
A Novel Architecture of the 3D Stacked MRAM L2 Cache for CMPs

Guangyu Sun†, Xiangyu Dong†, Yuan Xie†, Jian Li‡, Yiran Chen§
†Pennsylvania State University, ‡IBM Austin Research Lab, §Seagate Technology

†{gsun, xydong, yuanxie}@cse.psu.edu, ‡jianli@us.ibm.com, §yiran.chen@seagate.com

Abstract

Magnetic random access memory (MRAM) is a promis-
ing memory technology, which has fast read access, high
density, and non-volatility. Using 3D heterogeneous in-
tegrations, it becomes feasible and cost-efficient to stack
MRAM atop conventional chip multiprocessors (CMPs).
However, one disadvantage of MRAM is its long write la-
tency and its high write energy. In this paper, we first
stackMRAM-based L2 caches directly atop CMPs and com-
pare it against SRAM counterparts in terms of performance
and energy. We observe that the direct MRAM stacking
might harm the chip performance due to the aforemen-
tioned long write latency and high write energy. To solve
this problem, we then propose two architectural techniques:
read-preemptive write buffer and SRAM-MRAM hybrid
L2 cache. The simulation result shows that our optimized
MRAM L2 cache improves performance by 4.91% and re-
duces power by 73.5% compared to the conventional SRAM
L2 cache with the similar area.1

1 Introduction

The diminishing return of endeavors to increase clock
frequencies and exploit instruction level parallelism in a
single processor have led to the advent of chip multipro-
cessors (CMPs) [8]. The integration of multiple cores on a
single chip is expected to accentuate the already daunting
“memory wall” problem [6] and it becomes a major chal-
lenge of supplying massive multi-core chips with sufficient
memories.
The introduction of the three-dimensional (3D) integra-

tion technology [9,26] provides the opportunity of stacking
memories atop compute cores and therefore alleviates the
memory bandwidth challenge of CMPs. Recently, active
research [4, 13, 22] has targeted SRAM caches or DRAM
memories stacking.
Magnetic Random Access Memory (MRAM) is a

promising memory technology with attractive features such
as fast read access, high density, and non-volatility [14,27].
However, previous research on leveraging MRAM as on-
chip memories is very limited. How to integrate MRAM

1This work was supported in part by NSF grants (CAREER 0643902,
CCF 0702617, CSR 0720659), a gift grant fromQualcomm, and IBM Fac-
ulty Award.

into compute cores on planular chips is the key obsta-
cle since the MRAM fabrication involves hybrid magnetic-
CMOS processes. Fortunately, 3D integrations enable
the cost-efficient integration of heterogeneous technologies,
which is ideal for MRAM stacking atop compute cores.
Some recent work [10, 12] has evaluated the benefits of
MRAM as a universal memory replacement for L2 caches
and main memories in single-core chips.
In this paper, we further evaluate the benefits of stacking

MRAM L2 caches atop CMPs. We first develop a cache
model for stacking MRAM and then compare the MRAM-
based L2 cache against its SRAM counterpartwith the sim-
ilar area in terms of performance and energy. The com-
parison shows that: (1) For applications that have moder-
ate write intensities to L2 caches, the MRAM-based cache
can reduce the total cache power significantly because of its
zero standby leakage and achieve considerable performance
improvement because of its relatively larger cache capac-
ity; (2) For applications that have high write intensities to
L2 caches, theMRAM-based cache can cause performance
and power degradations due to the long latency and the high
energy of MRAM write operations.
These two observations imply that MRAM-based caches

might not work efficiently if we directly introduce them
into the traditional CMP architecture because of their dis-
advantages on write latency and write energy. In light of
this concern, we propose two architectural techniques, read-
preemptivewrite buffer and SRAM-MRAM hybrid L2 cache,
to mitigate theMRAM write-associated issues. The simula-
tion result shows that performance improvement and power
reduction can be achieved effectively with our proposed
techniques even under the write-intensive workloads.

2 Background

This section briefly introduces the background of
MRAM and 3D integration technologies.

2.1 MRAM Background

The basic difference between the MRAM and the con-
ventional RAM technologies (such as SRAM/DRAM) is
that the information carrier of MRAM is Magnetic Tun-
nel Junctions (MTJs) instead of electric charges [27]. As
shown in Fig. 1, each MTJ contains a pinned layer and a
free layer. The pinned layer has fixed magnetic direction

239978-1-4244-2932-5/08/$25.00 ©2008 IEEE

while the free layer can change its magnetic direction by
spin torque transfers [14]. If the free layer has the same di-
rection as the pinned layer, the MTJ resistance is low and
indicates state “0”; otherwise, the MTJ resistance is high
and indicates state “1”.
The latest MRAM technology (spin torque transfer ram,

STT-RAM) changes themagnetic direction of the free layer
by directly passing spin-polarized currents through MTJs.
Comparing to the previous generation of MRAM using ex-
ternal magnetic fields to reverse theMTJ status, STT-RAM
has the advantage of scalability, which means the threshold
current to make the status reversal will decrease as the size
of theMTJ becomes smaller. In this paper, we use the terms
“MRAM” and “STT-RAM” equivalently.
Themost popular structure of MRAM cells is composed

of one NMOS transistor as the access device and one MTJ
as the storage element (“1T1J”structure) [14]. As illustrated
in Fig. 1, the storage element, MTJ, is connected in series
with the NMOS transistor. The NMOS transistor is con-
trolled by the the word line (WL) signal. The detailed read
and write operations for each MRAM cell is described as
follows:

• Read Operation: When a read operation happens, the
NMOS is turned on and a small voltage difference (-0.1V
as demonstrated in [14]) is applied between the bit line
(BL) and the source line (SL). This voltage difference
causes a current through the MTJ whose value is deter-
mined by the status of MTJs. A sense amplifier com-
pares this current to a reference current and then decides
whether a “0” or a “1” is stored in the selected MRAM
cell.

• Write Operation: When a write operation happens, a
large positive voltage difference is established between
SLs and BLs for writing for “0”s or a large negative one
for writing “1”s. The current amplitude required to en-
sure a successful status reversal is called threshold cur-
rent. The current is related to the material of the tunnel
barrier layer, the writing pulse duration, and theMTJ ge-
ometry [11].

In this work, we use the writing pulse duration of
10ns [27], below which the writing threshold current will
increase exponential. In addition, we scale theMRAM size
of previouswork [14] down to 65nm technology node. As-
suming the size of MTJs is 65nm × 90nm, the derived
threshold current for magnetic reversal is about 195μA.

