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Introduction

¥ Linear leassquares problem was probably first
developed and solved by Gauss (1795) in his w
on mechanics
¥ |-S solutions have attractive properties;
Pcan be explicitly evaluated in closed forms
Pcan be recursively updated as more input dat
made available
bare maximum likelihood estimators in the
presence of Gaussian measurement noise
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* Over the last several years, a wide variety of
adaptive algorithms based on least squares
criterion has been derived
— RLS (Recursive Least Squares) algorithms and

corresponding fast versions

 FTF (Fast Transversal Filter)

 FAEST (Fast Aposterior1 Error Sequential

Technique)
— QR and 1nverse QR algorithms
— LSL (Least Squares Lattice) and QR
decomposition



Least-Squares Problem

Consider a standard observation model in additive noise.
d(i) = U"W +n(i)

d(?)...noisy measurement linearly related to W
W...Is the unknown vector to be estimated
U....Given column vector

n(i)...the noise vector

In a practical scenario, the W can be the weight vector, U;

The data vector, d(i) the observed output using a Series of
Arrays and n(7) 1s the noise vector added at each sensor.
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If we have N+1 measurements then they can be grouped
together into a single matrix expression;

d0) ] [ul]  [n) "
d(1) u/’ n(1)
= W+
dWN)| |ul | [n(N)_
< d=UW+n

The problem is to minimize the distance between d and UW
Where W is the estimated weight vector.



2

d-UW

min
A least squares solution to the above problem is,
W =(U"U) U"d

Let Z be the cross correlation vector and @ be the

covariance matrix.
Z=U"d

®=U"U
W=0"Z
The above equation could be solved block by block basis

but we are interested 1n recursive determination of tap
weight estimates w.



RLS algorithm

— The RLS algorithm solves the least squares
problem recursively

— At each 1teration when new data sample 1s
available the filter tap weights are updated

— This leads to savings in computations

— More rapid convergence 1s also achieved




The derivation of RLS algorithm

The attempt is to find a recursive solution to the followil
minimization problem,

() =" 2 efi)

e(i) =d(i)! y@i)=d()! W' (nu()
U@i) =[U(@i),U(! 1),..,UG{! M +D)]
W(n) =[W,(n), W,(n),...W,,,.(n)], thelengthof filter is M.

PThe weighting factor has the property that
0<<A<1.
Pweighting factor is used to OforgetO data samples in
distant past, usual value is 0.99. 9
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FIGURE 9.1 Transversal filter with time-varying tap weights.
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— The optimum value for the tap-weight vector 1s defined
by normal equations.

O(n)W(n)=7Z(n) < w(n)=> "' (n)Z(n)
O(n) =2 2U@U" (1) + 521
D(n) = ﬂ,g/l”‘i‘lU(i)UH(i) +SAT |+ U(n)U" (n)
®(n) = AD(n—1)+U(n)U" (n)
Z(n)= Z%/I”‘iU(i)d "(i), the cross correlation term.
Z(n)=AZ(n-1)+U(n)d (n)
— Then we use the matrix inversion lemma to the recursive

model of correlation matrix to make it possible to invert
correlation matrix recursively
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The matrix inversion lemma

DA andB are two positivedefinite M-by-M matrices
PD is another positiveefinite N-by-M matrix
PbC is an Mby-N matrix.

Let A,B,C andD be related as
A=B " +CD'C".
Then the inverse @k is given by,

A'*=B! BC(D+C"BC)"'C"B.
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Application of matrix inversion lemma to the present
Problem 1s based on the following definitions.

A=®(n)

B = A®(n-1)
C=U(n)
D=1.

— These definitions are substituted in the matrix inversion
lemma
— After some calculations we get following equations
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P(n)=! "“(n)
P(n)="P(n! D! "K(n)U"(nN)P(n! 1) (Riccatiequatior)
"P(n! HU(N)

)= U Pt pugny — Y™

PNow we have recursive solution to the inverse of

correlation matrix
PNext we need update method for the-vegaght vector

¥Time update for the taweight vector
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W(n)=! *(n)Z(n)
:P(n)Z(n)
= "P(NZ(n! ! P(MU(n)d" (n)

By substituting the Riccati equation to the first term in tt
right side of the equation,

W(n)=P(n! DZ(n! 1)! K(NU"(n)P(n! DZ(n! 1)
+P(nU(n)d (n)
=W (n! 1! K(MU"(N)W(n! 1) +P(n)U(n)d (n)
Thenusingthefact that,
K(n)=P(n)U(n)
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The desired recursion equation for updating theatajght
Vector.

