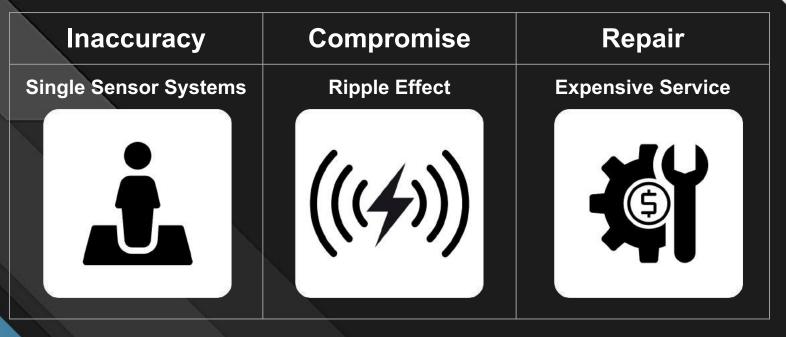

UNITED SENSORS

UCSB Computer Engineering | Capstone 2024


Mission Background

Drones help gather information, their versatility enable us to:

Anticipated Problems

Degradation - Extended use bounds sensors to failure

Proposed Solution

Sensor Redundancy - Multiple Sensors for the Same Operation

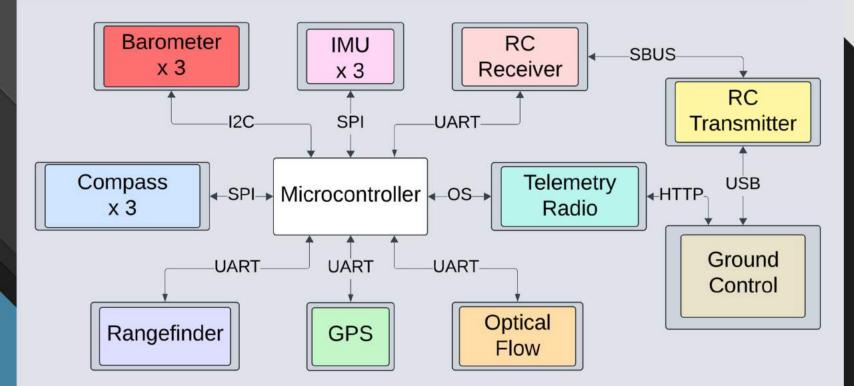
Precision	Tolerance	Reliability
Multi Sensor System	Versatile Function	Built-In Backup
	Ê Ţ Ţ	

Project Overview

Goal: Create sensor redundancy in quadcopters

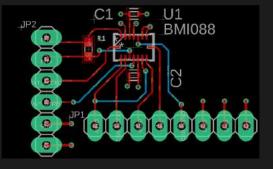
- 1. Decide on a MCU that can handle larger amount of sensors and design a new firmware that Ardupilot will build from
- 2. Provide sensor redundancy for multiple sensor types on the open-source codebase by writing new drivers/editing filters
- 3. Create benchtop testing unit to test code/hardware without having to launch the quadcopter for ease of testing
- 4. Design/Print custom PCB with various redundant sensors types that aims for low power consumption

Engineering Team



Edison Chen	Team Captain/Firmware and Sensor Integration
Ethan Nguyen	Software Development
Tim Qin	PCB Design
Hector Moreno	Motor Control
Shabeeb Reza	Telemetric Comm

Block Diagram


IMU - BMI088

- Communication Protocol: SPI
- 6 DOF IMU that consists of an accelerometer

and a gyroscope

- Extended measurement range of up to ±24g
- Custom printed board with better sizing and defaulting to SPI

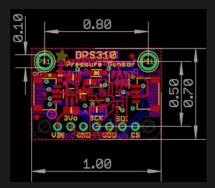
Compass - LIS3MDLTR

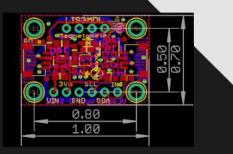
- 3-axis magnetometer
- Communication Protocol: SPI