2.2 3D Integration Overview

The 3D integration technology has recently emerged as a
promising means to mitigate interconnect-related problems.
By using the vertical through silicon via (TSV), multiple
active device layers can be stacked together (through wafer
stacking or die stacking) in the third dimension [26].

3D integrations offer a number of advantages over tradi-
tional two-dimensional (2D) designs [9]: (1) shorter global

interconnects because the vertical distance (or the length of
TSVs) between two layers is usually in the range of 10 μm

to 100 μm [26] depending on manufacturing processes; (2)
higher performance because of reducing the average inter-
connect length; (3) lower interconnect power consumption
due to the wire length reduction; (4) denser form factor and
smaller footprint; (5) support for the cost-efficient integra-
tion of heterogenous technologies.
In this paper, we rely on the 3D integration technol-

ogy to stack a massive amount of L2 caches (2MB for
SRAM caches and 8MB for MRAM caches) on top of
CMPs. Furthermore, the heterogenous technology integra-
tion enabled by 3D makes it feasible to fabricate MRAM
caches and CMP logics as two separate dies and then stack
them together in a vertical way. Therefore, the magnetic-
related fabrication process of MRAM will not affect the
normal CMOS logic fabrication and keep the integration
cost-efficient.

3 MRAM and Non-Uniform Cache Access
(NUCA)Models

In this section, we describe an MRAM circuit model and
a NUCA model which is implemented with Network-on-
Chip (NoC).

3.1 MRAM Modeling

To model MRAM, we first estimate the area of MRAM
cells. As shown in Fig. 1, each MRAM cell is composed
of one NMOS transistor and oneMTJ. The size of MTJs is
only limited by manufacturing techniques, but the NMOS
transistor has to be sized properly so that it can drive suf-
ficiently large current to change the MTJ status. The cur-
rent driving ability of NMOS transistor is proportional to its
W/L ratio. Using HSPICE simulation, we find that themin-
imumW/L ratio for the NMOS transistor under 65nm tech-
nology node is around 10 to drive the thresholdwriting cur-
rent of 195μA. We further assume the width of the source
or drain regions of an NMOS transistor is 1.5F , where F

is the feature size. Therefore, we estimate the MRAM cell
size is about 10F × 4F = 40F 2. The parameters of our
targeted MRAM cell are tabulated in Table .

Table 1. MRAM Cell Specifications
Technology 65nm

Write Pulse Duration 10ns

Threshold Current 195μA

Cell Size 40F 2

Aspect Ratio 2.5

Despite the difference in storage mechanisms, MRAM
and SRAM have the similar peripheral interfaces from the
circuit designers’ points of view. By simulatingwith a mod-
ified version of CACTI [2], our result shows that the area of
a 512KBMRAM cache is similar to a 128KB SRAM cache

240

Bit Line

Source Line

Word Line

MTJ

Transistor

Bipolar
Write Pulse /
Read Bias
Generator

Sense Amp.

Ref.

Free layer
Pinned layer

Bit Line

Source Line

Word Line

MTJ

Transistor

Bipolar
Write Pulse /
Read Bias
Generator

Sense Amp.

Ref.

Free layer
Pinned layer

Figure 1. An illustration of an
MRAM cell

� � ��
� � � � 	
 � � 	 �

� ��

Figure 2. Eight caches ways are
distributed in four banks. As-
sume four cores and accordingly
four zones each layer.

����	
���������	�
�����

������
�����

��	���

����������

�����! �����
"���

�����
"���

� �$�������&�'

�����*
��	���

����	
�
�������	�

����
�����

�����
"���

�����
"���

� �
&��<������&�'

�����>����������

��� �"�

Figure 3. (a) An illustration of the proposed 3D NUCA
structure, which includes 1 core layer, 2 cache layers.
There are 4 processing cores per core layer, 32 cache
banks per cache layer, and 4 through-layer-bus across
layers; (b) Connections amongst routers, caches banks
and through-layer-buses.

whose cell is about 146F 2 (this value is extracted from
CACTI). Table 2 lists the comparison between a 512KB
MRAM cache bank and a 128KB SRAM cache bank, which
are used later in this paper, in terms of area, access time,
and access energy.

Table 2. Comparison of area, access time,
and energy comparison(65nm technology)
Cache size 128KB SRAM 512KBMRAM

Area 3.62mm2 3.30mm2

Read Latency 2.252ns 2.318ns

Write Latency 2.264ns 11.024ns

Read Energy 0.895nJ 0.858nJ

Write Energy 0.797nJ 4.997nJ

3.2 Modeling 3D NUCA Cache

As the caches capacity and area increase, the wire delay
has made the Non-Uniform Cache Access (NUCA) archi-
tecture [18] more attractive than the conventional Uniform
Cache Access (UCA) one. In NUCA, the cache is divided
into multiple banks with different access latencies accord-
ing to their locations relative to cores and these banks can be
connected through a mesh-based Network-on-Chip (NoC).
Extending the work of CACTI [2], we develop our NoC-

based 3D NUCA model. The key concept is to use NoC
routers for communications within planular layers, while
using a specific through silicon bus (TSB) for commu-
nications among different layers. Figure 3(a) illustrates
an example of the 3D NUCA structure. There are four
cores located in the core layer and 32 cache banks in each
cache layer and all layers are connected by through silicon
bus (TSB) which is implementedwith TSVs. This intercon-
nect style has the advantage of short connections provided
by 3D integrations. It has been reported the vertical latency

of traversing a 20-layer stack is only 12ps [23], thus the la-
tency of TSB negligible compared to the latency of 2D NoC
routers. Consequently, it is feasible to have single-hop ver-
tical communications by utilizing TSBs. In addition, hy-
bridization of 2D NoC routers with TSBs require one (in-
stead of two) additional link on each NoC router, because
TSB can move data both upward and downward [20].

As shown in Figure3(a), cache layers are on top of
core layers and they can either SRAM or MRAM caches.
Figure3(b) shows a detailed 2D structure of cache layers.
Every four cache banks are grouped together and routed to
other layers via TSBs.

Similar to prior approaches [7, 20], the proposed model
supports data migration, which moves data closer to their
accessing core. For set-associative cache, the cache ways
belonging to the set should be distributed into different
banks so that data migration can be implemented. In our
3D NUCA model, each cache layer is equally divided into
several zones. The number of zones is equal to the number
of cores and each zone has a TSB located at its center. The
cache ways of each set are uniformly distributed into these
zone. This architecture promises that, within each cache
set, there are several ways of cache lines close to the ac-
tive core. Fig. 2 gives an illustration of distributing eight
ways into four zones. Fig. 3(a) shows an example of data
migration after which the core in the upper-left corner can
access the data faster. In this paper, this kind of data migra-
tions is called inter-migration to differentiate another kind
of migration policy introduced later.