W (n) =W (n! D+Kn)d (n)! U)W (n! 1]
=W(n! ) +K(n)” (n)

“(n)=d(n)! U'(NW'(n! 1)
=d(n)! W"(n! YU(n)

The block diagram shown in the next page illustrates tl
Use ofa priori estimation error in RLS algorithm.

a priori estimation error is in general different from
a posterioriestimation errog(n)

e(n) =d(n) - W (n)U(n)

16



Input vector l

win) Trarmversal fiter > =Tl o Ounpent
win-1)
i Emor -
Adaptve &)
waghe-cantrol ey
Desired
188 pONe
) an}
+ g
o in)
wrin-1)

Unity negative feedback

® ¥ Block diagram of RLS algorithm
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Summary of RLS algorithm
Initialize the algorithm by setting

W(@0)=0, P =("I.

_ $smallpositiveconstantor highSNR

- #Iargepositiveconstanfor low SNR
Foreach timenstantof time,n=1,2,...conpute

() =P(n! DU(). K(n)= ("

9%+ U"(n)’ (n)’

&n)=d(n)! W"(n! HU(n),
W"(n)=W"(n! ) +K (n)& (n), and
P(n)= %P(n! 1)! %K (n)U"(n)P(n! 1).
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Convergence Analysis of the RLS algorithn

The desired response and the tap input vector are asst
to be related by the multiple linear regression model.

Block Diagram of Linear v —~ O
Regression Model A o e :
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Assumptionl:

d(n) =w u(n)+e(n),

Where
w_Istheregressionparametewector.

e (n) iIsthemeasurmemoise

e (n) is whitewith zeromeanand variance” .
e (n) isindependenof theregressom(n).
Theexponentibweighting factor / isunity.
Assumptionll :

The input signal vectar(n) is drawn from a stochastic
Process, which is ergodic in the autocorrelation functic
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Assumptionlll :

The Fluctuations in the weigltror vector must be slow
Compared with those of the input signal vectr).

Convergence in the Mean Value

With the help of above assumptions it can be shown th
RLS algorithm is convergent in the mean sense foiMh
Where OMO is the number of taps in the additive trans

filter. /
Elg(n)]=w," p.

¥Unlike the LMS algorithm, the RLS algorithm does no
have to wait for n to be infinitely large for convergenc
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* The mean-squared error 1n the weight vector
The weight error vector 1s defined as,
g(n)=w(n)—-w,
Expression for the mean-squared error 1n the weight vector,

o 1
8 - -
Ele" (n)e(n)]= /1
* [l conditioned least—squares problems may lead to poor
convergence properties.
* The estimate w(»n)produced converges in the norm to the
parameter vector W, of the multiple linear regression

model almost linearly with time.
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[earning curve of the RLS algorithm

Considerations on convergence:

« RLS algorithm converges in about 2M iterations,
where M 1s the length of transversal filter

* RLS converges typically order of magnitude faster
than LMS algorithm

* RLS produces zero misadjustment when operating
in stationary environment (when n goes to infinity
only measurement error 1s affecting to the precision

* convergence 1s independent of the eigenvalue
spread
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Example of RLS algorithm: Adaptive equalization I

* Block diagram of adaptive equalizer

Random-noise Adaptive -
generator (1) [ Channel transversal
X, aqualizer

w| L

Random-noise
generator (2)




Impulse response of the channel 1s,

—| l+cos| —In=2)||. n=123
h =12 | 8|

() otherwise

* where W controls the amount of amplitude distortion
and therefore the eigenvalue spread produced by the
channel.

11 taps, forgetting factor = 1

Experiment is done in to parts
e part 1: signal to noise ratio 1s high = 30 dB
e part 2: signal to noise ratio 1s low = 10 dB
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Results of Partl
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Results of Part2
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— Part 1 summary

» Convergence of RLS algorithm 1s attained 1n about
20 1terations (twice the number of taps).

» Rate of convergence of RLS algorithm 1s relatively
insensitive to variations in the eigenvalue spread.

 Steady-state value of the averaged squared error
produced by the RLS algorithm 1s small, confirming
that the RLS algorithm produces zero misadjustment.

— Part 2 summary
 The rate of convergence 1s nearly same for the LMS
and RLS algorithm 1n noisy environment.
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