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This thesis presents some theoretical and numerical results for linear time-invariant

(LTI) descriptor systems (DSs), with emphasis on their corresponding passivity as-

sessment and model order reduction (MOR). DSs are widely used in VLSI circuit

modeling, including on-chip parasitics, RF passives, chip packagings, as well as lin-

earized models of transistor networks.

In the first part (Chapters 2 to 4), we focus on the passivity assessments of LTI

DSs. In Chapter 2, a generalized Hamiltonian method (GHM) and its half-size version

(HGHM) are developed. The most significant advantage of GHM/HGHM passivity

test is that they are purely algebraic routines, thereby rendering the test results

highly accurate. Not only can they tell a LTI DS is passive or not, but they also

accurately locate the possible nonpassive regions, thereby providing a versatile tool for

subsequent DS passivity enforcements. Chapter 3 presents a projector-based passivity

test for large-size LTI DS models which can not be readily tackled by GHM. It is the

first time that spectral projectors are used, which are based on our proposed fast

canonical projector construction, to efficiently decompose a large DS model into its

proper and improper subsystems. After the fast system decomposition, the proper



part is tested by GHM, via a fast iterative numerical implementation. Chapter 4

presents the S-parameter generalized Hamiltonian method (S-GHM), and also its

half-size algorithm (S-HGHM). Similar to GHM/HGHM, S-GHM and S-HGHM can

locate all possible nonpassive regions with high numerical accuracy. A passivity test

flow for admittance/impedance DSs is also proposed, based on S-GHM and S-HGHM

after a Moebious transform of DS state-space equations.

The second part (Chapters 5 & 6) solves two issues in DS MOR: passivity and im-

proper part preservation, as well as efficient MOR for multi-port DS models. Chapter

5 focuses on the first issue. The improper part of a DS is preserved by fast spectral

projector-based additive system decomposition. After that, the proper part is re-

duced via DS-format positive-real balanced truncation (DS-PRBT). Since the main

bottleneck of DS-PRBT is in solving the dual generalized algebraic Riccati equations

(GAREs), a generalized quadratic alternating direction implicit (GQADI) algorithm

is developed to efficiently compute the positive-real Gramians. To further speed

up the matrix solver, a low-rank version of GQADI (LR-GQADI) is also devised,

which reduces the complexity from O(n3) to O(n2). Chapter 6 constructs “good”

macromodels for multi-port LTI DSs, motivated by power grid simulation in mod-

ern VLSI design. Due to the large number of ports, existing MOR techniques are

not efficient for power grids. To overcome this problem, we develop a MOR routine

based on input matrix splitting, called BDSM (block-diagonal structured model or-

der reduction). The BDSM ROM (reduced-order model) is as accurate as standard

moment-matching MORs; its resultant ROMs are block-diagonal structured which

permits high efficiency for subsequent simulations; the BDSM ROM size can be fur-

ther scaled down for clock-gated power grid models; finally and most importantly,

unlike many existing power grid MORs that need to generate different ROMs for

different input waveforms, the resultant ROM from BDSM is reusable under various

input wave patterns.
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Chapter 1

Introduction

1.1 Research Motivation

Macromodeling is a very important step in the computer-aided design (CAD) of

very large-scale integration (VLSI). Typical examples include (but are not restricted

to): modeling of on-chip parasitic effects (such as interconnects and power ground

networks), chip packaging, microelectronic-mechanical systems (MEMS), analog and

radio-frequency (RF) circuits and components (such as on-chip inductors), chemical

or biological systems. Normally, these systems, components or structures are de-

scribed by detailed mathematical models such as differential equations. Based on

these models, simulation, analysis, verification and optimization procedures can be

performed before the final manufacturing step.

This thesis focuses on one of the important modeling frameworks: linear time-

invariant descriptor system (LTI DS) [1–3], which is a generalization of the standard

state-space model [4] and has found increasing applications in VLSI CAD. Typical

DS applications include: description of linear circuits [5] [such as those containing

only resistors (R), capacitors (C) and/or inductors (L)], discretized electromagnetic

(EM) equations [6] used in accurate parasitic extractions, linearization of nonlinear

1
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systems [7] (such as analog and RF circuits, MEMS devices etc.). Recently, DS tech-

nique has also been used in data fittings [49, 50] that attempt to build behavioral

models of electronic components/systems from some available response data. These

frequency-domain or time-domain data may be from practical measurements or sim-

ulation results generated by complex mathematical models.