The advantages of this 3D NUCA cache are:(1) plac-
ing L2 caches in separate layers makes it possible to in-
tegrateMRAM with traditional CMOS process technology;
(2) separating cores from caches simplifies the design of
TSBs and routers because TSBs are now connected to cache
controllers directly, and there is no direct connection be-

241

Table 3. Baseline configuration parameters
Processors
of cores 8
Frequency 3GHz
Power 6W/core
Issue Width 1 (in order)
Memory Parameters
L1 cache private, 16+16KB, 2-way,

64B line, 2-cycle,
write-through, 1 read/write port

SRAM L2 shared, 2MB (16x128KB),
32-way, 64B line,

read/write per bank : 7-cycle,
write-back, 1 read/write port

MRAM L2 shared, 8MB (16x512KB),
32-way, 64B line,

read penalty per bank : 7-cycle,
write penalty per bank : 33-cycle,

write-back, 1 read/write port
Write buffer 4 entry, retire-at-2
Main Memory 4GB, 500-cycle latency
Network Parameters
of Layers 2
of TSB 8
Hop latency TSB 1 cycle, V hop 1 cycle

H hop 1 cycle
Router Latency 2-cycle

tween routers and cache controllers.
We provide one TSB for each core in the model. Con-

sidering that the TSV pitch size is reported to be only 4-
10μm [23], thus even a 1024-bit bus (much wider than
our proposed TSB) would only incur an area overhead of
0.32mm2. In our study, the die area of an 8-core CMP is
estimated to be 60mm2 (discussed later). Therefore, it is
feasible to assign one TSB for each core and the TSV area
overhead is negligible.

3.3 Configurations and Assumptions

Our baseline configuration is an 8-core in-order proces-
sor using the Ultra SparcIII ISA. In order to predict the chip
area, we investigate some die photos, such as Cell Proces-
sor [16], Sun UltraSPARC T1 [19], etc. and estimate the
area of an 8-core CMP without caches to be 60mm2. By
using our modified version of CACTI [2], we further learn
that one cache layer fits to either a 2MB SRAM or an 8MB

MRAM L2 cache assuming each cache layer has the simi-
lar area to that of core layer (60mm2). The configurations
are detailed in Table 3. Note that the power of processors is
estimated based on the data sheet of real designs [16,19].

We use the Simics toolset [24] for performance simu-
lations. Our 3D NUCA architecture is implemented as an
extended module in Simics. We use a few multi-threaded
benchmarks fromOpenMP2001 [3] and PARSEC [1] suites.

Since the performance and power of MRAM caches are
closely related to transaction intensity, we select some sim-
ulationworkloads as listed in Table 4 so thatwe have awide
range of transaction intensities to L2 caches. The average
numbers of total transactions (TPKI)2 and write transac-
tions (WPKI) of L2 caches are listed in Table 4. For each
simulation, we fast forward to warm up the caches and then
run 3 billion cycles. We use the total IPC of all the cores as
the performancemetric.

Table 4. L2 transaction intensities
Name TPKI WPKI
galgel 1.01 0.31
apsi 4.15 1.85
equake 7.94 3.84
fma3d 8.43 4.00
swim 19.29 9.76
streamcluster 55.12 23.326

3.4 SNUCA and DNUCA

Static NUCA (SNUCA) and Dymaic NUCA (DNUCA)
are two different implementations of the NUCA architec-
ture proposed by Kim, et al. [18]. SNUCA statically parti-
tions the address space across cache banks, which are con-
nected via NoC; DNUCA dynamically migrates frequently
accessed blocks to the closest banks. These two NUCA im-
plementations result in different access patterns and vari-
able write intensities. In our later simulations, we use
both SNUCA-SRAM and DNUCA-SRAM L2 caches as
our baselines when evaluating the performance and power
benefits of MRAM caches.

4 Direct Replacing SRAM with MRAM as
L2 Caches

In this section, we directly replace SRAM L2 caches
with MRAM ones that have the comparable area, and show
that without any optimization, a naiveMRAM replacement
will harm both performance and power when the workload
write intensity is high.

4.1 Same Area Replacement

As shown in Table 2, a 128KB SRAM bank has the simi-
lar area as a 512KBMRAM bank does. Thereby, in order to
keep the area of cache layers unchanged, it becomes reason-
able to replace SRAM L2 caches with MRAM ones whose
capacity is 3 times larger. We call this replacement strategy
as “same area replacement”.

Using this strategy, we integrate as many caches in the
cache layers as possible. Considering our baseline SRAM

2TPKI is the number of total transactions per 1K instructions andWPKI
is the number of write transactions per 1K instructions.

242

? ^

>
*�`��{�`�}��{ ^�`��{�`�}��{

? ^

>
*�`��{�`�}��{ ^�`��{�`�}��{

��
�

?��

?��

?�^

?��

?��

?�^
�

��
��

�	

�

��
�

�

?

?�*

��� ���!� ���'���� ��������	����
?

?�*

��� ���!� ���'���� ��������	����

�
��

�

Figure 4. The comparison of L2 caches access miss rates for SRAM L2 cache and MRAM L2 cache
that have similar area. Larger capacity of MRAM cache results in smaller cache miss rates.

>�>

>�*

��

*�`��{�`�}��{ ^�`��{�`�}��{ *�`��{�`�}��{ ^�`��{�`�}��{

?��

>

�
��

�
��

��
�	

��

?�^

��
�� �'� ��	��� ���!� ��� ��������	����

Figure 5. IPC comparison of SRAM and
MRAM L2 caches(Normalized by 2M SNUCA
SRAM cache).

? ^

>

>�*

��
��

*�`��{�`�}��{ ^�`��{�`�}��{ *�`��{�`�}��{ ^�`��{�`�}��{

?�*

?��

?��

?�^

�
��

�
��

��
�	

�
�

?

��
�� �'� ��	��� ���!� ��� ��������	����

Figure 6. Power comparison of SRAM and
MRAM L2 caches (Normalized by 2MB
SNUCA SRAM cache).

L2 cache has 16 banks and each cache bank has the ca-
pacity of 128KB, we keep the number of banks unchanged
but replace each 128KB SRAM L2 cache bank with a
512KBMRAM cache bank. The read/write access time and
read/write energy consumption are tabulated in Table 2 for
both SRAM and MRAM.