Barometer - DPS310

- Connected via Stemma QT Cable
- Communication Protocol: I2C

Driver Modifications


Compass - LIS3MDLTR


Increase retries for initialization due to SPI

lines working incorrectly

Barometer - DPS310

- Calibration had to be modified to work correctly
- AP_Baro configuration to support 3 instances

Rangefinder - TF-MiniS

- Communication Protocol: UART
- Swapped from VL53L0X for higher range (1m vs 10m)

Optical Flow - Matek 3901-LOX

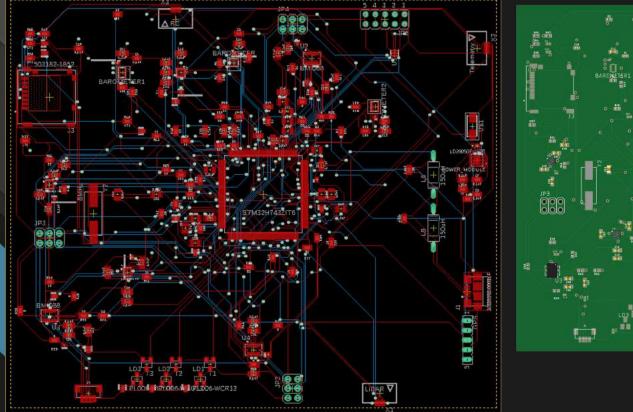
- Communication Protocol: UART
- Also contains a rangefinder if needed
- Swapped from PMW3901 since Matek was much better documented and built for drones

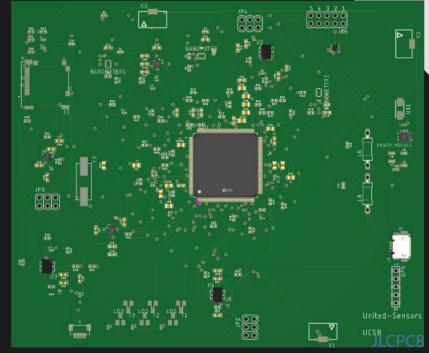
GPS - Neo-6M

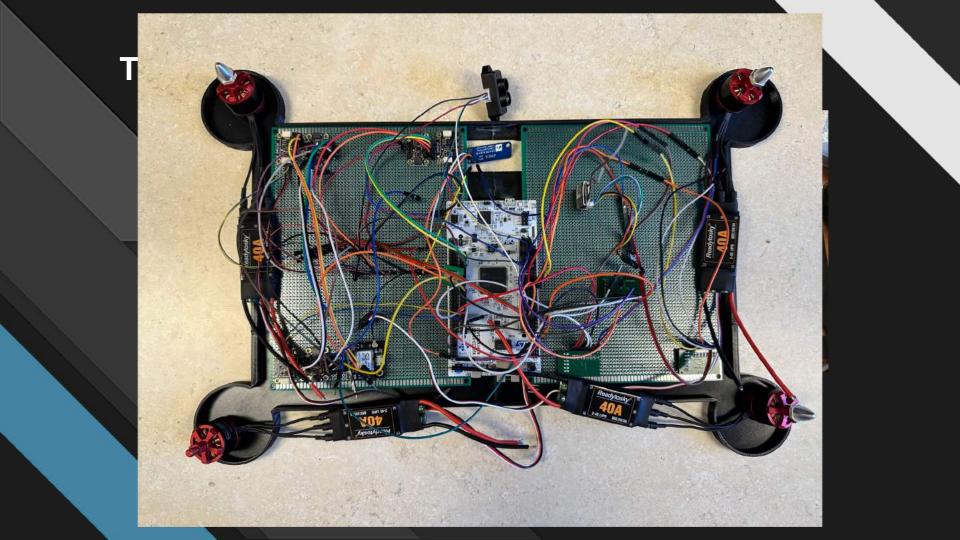
- High sensitivity GPS that uses Satellite positioning
- Requires outdoor use in open area for accuracy
- Communication Protocol: UART

Motor - RtS 920kV Brushless

- Compact design that delivers 1lb of Thrust per unit
- Laced with magnets powered by electromagnetic field
- Utilizes PWM with a range of 50MHz to 100 MHz