Specifically, this thesis addresses two issues about LTI DS: model order reduction

(MOR) and passivity characterization.

MOR is a popular and indispensable step to reduce circuit simulation complexity

in VLSI design flow. In practical VLSI design, the linear circuits (such as those

from parasitic extraction) and nonlinear blocks (e.g., those functional or logic blocks

containing transistors, diodes or MEMS devices) can be extremely complex, rendering

direct computer-aided simulation impractical or prohibitively time-consuming. A

viable solution is to approximate the original models, which are constantly of high

orders and thus difficult to solve, by reduced-order models (ROMs) that are amenable

for efficient computer simulation.

System passivity [8–14] is required in the physical modeling and MOR procedures

of linear passive systems (such as RLC models of interconnects and power grids, EM

extraction of on-chip inductors, data fitting of electrical packagings). This is because:

from the physical perspective, all RLC networks are energy-consuming or equiva-

lently dissipative systems, and thereby can not generate energy internally. However,

the system passivity may be lost during the process of MOR, which results in unsound

physical behaviors. Specifically, from the control perspective, all passive sub-blocks

connected together would yield a globally stable system; while stable but nonpassive

models may lead to unstable global behaviors (such as blowing-up node voltage). A

remedy for nonpassive models is passivity enforcement [10,11]. Passivity enforcement

consists of two steps. First, the models are checked by passivity verification algo-

rithms [8–14], to see if they are globally passive. Second, if nonpassive, the models
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are slightly perturbed (subject to some accuracy criteria), such that the new models

are passive in the whole frequency band. From the numerical perspective, passivity

verification is the main bottleneck, due to its expensive computational load, as well

as high accuracy requirements.

Therefore, this thesis is devoted to passivity and MOR of LTI DSs. In the system

passivity part, we try to solve the following problems:

1. Flexible passivity assessment algorithms for reduced DS models with impedance

or admittance parameters.

2. Fast algorithms of passivity assessment to large-scale DSs, such as those from

EM solvers.

3. Passivity verification technique for DSs with scattering port parameters. This

case is mostly encountered in high-speed circuit modeling and EM component

description.

In the DS MOR part, we address two issues:

1. Passivity-preserving MOR for DSs based on fast numerical implementation. In

the MOR flow, we also aim to preserve the possible improper part of a DS,

subject to some numerical accuracy requirements.

2. Efficient MOR for multi-port (or many-port) DSs. This issue is mainly encoun-

tered in the simulation of power grid networks [91], whose large port number

makes traditional MOR approaches inefficient. We aim to develop more effi-

cient power grid MOR, such that the subsequent simulation can be significantly

speeded up.

Before unfolding the contributions of this thesis in later chapters, we begin with

some preliminaries about state-space modeling technique, and briefly review some

existing results regarding passivity assessments and DS MORs.
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1.2 LTI State-Space Model

A LTI system is one that satisfies the following two conditions:

• Linearity, which means that the input-output relationship is a linear map.

Specifically, if the input uk(t) generates an output yk(t), then the scaled and

summed input
∑

ckuk(t) would generate a scaled and summed output
∑

ckyk(t).

• Time invariance, which means that whether we apply an input to a system

at time t or after a delay td, the output will be identical except for a time

delay of td. For example, if y(t) is the output excited by u(t), then the output

corresponding to u(t− td) is y(t− td).

1.2.1 Standard State-Space Model

A LTI standard state-space model is described by

dx(t)

dt
= Ax(t) +Bu(t), y = Cx(t) +Du(t), (1.1)

where x ∈ R
n denotes the state variables, A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n and

D ∈ R
p×m are system matrices. The input matrix B maps the input vector u(t) to

the state variables x(t), while the output matrix C maps x(t) to the output response

y(t).