4.2 Performance Analysis

Because the number of banks remains the same and our
modified CACTI shows 128KB SRAM bank and 512KB
MRAM bank have similar read latencies (2.252ns versus
2.318ns in Table 2), the read latencies of the 2MB SRAM
cache and the 8MBMRAM cache are similar aswell. Since
theMRAM cache capacity is 3 times larger, the access miss
rate to the L2 cache decreases as shown in Fig. 4. On
average, the miss rates are reduced by 19.0% and 12.5%
for SNUCAMRAM cache and DNUCAMRAM cache, re-
spectively.
The IPC comparison is illustrated in Fig. 5. Caused by

the large MRAM cache capacity, the L2 cache miss rate
decrease improves the performance of the first two work-
loads (“galgel” and “apsi”); however the performance of
the rest four workloads is not improved as expected. On
average, the performance degradation of SNUCA MRAM
and DNUCA MRAM is 3.09% and 7.52% compared to their
SRAM counterparts, respectively.
This performance degradation of direct MRAM replace-

ment can be explained by Table 4, where we can observe the
write operation intensity (presented by WPKI) of “euqake”,
“fma3d”, “swim”, and “streamcluster” is much higher than
that of “galgel” and “apsi”. Due to the long latency of

MRAM write operations, the high write intensity is re-
flected by the performance loss. When the write intensity
is sufficiently high, the resulting performance loss over-
whelms the performancegain achieved by reducedL2 cache
miss rate. This observation is further supported by com-
parison between SNUCA and DNUCA. From Fig. 5, one
can observe that performance degradation is more signif-
icant when we use DNUCA MRAM caches because data
migrations in DNUCA initiate more write operations than
SNUCA does and thus cause high write intensities.
To summarize, we conclude our first observation of using

MRAM caches as:

Observation 1 Replacing SRAM L2 caches directly with
MRAM, which has the similar area but with a large ca-
pacity, can reduce the access miss rate of the L2 cache.
However, the long latency associated with thewrite op-
erations to theMRAM cache has a negative impact on
the performance. When the write intensity is high, the
benefits caused by miss rate reductions could be off-
set by the long latency of MRAM write operations and
eventually result in performance degradation.

4.3 Power Analysis

The major contributors of the total power consumption
in caches are leakage power and dynamic power:

• Leakage Power: When process technology scales down
to sub-90nm, the leakage power in CMOS technology be-
comes dominant. SinceMRAM is a non-volatilememory
technology, there is no power supply to each MRAM cell
and then MRAM cells do not consume any standby leak-

243

age power. Therefore, we only consider peripheral circuit
leakage power for MRAM caches and the leakage power
comparison of 2MB SRAM and 8MBMRAM is listed in
Table 5.

Table 5. Leakage power of SRAM and MRAM
caches at 80 ◦C
Cache configurations Leakage power
2MB 16 × 128KB SRAM cache 2.089W
8MB 16 × 512KB MRAM cache 0.255W

• Dynamic Power: The dynamic power estimation for the
NUCA cache is described as follows. For each transac-
tion, the total dynamic power is composed of thememory
cell access power, the router access power, and the power
consumed by wire connections. In this paper, these val-
ues are either simulated by HSPICE or obtained from
our modified version of CACTI. The access number of
routers and the length of wire connections vary from the
location of the requesting core and the requested cache
lines.

Fig. 6 shows the power comparison of SRAM and
MRAM L2 caches. One can observe that:

• For SRAM L2 caches, since the leakage power domi-
nates, the total power for SNUCA SRAM and DNUCA
SRAM are very close. On the contrary, the dynamic
power dominates theMRAM cache power.

• For all the workloads, MRAM caches consume less
power than SRAM caches do. The average power sav-
ings across all the workloads are about 78% and 68% for
SNUCA and DNUCA, respectively. The power saving
for DNUCAMRAM is smaller because of the high write
intensity caused by data migrations. It is obvious that the
“low leakage power” featuremakes MRAM more attrac-
tive to be used as large on-chip memory, especially when
SRAM leakage power becomes worse with technology
scaling.

• The average power savings for the first four workloads
are more than 80%. However, for the workload “stream-
cluster”, the total power saving is only 63% and 30%
for SNUCA and DNUCA, respectively, due to its much
higher L2 cache write intensity (see Table 4).

To summarize, our second conclusion of direct MRAM
cache replacement is:

Observation 2 Direct replacing the SRAM L2 cache with
aMRAM cache, which has similar area but with larger
capacity, can greatly reduce the leakage power. How-
ever, when the write intensity is high, the dynamic
power increases significantly because of the high en-
ergy associated with the MRAM write operation and
the amount of total power saving could be reduced.

These two conclusions show that, if we directly replace
SRAM caches with MRAM caches using “same area strat-
egy”, the long latency and high energy consumption of

MRAM write operations can offset the performance and
power benefit brought by MRAM cache when the cache
write intensity is high.

5 Novel 3D-stacked cache architecture

In this section we propose two techniques to mitigate
the write operation problem of using MRAM caches: read-
preemptive write buffer is employed to reduce the stall time
caused by theMRAM longwrite latency; SRAM-MRAM hy-
brid L2 cache is proposed to reduce the number of MRAM
write operations and thereby improve both performance and
power. Finally, we combine these two techniques together
as an optimized MRAM cache architecture.

5.1 Read-preemptive Write Buffer

The first observation in Section shows that the long
MRAM write latency has a serious impact on the perfor-
mance. In the scenario where a write operation is followed
by several read operations, the ongoingwrite operation may
block the upcoming read operations and cause performance
degradations. Although the write buffer design in modern
processors works well for SRAM caches, our experiment
result in Subsection 4.2 shows that this write buffer does
not fit for MRAM caches due to the large variation between
MRAM read latency and write latency. In order to make
MRAM cacheswork efficiently, we explore the properwrite
buffer size and propose a “read-preemptive” management
policy for it.

5.1.1 The Exploration of the Buffer Size

The choice of the buffer size is important. The larger the
buffer size is, the more write operations can be hidden.
Thereby, the number of stall cycles decreases. However, on
the other hand, the larger the buffer size is, the longer time
it takes to check whether there is a ‘”hit” in the buffer and
then to access it. Furthermore, the design complexity and
the area overhead also increase with the buffer size growth.
Fig. 7 shows the relative IPC improvement by using differ-
ent buffer sizes for workloads “streamcluster” and “swim”.
Observing the simulation result, we choose the size of 20
entries as the optimal MRAM write buffer size. Compared
to the SRAMwrite buffer, which has only 4 entries (as listed
in Table 3), theMRAM write buffer size is much larger and
we use 20-entry write buffer for MRAM caches in the later
simulations.

