Unmanned Surface Vessel
Contents

• Mission

• Technology

• Progress
Mission

• Map and survey coastline using an easily deployable unmanned surface vehicle
 ◦ Erosion and coastal stability, disaster preparedness/response, maritime navigation and safety, military reconnaissance
Mission

• Map and survey coastline using an easily deployable unmanned surface vehicle
 ◦ Erosion and coastal stability, disaster preparedness/response, maritime navigation and safety, military reconnaissance

• Additional Challenge
 ◦ Enable safe autonomous navigation to tolerate unreliable communication
Mission

• Map and survey coastline using an easily deployable unmanned surface vehicle
 ◦ Erosion and coastal stability, disaster preparedness/response, maritime navigation and safety, military reconnaissance

• Additional Challenge
 ◦ Enable safe autonomous navigation to tolerate unreliable communication

• Solution / Technology of Interest
 ◦ Radar based SLAM (Simultaneous Localization and Mapping)
 ◦ Relay telemetry (video/images/coastal topography)
Mission

• Map and survey coastline using an easily deployable unmanned surface vehicle
 ○ Erosion and coastal stability, disaster preparedness/response, maritime navigation and safety, military reconnaissance

• Additional Challenge
 ○ Enable safe autonomous navigation to tolerate unreliable communication

• Solution / Technology of Interest
 ○ Radar based SLAM (Simultaneous Localization and Mapping)
 ○ Relay telemetry (video/images/coastal topography)

• Why radar?
 ○ Newer solid state radar provides short to long range detection with lower power consumption
 ○ Functions in poor weather and is cheaper and more reliable than other systems (LIDAR)
Block Diagram

Drone

- GPS
 - Ublox NEO-M8
- Radar
 - Quantum 2 Q24C
- SBC
 - Raspberry Pi
 - SC0195(9)
- Camera
 - Arducam IMX291 1080P
 - 120° wide angle
- Electronic Speed Controllers
- Thrusters
 - Blue Robotics T200
- Radio
 - Doodle Labs RM-2450-12M3

Control Station

- Laptop
- Radio
 - Doodle Labs RM-2450-12M3
Propulsion

- Blue Robotics T200 Thruster
 - 2x counter-rotating
 - 23.2 lb ft
 - Nominal power: 400W
 - 17A @ 12V
Propulsion

- Blue Robotics T200 Thruster
 - 2x counter-rotating
 - 23.2 lb ft
 - Nominal power: 400W
 - 17A @ 12V

- Blue Robotics Basic ESC
 - 30A limit
 - May need active cooling
Power

- Power elec. supply
 - 22.2 V, 22 Ah
 - Thrusters and radar
 - Expected 1 hr capacity
Power

- **Power elec. supply**
 - 22.2 V, 22 Ah
 - Thrusters and radar
 - Expected 1 hr capacity

- **Auxiliary supply**
 - 2x 12V, 3.8 Ah
 - Raspberry Pi, GPS, camera
Physical Design
Physical Design
Physical Design

• Control
 ○ Differential thrust
 ○ Targeting 3 knots
RASPBERRY PI 4B

Working Components

• Runs ROS2 on Ubuntu Linux
• ROS packages include:
 ◦ radar, radio, camera, and thruster
• Runs DHCP
 ◦ Used to assign radar IP, connected via RJ45
Working Components

- Simple USB Connection
 - Accuracy Issues
- 2.5m theoretical resolution
- 15m practical resolution
- Issues Requires Line of Sight (LOS)
Working Components

- Ethernet interface
 - UDP unicast
 - UDP multicast
- 250 spokes per scan
- ros2 run radar quantum
- Auto detect, keep alive
Working Components

- Connects via USB
- 120° Wide Angle
- IP67 Certified
- `ros2 run video_stream video_publisher`
Working Components

- USB-C / Ethernet Connection
- Duplex data stream
- 2.4 GHz Band
- Range ~10km @ 100 Mbps
- Successful at 2km, until loss of the LOS
ROS Graph
Progress Updates

Fall ‘23

- Hardware Acquisition
- Component Testing
- DevOps Setup
- Learning ROS
Progress Updates

Fall ‘23
- Hardware Acquisition
- Component Testing
- DevOps Setup
- Learning ROS

Winter ‘24
- UDP Communication
- Boat Assembly
- ROS Package Structure
- Control Station Design
- Hardware Mounting
Progress Updates

Fall ‘23
- Hardware Acquisition
- Component Testing
- DevOps Setup
- Learning ROS

Winter ‘24
- UDP Communication
- Boat Assembly
- ROS Package Structure
- Control Station Design
- Hardware Mounting

Spring ‘24
- Refine ROS Nodes
- Control Station GUI
- SLAM
- Testing
ACKNOWLEDGEMENTS

PROFESSOR YOGA ISUKAPALLI
ERIC TSIEH - TEACHING ASSISTANT

PHIL TOKUMARU - PROJECT ADVISOR
MATTHEW FEHL - ADVISING ENGINEER
RYAN FRIEDMAN - ADVISING ENGINEER