Assume the above system is zero initial-conditioned. In Laplace domain, (1.1) can

be written as

sX(s) = AX(s) +BU(s), Y (s) = CX(s) +DU(s), (1.2)

where X(s), U(s) and Y (s) are the Laplace transforms of x(t), u(t) and y(t), respec-

tively. The frequency-domain input-output relationship can be characterized through
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the transfer matrix H(s)

Y (s) = H(s)U(s), where H(s) = C(sI − A)−1B︸ ︷︷ ︸
Hsp(s)

+D ∈ C
p×m.

(1.3)

The transfer matrix H(s) is a proper matrix function that approaches D as s→∞,

while its strictly proper part is denoted by Hsp(s) which is zero at s =∞. Note that

H(s) can also be written as a rational matrix function:

H(s) =
R1

s− p1
+ · · ·+ Rn

s− pn︸ ︷︷ ︸
Hsp(s)

+D ∈ C
p×m

(1.4)

where pk (k = 1, · · · , n) are the eigenvalues of A, Rk ∈ R
p×m is the corresponding

residual matrix. The system is strictly stable if spec(A) = {p1, · · · , pn} ⊂ C
−, where

C
− denotes the open left-hand side of the complex plane. This is because, in this

case, the impulse response would not have exponentially increasing terms, which is

readily seen by inverse Laplace transform.

1.2.2 Descriptor System

In practical circuit modeling, a descriptor system (DS), rather than a standard state-

space model, is more frequently used. A DS is also called as generalized system or

singular system, which is a superset of standard state-space models. We study a

linear time-invariant (LTI) DS in the form

E dx
dt

= Ax+Bu, y = Cx+Du, (1.5)

where E,A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n and D ∈ R

p×m. Also, u ∈ R
m, y ∈ R

p and

x ∈ R
n are the input, output and state vectors, respectively. The matrix E is generally
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singular with rank(E) ≤ n. We assume that the matrix pencil λE−A is regular, i.e.,

det(λ0E−A) 6= 0 for some λ0 ∈ C. Then, there always exist nonsingular W,T ∈ R
n×n

that transform E and A into the so-called Weierstrass canonical form [15]:

E = W


 Iq 0

0 N


T, A = W


 J 0

0 In−q


T, (1.6)

where Iq denotes an identity matrix of order q (though the dimension is omitted

whenever it is clear from context). The matrix J corresponds to the finite eigenvalues

of λE−A, whereas N is nilpotent and corresponds to the infinite eigenvalues. When

all eigenvalues of J have negative real parts, the pencil λE − A is said to be stable.

The nilpotency index µ of N , viz. Nµ−1 6= 0 and Nµ = 0, is called the index of the

matrix pencil λE − A.

Referring to the Weierstrass canonical form (1.6), we define the left and right

(spectral) projectors, Pl and Pr, respectively, as [16, 19, 20]

Pl = W


 Iq 0

0 0


W−1, Pr = T−1


 Iq 0

0 0


T. (1.7)

Obviously, Pl and Pr are the projectors onto the left and right deflating subspaces,

respectively, corresponding to the finite eigenvalues along the left and right deflating

subspaces corresponding to the eigenvalue at infinity, whereas Ql = I − Pl and Qr =

I − Pr are the complementary projectors.

Using (1.6) and partitioning [Cp C∞ ] = CT−1 and [BT
p BT

∞
]T = W−1B con-

formal to (1.6), the DS transfer function H(s) = D + C(sE − A)−1B of (1.5) can be
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expressed as

H(s) = D + C(sE −A)−1B = D +
[
Cp C∞

]

 (sIq − J)−1

−(In−q − sN)−1




 Bp

B∞




=D − C∞B∞ +

Hsp(s)︷ ︸︸ ︷
Cp(sIq − J)−1Bp︸ ︷︷ ︸

Hp(s)

−sC∞NB∞ − s2C∞N2B∞ − s3C∞N3B∞ − · · ·︸ ︷︷ ︸
H∞(s)

, (1.8)

where Hp(s) is the proper part of H(s) (bounded as s → ∞), Hsp(s) is the strictly

proper part that approaches zero as s→∞ andH∞(s) the improper part (unbounded

as s→∞).