5.1.2 Read-preemptive Policy

Since the L2 cache can receive requests from from the up-
per level memory (L1 cache) and the write buffer, a priority
policy is necessary to solve the conflict that a read request

244

*��

!?�

!��

��
�

��
�

����

*��

!?�

!��
��

�
��

�
�������������

>?�

>��

*?�

�

��
��

�

��

�

��

��
�

>?�

>��

*?�

�

��
��

�

��

�

��

��
�

?�

��

? * � � ^ >? *? �?

��

�

������
����

?�

��

? * � � ^ >? *? �?

��

�

������
����

Figure 7. The impact of buffer size. The IPC improvement is normalized by that of 8M MRAM cache
without write buffer

and a write request compete for the execution right. For
MRAM caches, write operation latencies are much larger
than read latencies, thus our objective is to prevent write
operations from blocking read operations. As a result, we
have our first rule:

Rule1: The read operation always has the higher priority
in a competition for the execution right.

Additionally, consider there is a read request blocked
by a write operation that is already in process, the MRAM
write latency is so large that its retirement may block one or
more read request for a long period and further causes per-
formance degradations. In order to mitigate this problem,
we propose another read-preemptive rule as follows:

Rule2: When a read request is blocked by a write retire-
ment and the write buffer is not full, the read request
can trap and stall the write retirement if the preemp-
tion condition (discussed later) is satisfied. Then, the
read operation obtains the right of the execution to the
cache. The stalled write retirement will retry later.

Our proposed read-preemptive policy tries to execute
MRAM read requests as early as possible, but the drawback
is that some write retirements need to be re-executed and
the possibility of full buffer increases. The pivot is to find
a proper preemption condition. One extreme method is to
stall the write retirement as long as there is a read request,
which means that read requests can always be executed im-
mediately. Theoretically, if the write buffer size is large
enough, no read requestwill be blocked. However, since the
buffer size is limited, the increased possibility of full buffer
could also harm the performance. In some other cases,
stalling write retirements for read requests are not always
good. For example, if a write retirement almost finishes,
no read request should stall the retirement process. Conse-
quently, we propose to use the retirement accomplishment
degree, denoted as α, as the preemption condition. The re-
tirement accomplishment degree is the accomplishment per-
centage of the ongoing write retirement, below which no
preemption will occur.

Fig. 8 compares the IPC of using different α in our
read-preemptive policy. Note that α = 100% represents

the non-conditional preemption policy and α = 0% repre-
sents the traditional write buffer. We can find that, for the
workloads with low write intensities, such as “galgel” and
“apsi”, the performance improves as α increases and the
non-conditional preemption policy works the best. How-
ever, for the benchmark with high write intensities, like
“streamcluster”, the performance improves at the begin-
ning but then degrades as α increases. Generally, in this
paper, we set α = 50% to make our read-preemptive policy
effective for all the workloads.

>�*

>�!

��
�� �'� ��	��� ���!� ��� ��������	����

>

>�>

��
���

�

��

�

?��

>
��

?�^
��?� ��*�� ���?� ����� ��>??�

Figure 8. The impact of α on the performance.
The IPC values are normalized by that of us-
ing the traditional policy.

A counter is required in order to make the accomplish-
ment degree aware to the cache controller. The counter re-
sets to zero and begins to count the number of cycles when
a retirement begins. The cache controller check the counter
and decides whether to stall the retirement for the read re-
quest. The area of 20 buffer entries can be evaluated as a
cache whose size is 20 × 64Byte(less than 2KB). We use
a 7 − bit counter to record the retirement accomplishment
degree. Since the area of each 3D-stacked layer is around
60mm2, the area overhead of our proposed read-preemptive
write buffer is less than 1%. Similarly, the leakage power
increase caused by this buffer is also negligible.

Fig. 9 and Fig. 10 illustrates the performance and power
improvement gained by our proposed read-preemptivewrite
buffer. Compared to the IPC of SRAM baseline configu-
rations, the average performance improvements are 9.93%

245

>�*

��
*�`��{�`�}��{ ^�`��{�`�}��{ ^�`��{�`�}��{

>

��

*�`��{�`�}��{ ^�`��{�`�}��{ ^�`��{�`�}��{
�����`'����'���� �����`'����'����

?��

>

>�>

�
��

�
��

��
�	

��

?�^

?��

�
��

�
��

��
�	

��

?�^

��
�� �'� ��	��� ���!� ��� ��������	����

?��

��
�� �'� ��	��� ���!� ��� ��������	����

��� �"�
Figure 9. The comparison of IPC among 2M SRAM, 8M MRAM with traditional write buffer, and 8M
MRAM with read-preemptive write buffer (Normalized by that of SRAM).

?�^

>

�
��

*�`��{�`�}��{ ^�`��{�`�}��{ ^�`��{�`�}��{
�����`'����'����

?�^

>

�
��

*�`��{�`�}��{ ^�`��{�`�}��{ ^�`��{�`�}��{
�����`'����'����

?�*

?��

?��

�
��

�
��

��
�	

�
��

?�*

?��

?��

�
��

�
��

��
�	

�
��

?

��
�� �'� ��	��� ���!� ��� ��������	����

?

��
�� �'� ��	��� ���!� ��� ��������	����

��� �"�
Figure 10. The comparison of total power of 2M SRAM, 8M MRAM with traditional write buffer, and
8M MRAM with read-preemptive write buffer (Normalized by that of SRAM).

and 0.41% for SNUCA and DNUCA, respectively. The av-
erage power reductions are 67.26% and 59.3% for SNUCA
and DNUCA, respectively. Compared to the result of di-
rect MRAM replacement shown in Fig. 5 and 6, the perfor-
mance degradation is eliminated but the amount of power
savings decreases. It is because using our read-preemptive
write buffer causes some re-executions of write operations
which consumemore power.

5.2 SRAM-MRAM Hybrid L2 Cache

The aforementioned read-preemptive write buffer hides
theMRAM longwrite latency, but the total number of write
operations remains the same. In order to reduce the num-
ber of write operations to MRAM cells, we propose another
technique called SRAM-MRAM Hybrid Cache and show
how this technique can further reduce the dynamic power
as well as improve the performance.

5.2.1 SRAM-MRAM Hybrid Cache Implementation

The proposed hybrid cache implementation is that, instead
of building a pure MRAM cache, we compose the ways in
each cache set with a majority of MRAM cache lines and
a minority of SRAM ones. The main purpose is to keep as
many write intensive data in the SRAM part as possible and
hence reduce the number of write operations to theMRAM
part. In this work, we design an SRAM-MRAM hybrid
L2 cache with 31 ways of MRAM and 1 way of SRAM
(31M1S).