Speed Controller - RtS 40A ESC


- Acts as the middle ground between the motors and power signal
- Regulares rotation and direction by delivering timed electrical signals
- Connects to battery to increase motor velocity Receiver - FrSky RX6R
 - Allows for communication with ground station
 - High precision PWM featuring 16 Channels
 - Communication Protocol: UART



Custom PCB

Firmware

ARDUPILOT Custom Firmware Builder

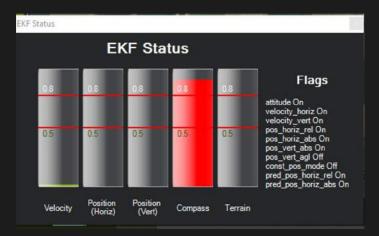
ADD NEW BUILD

Select vehicle

Copter

ArduPilot/waf

The Waf build system


spi devices

SPIDEVbmi088_g1SPI1DEVID1BMI088_G_C51MODE31*MHZ1*MHZSPIDEVbmi088_a1SPI1DEVID2BMI088_A_C51MODE31*MHZ1*MHZSPIDEVbmi088_g2SPI2DEVID1BMI088_G_C52MODE31*MHZ1*MHZSPIDEVbmi088_a2SPI2DEVID2BMI088_G_C52MODE31*MHZ1*MHZSPIDEVbmi088_g4SPI4DEVID1BMI088_G_C54MODE31*MHZ1*MHZSPIDEVbmi088_a4SPI4DEVID2BMI088_A_C54MODE31*MHZ1*MHZSPIDEVlis3mdl1SPI3DEVID1LIS3MDL_C51MODE3500*KHZ1*MHZSPIDEVlis3mdl2SPI5DEVID2LIS3MDL_C53MOE3500*KHZ1*MHZSPIDEVlis3mdl3SPI6DEVID1LIS3MDL_C53MOE3500*KHZ1*MHZ

IMU BMI088 SPI:bmi088_a1 SPI:bmi088_g1 ROTATION_PITCH_180 IMU BMI088 SPI:bmi088_a2 SPI:bmi088_g2 ROTATION_PITCH_180 IMU BMI088 SPI:bmi088_a4 SPI:bmi088_g4 ROTATION_PITCH_180 BARO DPS310 I2C:0:0x77 BARO DPS310 I2C:1:0x77 BARO DPS310 I2C:2:0x77 COMPASS LIS3MDL SPI:lis3mdl1 false ROTATION_NONE COMPASS LIS3MDL SPI:lis3mdl2 false ROTATION_NONE COMPASS LIS3MDL SPI:lis3mdl3 false ROTATION_NONE

Why EKF + Lane Switching is needed

- One bad sensor can lead to larger amounts of error
- Choosing the reliable lane is better than taking the average of all
- Difficult to to detect when exactly was failure to rollback and recalculate
- EKF calculates variances by comparing results from other sensors

EKF (Extended Kalman Filter)

Used to get estimate vehicle position and states over a flight

- 1. Predict the next state based on the previous state and the action taken to go to the next state (Prediction)
- 2. Measure the current state using a sensor (Measurement)
- 3. Based on Affinity or sensitivity threshold of errors, estimate a new value based on the respective values (Estimation)
- 4. Repeat Step 1-3, continually using new values (Repeat)

Changes to ArduCopter

- EKF Changes
 - IMU defined lanes can now swap in other sensor iterations to compensate for failures
 - Only changes lane when IMU is faulty
 - Tries to get data from other sensor iterations
 - What is defined as a failure?
 - Power loss, Constant Values, Large Offset

Software Demo - IMU Failure and Recovery

Challenges

- Custom board was difficult to wire due to lack of labels on silkscreen
- Certain parts weren't well documented on Arducopter
- Unnecessary risk taken with using a custom board as IMU is the most important sensor
- Working from chosen MCU instead of pre-built flight controller

Acknowledgements

AeroVironment

- Phil Tokumaru
- Ryan Friedman
- Matthew Fehl

UCSB ECE

- Professor Isukapalli
- Eric Hsieh

THANK YOU! Questions?