1.3 System Passivity and Existing Assessment Meth-

ods

In this section, we introduce the concepts related to system passivity, and briefly re-

view existing passivity assessment techniques. A system is passive if it cannot generate

energy internally; it is strictly passive (or dissipative) if it consumes energy [21]. The

passivity of a LTI system is normally described by the positive realness or bounded

realness of its transfer function.

1.3.1 Positive Realness and Bounded Realness

Assume that H(s) is the transfer matrix of a LTI system, and it is a square matrix

(which means the system’s input and output port numbers are identical). Depending

on the physical meaning of H(s), system passivity can be defined in different ways.

In passivity assessments and circuit model reduction, we are interested in the case

that H(s) represents admittance/impedance parameters or scattering parameters.

If the square matrix function H(s) represents the frequency-domain admittance
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or impedance of an electrical network, the corresponding LTI system is (strictly)

passive if and only if H(s) is (strictly) positive real. A square transfer matrix H(s)

is (strictly) positive real if and only if [21, 39]:

1. H(s) has no poles in Re(s) > 0;

2. H(s) = H(s) for all s ∈ C;

3. H(s) +H∗(s) ≥ 0 (> for strict positive realness) for all Re(s) ≥ 0.

The first condition means that the system is stable; the second condition implies that

the system matrices are real; and the third condition implies that all eigenvalues of

H(s) +H∗(s) are positive real for any s = jω where ω ∈ R is the angular frequency.

If H(s) represents the frequency-domain scattering matrix (normally used in EM

modeling or high-frequency applications such as RF circuit design), the system is

(strictly) passive if and only if H(s) is (strictly) bounded real [13, 21]:

1. H(s) is analytic on the open right half plane (Re(s) > 0);

2. H(s) = H(s) for all s ∈ C;

3. I −H∗(s)H(s) ≥ 0 for all Re(s) ≥ 0.

Also, condition 1 requires the system to be stable. Condition 2 implies that all

singular values of H(s) should be unit bounded (i.e., ≤ 1, where < corresponds to

the strict bounded realness), for any s = jω.

1.3.2 Methods for Standard State-Space Models

We consider the LTI standard state-space model (1.1), whose transfer matrix is readily

given as H(s) = C(sI−A)−1B+D. It is obvious that D should be a positive definite

matrix if this LTI is strictly passive. Numerous passivity verification approaches have

been developed for LTI standard state-space models, mainly including:
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1. Frequency sweeping method [8,9]. The idea is to check the positive (or bounded)

realness of H(s) at a set of sampling points s = jωk (k = 1, 2, · · · ), along

the imaginary axis. The idea is simple, but the algorithms are not reliable:

although an adaptive sampling and a reciprocal sampling methods are developed

in [8] and [9] respectively, some nonpassive regions among neighboring sampling

points are missed and passivity can not be accurately tested by finite sampling.

2. Linear matrix inequality (LMI) and algebraic Riccati equation (ARE) [4, 21],

which were developed in control community. The LMI method tests system

passivity via convex programming at the cost of O(n6) complexity. Using Schur

complement [40], the LMI test can be converted to the ARE test and then

solved at the cost of O(n3). The ARE test checks system passivity via solving

the positive-real (or bounded-real) Gramian matrices [4] of an LTI system. Un-

fortunately, neither of them could tell the system’s possible non-passive regions,

which is necessary in the subsequent passivity enforcements.

3. Hamiltonian method [10–12]. This is the most accurate and widely used algo-

rithm in passivity assessments and enforcements. By solving the eigenvalues

of a size-2n Hamiltonian matrix, every possible nonpassive region can be accu-

rately located. Recently, the half-size variants [13, 14] of Hamiltonian methods

have been developed, with better numerical accuracy and an 8× speedup over

traditional Hamiltonian methods.

1.3.3 Methods for Descriptor Systems

The passivity assessment of a DS is much more involved. The difficulty arises from

the singularity of E in the system model, which may lead to an improper part in the

transfer matrix. For example, for an admittance/impedance case, according to the

definition of system passivity, H(s) is (strictly) positive real if and only if [39]:
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1. The only admissible form of the improper part is H∞(s) = sM1, and M1 must

be either zero (which means the DS being impulse-free) or positive semidefinite

(i.e., M1 ≥ 0).