After having these hybrid cache lines, the second step is
to distribute MRAM cache lines and SRAM ones into sep-

� � � �

� � �

� � 	
 �

� � � � �

� � � �

� � � � �

 � � 	 � 	
 � � � � �

� � � 	 � 	
 � � � � � � � � � � � � � �

� � � � � � � � �

� � � � � � � 	 �

Figure 11. SRAM-MRAM hybrid cache imple-
mentation (a)one placement method of SRAM
and MRAM cache banks,(b) data migrations
in original MRAM caches, (c)data migrations
in hybrid SRAM-MRAM caches.

arate cache banks. Considering the SRAM part is the mi-
nority in the proposed 31M1S cache, one partitioning alter-
native is to distribute these SRAM cache lines into different
banks so that there are several SRAM cache lines close to
each processing core. However, this method requires each
cache bank to be a heterogenousmemory array with SRAM
and MRAM cells and increases the complexity of the cache
design. In addition, this distributed partitioning of SRAM
cells implies that the SRAM and MRAM cells have to be
fabricated together. Considering the specialization of the
MRAM fabrication process, this method also eliminates the
cost advantages of stacking MRAMs on top of processing
cores.

Therefore, we use another alternative that, we reduce
the number of cache lines in some MRAM cache banks

246

compared to the pure MRAM cache structure (as shown in
Fig. 11(a) that theMRAM banks at four corners are smaller
than other MRAM banks), compensate this cache line loss
with SRAM ones, and collect all the SRAM cache lines to-
gether to build several entire SRAM banks on the core layer.
As shown in Figure 11(a), SRAM cache banks are placed in
the center of the core layer instead of being distributed. In
this method, SRAM and MRAM cache banks have no dif-
ference from the architectural point of view.
Note that after placing one way of SRAM cache lines in

the core layer, the area of the core layerwill increase and the
area of the cache layer will decrease. In this work, the total
size of all the SRAM cache lines is 256KB, the derived
area overhead is about 12.5%.

5.2.2 Hybrid CacheManagement Policy

Another important issue is how to manage the hybrid L2
cache to improve the performance and reduce the power.
Because the key point is to reduce the number of write op-
erations to MRAM cache cells, we need to move as many
write intensive data in SRAM cache banks as possible. The
management policy of the hybrid cache can be described as
follows:

• The cache controller is aware of the locations of SRAM
cache ways and MRAM cache ways. When there is a
write miss, the cache controller first try to place the data
in the SRAM cache ways.

• Considering the high probability that a core write data to
a specific group of cache lines repeatedly, data in MRAM
caches should be migrated to SRAM caches if the some
cache lines are frequently written to. In this work, data in
MRAM caches will be migrated to SRAM caches when
they are accessed by two successive write operations.
This kind of data migration is named intra-migration
to differentiate inter-migration policy introduced in Sec-
tion 3. Due to the existence of this intra-migration pol-
icy, the number of write accesses from cores to MRAM
caches can be reduced.

• Note that read operations from cores are also possible
to cause data migrations, the number of which could
be even larger than that of direct write accesses from
cores. Therefore, a new type inter-migration policy is
introduced. Figure 11(b) and (c) compare the banks from
which data can be migrated toward the core in upper-
left corner. Figure 11(b) shows that, in original inter-
migration policy, the cache layer is divided into 4 uni-
form groups and there is only one core associative with
each part. In this work, banks in each group are named
as the host banks of their corresponding core. Data can
only be migrated from non-host banks. For the tradi-
tional management policy, the data will be migrated to
host bank. For the management policy proposed for the
hybrid cache, the data can only be migrated to SRAM
banks.

Two data migrations are illustrated in Fig. 11(b) for the
traditional inter-migration. When using the hybrid SRAM-
MRAM cache, the host banks for a core is redefined as
shown in Fig. 11(c). Two corresponding data migrations
are also shown in Fig. 11(c). Using this policy, there is no
data migration between two MRAM cache lines, which re-
duces the number ofwrite operations greatly. The drawback
is that SRAM banks are shared by all cores so that their lim-
ited sizes may increase L2 miss rates. Considering we have
8M of total cache size, which is considerably large for most
applications, our simulation results show that the increase of
L2 miss rates is very small.

?�^

>

��
��

��
��

^�`��{�`�}��{ ^�`&�"��`�}��{

?�*

?��

?��

��
�

��
��

�	

�

��
��

��

?

��
�� �'� ��	��� ���!� ��� ��������	����

�
�

Figure 12. The MRAM write intensity to
MRAM before and after using hybrid SRAM-
MRAM caches.

Fig. 12 shows the number of MRAM write operations
per 1K instructions is reduced dramatically by using our
hybrid SRAM-MRAM approach. As a result, the dynamic
power associated with write operations to MRAM cells is
also reduced and the performance is improved. Fig. 13
shows the performance comparison. On average, the hybrid
cache structure improves the performance by 5.65%, which
means it mitigates the performance loss of MRAM caches
from 8.48% to 2.61% compared to their SRAM counter-
parts.
In Fig. 14 shows the power comparison. We observe that

the total power is reduced except for “galgel”. It is because
both read and write intensities in “galgel” are so small that
the dynamic power is very low. Consequently, the introduc-
tion of SRAM cache lines in the hybrid cache brings the
leakage power back and eliminates the dynamic power re-
duction achieved by the hybrid structure. However, as the
write intensity increases, the SRAM-MRAM hybrid cache
starts to save total power consumptions. For example, the
total power consumption is cut by more than half for work-
loads such as “swim” and “streamcluster”. On average,
after the transition from SRAM caches to MRAM ones, our
proposed hybrid cache further reduces the total power by
12.45%.

5.3 Combination of Read-preemptive
Buffer and Hybrid Architecture

We combine the two techniques together as an optimized
MRAM L2 cache architecture . In this architecture, we get
more benefits from the advantages of the MRAM cache; at

247

>�*

��
�

*�`��{�`�}��{ ^�`��{�`�}��{ ^�`&�"��`�}��{

>

>�>

�
��

�
��

��
�	

?��

��
�� �'� ��	��� ���!� ��� ��������	����

Figure 13. The comparison of IPC among 2M
SRAM cache, 8M MRAM pure cache, and 8M
SRAM-MRAM hybrid cache (Normalized by
the IPC of 8M MRAM pure cache).

>��

��
��

*�`��{�`�}��{ ^�`��{�`�}��{ ^�`&�"��`�}��{
��� !�� !�� ���

?��

>

�
��

�
��

��
�	

�
�

?�*

��
�� �'� ��	��� ���!� ��� ��������	����

Figure 14. The comparison of total power
consumption among 2M SRAM cache, 8M
MRAM pure cache, and 8M SRAM-MRAM hy-
brid cache (Normalized by the total power
consumption of 8M MRAM pure cache).

