

OUR TEAM

BARON YOUNG

WENJIN LI

DHRUV AGGARWAL

CAMERON BARRETT

MAXWELL JUNG

- Mission
- Technology
- Demo

Mission

- Map and survey coastline with easily deployable unmanned surface vehicle
- Applications
 - Coastline erosion
 - Disaster preparedness/response
 - Maritime navigation
 - Military reconnaissance

Technology of Interest

- Radar based SLAM (Simultaneous Localization and Mapping)
 - Why radar?
 - Performs better in adverse weather conditions such as rain, fog, and snow.
 - Longer detection range (km)
 - Can penetrate through obstacles like dust, smoke, and foliage
 - Radar sensors are usually more robust and less sensitive to physical damage.
- Remote telemetry
 - Video
 - Coastal map

Block Diagram

SBC

- Runs Ubuntu 22.04 LTS
 - controls hardware, processes data
 - Utilizes ROS2 DDS (data distribution service)
- GPIO
 - IMU
 - Thruster ESC
- Runs DHCP server
 - Used to assign radar IP

RASPBERRY PI 4B

Radar

- Ethernet interface
 - send command over UDP unicast
 - receive data over UDP multicast
- 250 spokes per scan
- 20 zoom levels
 - max zoom = ~5m per pixel

QUANTUM Q24C RADAR

Radio

- USB-C / Ethernet Connection
- Using DL Eval kit with ANT-2450-3-O
- Duplex data stream
- 2.4 GHz Band
- Range ~10km with 100 Mbps data rate
- Testing in urban environment successful at ~2km until loss of the LOS

DL RM2450 MESH RADIO

Camera

- Connects via USB
- 120° Wide Angle
- IP67 Certified

ARDUCAM 1080P

NEO-M8 GPS

- Simple USB Connection
- 2 2.5m accuracy
- Attached antenna Requires Line of Sight (LOS)
- Used for ground truth position

IMU

• 9 DOF

- Three axis of 'rotation speed' (rad/s)
- Three axis of acceleration (gravity + linear motion m/s²)
- Communicate via I2C
- Used to estimate orientation

BNO055 IMU

Thrusters

- Blue Robotics T200 Thruster
 - 2x counter-rotating
 - 17 lb f total thrust
 - Nominal power: 200W
 - 17A @ 12V

Power

- Batteries
 - 2x 22.2V LiPo (bucked to 12V)
 - 14.8V LiPo (bucked to 5V)
- 12V rail
 - Thrusters
 - Radar
- 5V rail
 - Raspberry Pi
 - Camera
 - Radio

- Construct radar mount
- Construct thruster mounts

- Electronics enclosure
- Waterproofing I/O

- Wire power rails
- Connect SBC to peripherals

• Final product

Thruster Control & Radio Test

USV Design

• Fully Assembled

• Radar and GPS antenna

Control Station

Radar Scan

Radar scan in CE lab (cartesian)

Goleta Beach Park Radar Scan

Goleta Beach Park Radar Scan

Radar Image Filtering

Morphological + Bilateral Filter

Thresholding + Contour

Lagoon Scans Fed into CFEAR

Demonstration

Acknowledgements

Professor Yoga Isukapalli Eric Tsieh - Teaching Assistant

Phil Tokumaru - Project Advisor Matthew Fehl - Advising Engineer Ryan Friedman - Advising Engineer

Questions?

CFEAR: Conservative Filtering for Efficient and Accurate Radar Odometry

Initial Lagoon Test

