smartphone to ESP32

● Application is able to connect to ESP32,
maintain the connection status, and send
commands to the board

● Uses JSON strings to communicate with
and control the board ({“data”: {“ssid”: “abc”,
“user”: “bob”, “pass”: “def”}, “instruction”:
“WiFi”})

The Application

Application Demo

LED Display

● LED Dot Matrices daisy-chained into a
longer and wider display

● Serially interfaced via SPI
● Used to display information related to the

Boston transit system:
○ Arrival/Departure times for

specific trains
○ Traffic intensity at specific

stations
○ Weather

MAX7219 LED Matrix Display

Challenges Faced

● FreeRTOS task scheduling library

● Power and data wire layout

● Board design and construction

● Custom app design and development

● API edge cases

● Incoming data management

Final Product

Acknowledgements

Dr. Yogananda Isukapalli

Dr. Haewon Jeong

Eric Hsieh

Questions?

