


Project Description
● Create captivating LEGO art piece 

depicting Massachusetts Bay 
Transportation Authority (MBTA) 
map

● Provide real-time information of 
the subway system through LEDs 
○ Precise locations of trains within the 

MBTA network
○ Status of each train station 

● Offer commuters and enthusiasts 
an interactive and informative way 
to experience public transit
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● ESP32-WROOM-32-N4, Microcontroller

● PL9823 Addressable LEDs, Train Station Markers

● Max7219 Dot Matrix, LED Display

Components
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PCB Dimensions: 
2.5” x 2.5”



Physical Map Design 
and Construction



MBTA Map Layout

(48in x 36in)



Map Construction



LED Mounting



LED Mounting Schematics





WiFi Connection 
and Data Sources



● 802.11b/g/n capable WiFi Module 

● ESP32 connects to local WiFi 

network using login information 

provided via user input, then sends 

HTTPS requests to corresponding 

APIs receiving transmitted data

ESP32 Integrated WiFi Module



- Provides live vehicle information in Boston 
- Filtered to only contain  positions and 

directions of the train and subway system 
(displayed on LEDs in train mode) 

- Information about next train arrival at 
chosen stop extracted (displayed on LED 
matrix display)

MBTA API



- Provides information about the current 
busyness levels at businesses

- Busyness info displayed when selected on 
Android application

BestTime API



- Provides real time weather information 

- Weather information will be displayed on 
the LED matrix when chosen to in the app

OpenWeatherMap API



Train Station LEDs



● PL9823 
○ Addressable RGB LED 

● Use similar protocol to WS2818
○ Using datasheet as reference 

● Communicate to using SPI 
○ Each bit of data represented by 3 bits in SPI

■ High = 110 
■ Low = 100

○ Each color takes one byte of data, leading 
to each color being represented by 3 bytes 
in SPI

LEDs



Loading action while waiting for 
internet connection:

● Not connected → orange pulse 
● Unable to connect → red
● Connected, getting WiFi data 

→ green pulse 

Map Modes: Connecting



LEDs are lit up according to where 
trains currently are and where they are 
going: 

● White light → train at station 
● Green light → train arriving at 

station
● No light → no train currently at 

station, or no train immediately 
arriving at/departing from station 

Map Modes: Train Mode



LEDs are lit up according to 
traffic around station 

● Green = light traffic 
● Yellow = light-medium traffic 
● Orange = medium-heavy 

traffic
● Red = severe traffic 

Map Modes: Busyness Mode



Android Application



● BLE on 2.4GHz frequency band connects 
Android smartphone to ESP32

● Application is able to connect to ESP32, 
maintain the connection status, and send 
commands to the board

● Uses JSON strings to communicate with 
and control the board ({“data”: {“ssid”: “abc”, 
“user”: “bob”, “pass”: “def”}, “instruction”: 
“WiFi”})

The Application



Application Demo



LED Display



● LED Dot Matrices daisy-chained into a 
longer and wider display

● Serially interfaced via SPI
● Used to display information related to the 

Boston transit system:
○ Arrival/Departure times for 

specific trains
○ Traffic intensity at specific 

stations
○ Weather

MAX7219 LED Matrix Display



Challenges Faced

● FreeRTOS task scheduling library

● Power and data wire layout 

● Board design and construction

● Custom app design and development

● API edge cases

● Incoming data management



Final Product



Acknowledgements

Dr. Yogananda Isukapalli

Dr. Haewon Jeong

Eric Hsieh



Questions?