2. The proper part Hp(s) is (strictly) positive real.

These dual conditions imply that we need to test both the improper and proper parts

of a DS. However, the two parts can not be easily separated. Although the Weierstrass

canonical form can be used, it is extremely expensive (with O(n4) complexity) and

numerically unstable, thus only applicable to theoretical analysis. Compared with its

standard state-space counterpart, DS passivity test is much less investigated. Existing

DS passivity characterization methods include:

1. Half-unit circle sweeping [41]. This method first maps the s-domain to z-domain

to obtain a nonsingular system. Then the sampling points are selected along the

half-unit circle on the complex plane, followed by checking the positive realness

or bounded realness at these sampling points. Similar to the sweeping methods

used for standard state-space models, this approach may miss nonpassive regions

between the neighboring sampling points and is therefore inaccurate.

2. Passivity test by LMI or generalized algebraic Riccati equation (GARE) [39,

42–45]. For admittance/impedance DSs [39, 42–44], these methods require the

DSs to be admissible, impulse-free or minimally realized, which are normally

not satisfied in practice. Note that for S-parameter DSs, the model is not re-

quired to be impulse-free in passivity test, since the DS should be nonpassive

if an improper part is involved in its transfer matrix. Similar to their counter-

parts for standard state-space models, LMI and GARE based methods generally

can not tell the nonpassive regions, and therefore can not be used in passivity

enforcement flows.
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3. Decompose-and-test methods [20, 46, 47]. These methods first decompose the

original DS to an improper part and a proper subsystem via Weierstrass de-

composition [46, 47] or spectral projector technique [20]. After decomposition,

the proper part can be converted to a standard state-space model, and then

checked by existing approaches (e.g., Hamiltonian methods). Therefore, these

methods can detect and locate the possible nonpassive regions. The drawbacks

of these methods include: 1) the Weirstrass decomposition is prohibitively ex-

pensive and unstable; 2) the spectral projector technique, which is obtained via

canonical projector [20], requires expensive matrix factorization (e.g., full-size

SVD), thus is infeasible for medium and large-size DSs; 3) converting the proper

subsystem to a standard state-space model is in general numerically expensive,

unstable and error-prone.

1.4 Existing Model Order Reduction Schemes

Numerous MOR algorithms have been developed to generate macromodels for fast

circuit simulation. According to their application areas, these MOR algorithms can

be classified into three groups.

1. Linear MOR [22–30]. These techniques are mostly used to reduce the com-

plexity of parasitic networks (such as RLC networks of interconnects or power

grids, which are described by differential circuit equations or discretized EM

models), RF passive components that require accurate description by full-wave

EM equations, chip packagings. Linear MORs can be implemented by various

approaches, such as Krylov-subspace projection [22–25], Gramian-based reduc-

tion originated from control community [27–30], proper orthogonal decomposi-

tion (POD) reduction [61,62]. Given a set of measured or simulated data, linear

macromodels can also be constructed via data fittings [48–50].
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2. Nonlinear MOR [31–33]. They are mainly used to simplify the mathematical

models of nonlinear devices (e.g., transistors, MEMS devices) or systems. Non-

linear systems are very common in circuit design, including almost all analog

and RF blocks, such as amplifiers, mixers, oscillators, phase-locked loops (PLL)

etc. For different situations (e.g., strongly nonlinear circuits, weakly nonlinear

circuits, or nonlinear circuits with periodic or quasi-periodic signals), the MOR

algorithms might be slightly different such that some important properties or

parameters could be captured (e.g., high-order harmonics, signal intermodula-

tion).

3. Parametric MOR (pMOR) [34, 35]. Parametric MOR is also referred to varia-

tional MOR [36] (vMOR), which is developed to address the variation-induced

issues in circuit and system modeling. Typical cases are geometric variations [34]

and process uncertainty [35] that are inherent in manufacturing, as well as tem-

perature fluctuations [37, 38] that have strong impacts on interconnect signal

delay, power consumption and chip reliability. pMOR can be applied to both

linear and nonlinear systems.