>�*

>�!

��

*�`��{�`�}��{ *�`��{�`�}��{ ^����{�`��{��&�"��
���������`'����'����

?��

>

>�>

�
��

�
��

��
�	

��

?�^

��
�� �'� ��	��� ���!� ��� ��������	����

Figure 15. The comparison of IPC among 2MB
SRAM SNUCA cache, 2MB SRAM DNUCA
cache, and 8MB SRAM-MRAM hybrid cache
with read-preemptive write buffer (Normal-
ized by the IPC of 2MB SRAM SNUCA cache).

>

>�*

��
��

*�`��{�`�}��{ *�`��{�`�}��{ ^����{�`��{��&�"��
���������`'����'����

?�*

?��

?��

?�^

�
��

�
��

��
�	

�
�

?

��
�� �'� ��	��� ���!� ��� ��������	����

Figure 16. The comparison of total power
consumption among 2MB SRAM cache, 2MB
SRAM cache, and 8MB SRAM-MRAM hybrid
cache with read-preemptive write buffer (Nor-
malized by the total power consumption of
2MB SRAM cache).

the same time, mitigate the penalties caused by write oper-
ations. The performance and power comparisons are shown
in Fig. 15 and Fig. 16, respectively. The average IPC is im-
proved by 4.91% compared to the SRAM SNUCA baseline,
while power saving is 73.5%. Table 6 gives an overview of
the performance and power improvements.

Table 6. The performance and power im-
provement overview (Use 2MB SRAM L2
SNUCA cache as the baseline)

Performance Total Power
Read-preemptive buffer 9.93% 67.26%
Hybrid cache -2.61% 85.45%
Combined 4.91% 73.5%

6 RelatedWork

Some previous research focused on the performance im-
provement by stacking DRAM main memories on top of
processors. 3D cache model has been developed to facili-
tate architectural level analysis [15,25]. Performance anal-
ysis of 3D stacking memory was studied by Loi et al. [21].
Li, et al. have also reported performance improvement by
using stacked SRAM L2 caches for CMPs [20] . Black, et

al. studied the benefits of stacking a largeDRAM or SRAM
cache on a Intel Core 2 Duo processor, and achieved consid-
erable performance improvement [4]. Loh [22] presented an
aggressive 3D DRAM integration as on-chip main memo-
ries. Kgil et al. [17] have implemented an aggressive CMP
method by replacing all the L2 caches with in-order simple
processor cores, and uses 3D stacking DRAM to satisfy the
memory capacity and bandwidth requirements. Ghosh, et
al. proposed a new method to reduce the power consump-
tion in systems where the DRAM is stacked on top of the
processor cores [13]. A prototype of the 80-core Teraflop
processorwith an SRAM layer stacked on top of the proces-
sor cores, which was designed and fabricated by Intel, also
demonstrated the benefits of stacking SRAM memories on
CMPs [5]. There is previous work that studied the benefits
of replacing SRAM cacheswith MRAM caches for a single
processor core [10,12]. However, they only focused on the
single-core architecture withUCA caches. For CMPs, espe-
cially when the entire cache capacity becomes much larger,
the effect of NUCA has to be considered and the data mi-
gration in NUCA can also change the cache read/write be-
havior.

248

7 Conclusion

MRAM is a promising candidate of on-chip memories
and the emerging 3D heterogeneous integration makes it
feasible to stack MRAM as L2 caches for CMPs. In this
work, we present a cachemodel forMRAM L2 cache stack-
ing and evaluate its performance and power benefit. Even
though replacing SRAM L2 cache with MRAM can re-
sult in significant power savings, the drawback comes from
MRAM’s long write latency and high write energy. As a
result, for applicationswith high L2 cache write intensities,
the performance can be degraded and the power saving can
be reduced. Therefore, we propose two techniques: read-
preemptive write buffer to mitigate the performance penalty
caused by the long write latency; SRAM-MRAM hybrid
L2 cache to reduce the number of MRAM write operations.
Our result shows these two techniques can make MRAM
cache work effective for most workloads regardless of their
write intensities.

References

[1] http://parsec.cs.princeton.edu/.
[2] http://www.hpl.hp.com/research/cacti/.
[3] http://www.spec.org/.
[4] B. Black, M. Annavaram, N. Brekelbaum, et al. Die Stack-
ing (3D) Microarchitecture. In MICRO 39: Proceedings
of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 469–479, 2006.

[5] S. Borkar. 3D Technology: A System Perspective. In Tech-
nical Digest of the International 3D System Integration Con-
ference, pages 1–14, 2008.

[6] D. Burger, J. R. Goodman, and A. Kagi. Limited Band-
width to Affect Processor Design. Micro, IEEE, 17(6):55–
62, 1997.

[7] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimiz-
ing Replication, Communication, and Capacity Allocation
in CMPs. SIGARCH Comput. Archit. News, 33(2):357–368,
2005.

[8] J. D. Davis, J. Laudon, and K. Olukotun. Maximizing CMP
Throughput with Mediocre Cores. In PACT ’05: Proceed-
ings of the 14th International Conference on Parallel Archi-
tectures and Compilation Techniques, pages 51–62, 2005.

[9] W. R.Davis, J. Wilson, S.Mick, et al. Demystifying 3D ICs:
The Pros and Cons of Going Vertical. IEEE Design and Test
of Computers, 22(6):498–510, 2005.

[10] R. Desikan, C. R. Lefurgy, S. W. Keckler, and D. Burger.
On-chip MRAM as a High-Bandwidth Low-Latency Re-
placement for DRAM Physical Memories. Technical report,
2002.

[11] Z. Diao, Z. Li, S. Wang, et al. Spin-Transfer Torque Switch-
ing in Magnetic Tunnel Junctions and Spin-Transfer Torque
Random Access Memory. Journal of Physics: Condensed
Matter, 19(16):165209 (13pp), 2007.

[12] X.Dong, X. Wu, G. Sun, et al. Circuit andMicroarchitecture
Evaluation of 3D Stacking Magnetic RAM (MRAM) as a
Universal Memory Replacement. In DAC ’08: Proceedings
of the 45th annual conference on Design automation, pages
554–559, 2008.

[13] M. Ghosh and H.-H. S. Lee. Smart Refresh: An Enhanced
Memory Controller Design for Reducing Energy in Conven-
tional and 3D Die-Stacked DRAMs. In MICRO ’07: Pro-
ceedings of the 40th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 134–145, 2007.

[14] M. Hosomi, H. Yamagishi, T. Yamamoto, et al. A Novel
Non-Volatile Memory With Spin Torque Transfer Magne-
tization Switching: Spin-RAM. In International Electron
Devices Meeting, pages 459–462, 2005.

[15] P. Jacob, O. Erdogan, A. Zia, et al. Predicting the Perfor-
mance of a 3D Processor-Memory Chip Stack. IEEE Design
and Test of Computers, 22(6):540–547, 2005.

[16] J. A. Kahle, M. N. Day, H. P. Hofstee, et al. Introduction
to the Cell Multiprocessor. IBM Journal of Research and
Development, 49(4/5):589–604, 2005.

[17] T. Kgil, S. D’Souza, A. Saidi, et al. PicoServer: Using 3D
Stacking Technology to Enable a Compact Energy Efficient
ChipMultiprocessor. In Proc. the 12th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, number 11, pages 117–128, 2006.

[18] C. Kim, D. Burger, and S. Keckler. An Adaptive, Non-
Uniform Cache Structure for Wire-Delay Dominated On-
Chip Caches. In Proc. the 10th International Conference
on Architectural Support for Programming Languages and
Operating Systems, 2002.

[19] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara:
A 32-Way Multithreaded SPARC Processor. IEEE Micro,
25(2):21–29, 2005.

[20] F. Li, C. Nicopoulos, T. Richardson, et al. Design and
Management of 3D Chip Multiprocessors Using Network-
in-Memory. In ISCA ’06: Proceedings of the 33rd Annual
International Symposium on Computer Architecture, pages
130–141, 2006.

[21] C. C. Liu, I. Ganusov,M. Burtscher, and S. Tiwari. Bridging
the Processor-Memory Performance Gap with 3D IC Tech-
nology. IEEE Design and Test of Computers, 22(6):556–
564, 2005.

[22] G. H. Loh. 3D-Stacked Memory Architectures for Multi-
core Processors. In ISCA ’08: Proceedings of the 35th Inter-
national Symposium on Computer Architecture, pages 453–
464, 2008.

[23] G. L. Loi, B. Agrawal, N. Srivastava, et al. A Thermally-
Aware Performance Analysis of Vertically Integrated (3-D)
Processor-Memory Hierarchy. In DAC ’06: Proceedings of
the 43rd Annual Conference on Design automation, pages
991–996, 2006.

[24] P. S.Magnusson,M. Christensson, J. Eskilson, et al. Simics:
A Full System Simulation Platform. Computer, 35(2):50–
58, 2002.

[25] Y.-F. Tsai, Y. Xie, N. Vijaykrishnan, and M. J. Irwin. Three-
Dimensional Cache Design Exploration Using 3DCacti. In
ICCD ’05: Proceedings of the 2005 International Confer-
ence on Computer Design, pages 519–524, 2005.

[26] Y. Xie, G. H. Loh, B. Black, and K. Bernstein. Design Space
Exploration for 3D Architectures. ACM Journal on Emerg-
ing Technologies in Computing Systems, 2(2):65–103, 2006.

[27] W. Zhao, E. Belhaire, Q. Mistral, et al. Macro-model of
Spin-Transfer Torque based Magnetic Tunnel Junction De-
vice for Hybrid Magnetic-CMOS Design. In IEEE Inter-
national Behavioral Modeling and Simulation Workshop,
pages 40–43, 2006.

249

	Table of Contents
	Message from the General Chairs
	Message from the Program Chair
	HPCA-15 Organizing Committee
	HPCA Steering Committee
	HPCA-15 Program Committee
	External Reviewers
	An Intelligent IT Infrastructure for the Future
	Techniques for Bandwidth-Efficient Prefetching of Linked Data Structures inHybrid Prefetching Systems
	Voltage Emergency Prediction:Using Signatures to Reduce Operating Margins
	A Low-Radix and Low-Diameter 3D Interconnection Network Design
	Adaptive Spill-Receive for Robust High-Performance Caching in CMPs
	Design and Implementation ofSoftware-Managed Caches for Multicores with Local Memory
	In-Network Snoop Ordering (INSO): Snoopy Coherence on UnorderedInterconnects
	Practical Off-chip Meta-data for Temporal Memory Streaming
	Soft Error Vulnerability Aware Process Variation Mitigation
	Accurate Microarchitecture-Level Fault Modeling for Studying Hardware Faults
	Eliminating Microarchitectural Dependency from Architectural Vulnerability
	Versatile Prediction and Fast Estimation of Architectural VulnerabilityFactor from Processor Performance Metrics
	PANEL: Opportunities Beyond Single-Core Microprocessors
	Multi-core Demands Multi-interfaces
	Elastic-Buffer Flow Control for On-Chip Networks
	Express Cube Topologies for On-Chip Interconnects
	Design and Evaluation of a Hierarchical On-Chip Interconnectfor Next-Generation CMPs
	Architectural Contesting
	Lightweight Predication Support for Out of Order Processors
	BlueShift: Designing Processors for Timing Speculation from the Ground Up
	PageNUCA: Selected Policies for Page-grain Locality Management inLarge Shared Chip-multiprocessor Caches
	A Novel Architecture of the 3D Stacked MRAM L2 Cache for CMPs
	Dynamic Hardware-Assisted Software-Controlled Page Placement to ManageCapacity Allocation and Sharing within Large Caches
	Optimizing Communication and Capacity in a 3D Stacked ReconfigurableCache Hierarchy
	Reconciling Specialization and Flexibility Through Compound Circuits
	CAMP: A Technique to Estimate Per-Structure Power at Run-time using a FewSimple Parameters
	Variation-Aware Dynamic Voltage/Frequency Scaling
	Bridging the Computation Gap Between Programmable Processorsand Hardwired Accelerators
	Industrial Perspectives Panel
	A First-Order Fine-Grained Multithreaded Throughput Model
	Characterization of Direct Cache Access on Multi-core Systems and 10GbE
	MRR: Enabling Fully Adaptive Multicast Routing for CMP InterconnectionNetworks
	Prediction Router:Yet Another Low Latency On-Chip Router Architecture
	Fast Complete Memory Consistency Verification
	Hardware-Software Integrated Approaches toDefend Against Software Cache-based Side Channel Attacks
	DACOTA: Post-silicon validation of the memory subsystem in multi-core designs
	Criticality-Based Optimizations for Efficient Load Processing
	iCFP: Tolerating All-Level Cache Misses in In-Order Processors
	Feedback Mechanisms for Improving Probabilistic Memory Prefetching
	How to build Programmable Multi-Core Chips