In this thesis, we focus on linear MORs with application to LTI DSs. In these

MOR schemes, the projection technique is the most widely used method. From the

black-box perspective, system models can also be constructed by data fitting methods,

either in standard state-space [48] or DS form [49,50]. However, these macromodeling

techniques are beyond our scope.

In projection-based linear MORs, we attempt to find two projection matrices W

and V (with W T , V ∈ R
n×q) for the DS (1.5), such that a much smaller size-q model

can be generated:

Er
dz(t)

dt
= Arz(t) +Bru(t), yr(t) = Crz(t) (1.9)
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with Er = W TEV , Ar = W TAV , Br = W TB and Cr = CV , such that Hr(s) =

Cr(sEr − Ar)
−1Br ≈ H(s) or Yr(s) = Hr(s)U(s) ≈ Y (s), subject to some ac-

curacy requirements. Typical methods of constructing the projection matrices in-

clude: POD [61, 62], moment-matching technique [22, 25, 52], and Gramian-based

method [26,29,30]. The reader is referred to the survey paper [51] and the references

therein for details. In circuit context, moment-matching and Gramian-based MORs

are most widely applied and thereby reviewed below.

1.4.1 Moment-Matching-Based MOR

Many moment-matching MOR algorithms stem from Pillage’s work on asymptotic

waveform evaluation (AWE) [52]. In the frequency domain, the transfer matrix H(s)

of the DS in (1.5) can be written as a Taylor expansion around s0

H(s) =
∑

Mk(s− s0)
k, for k = 0, 1, · · · . (1.10)

The matrix Mk(s0) = CF kR is the order-k moment at expansion point s0, with

R = (s0E − A)−1B and F = −(s0E − A)−1E. The idea of moment matching is

that we can approximate H(s) by capturing some of its important moment matrices.

In [52], the moments are computed in an explicit way, which suffers from numerical

instability.

An alternative is to match the moments implicitly by Krylov subspace method.

An order-l block Krylov subspace Kl (F,R) is defined as

Kl (F,R) = span
{
R,FR, · · · , F l−1R

}
. (1.11)

For simplicity we assume that m = p. The matrix Páde via Lanczos algorithm
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(MPVL) [25] constructs the projection matrices by

V = Kl (F,R) , W = Kl

(
F̂ , R̂

)
, with F̂ = F T , R̂ = (s0E − A)−TCT . (1.12)

By MPVL, a size-q ROM (1.9), with q = ml, could be constructed to capture the

first 2l moments of H(s), i.e.,

Hr(s) =
∑

Mr,k(s− so)
k, with Mr,k = Cr

(
−(s0Er − Ar)

−1Er

)k
(s0Er − Ar)

−1Br.

and Mr,k = Mk, for k = 0, 1, · · · , 2l − 1.

(1.13)

Obviously, the error between Hr(s) and H(s) is O
(
(s− s0)

2l
)
.

Another way to construct the projection matrices by only one Krylov subspace,

resulting in W = V . This method is called congruence transform [53], by which the

first l moments can be matched for a general DS model. For a symmetric model, such

as a RC network with voltage sources as excitations and port currents as outputs,

congruence transform can capture 2l moments.

1.4.2 Gramian-Based MOR

The Gramian-based MOR [26, 28–30, 57, 58] originated from the control community.

Compared with moment-matching methods, Gramian-based MORs have two advan-

tages: stability (or passivity) preservation for even unstructured system, plus an

analytical error bound for quantifying numerical accuracy. Here we give the basic

flows of classic balanced truncation (BT), as well as positive-real or bounded-real

balanced truncation (PRBT or BRBT) which preserve system passivity.

Given a stable LTI state-space model (1.1) (i.e., spec(A) ∈ C
−), the controllability
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Gramian Qc and observability Gramian Qo are defined as

Qc =

∫ ∞

0

eAtBBT eA
T tdt, Qo =

∫ ∞

0

eA
T tCTCeAtdt (1.14)

which are the symmetric positive semi-definite solutions to the dual Lyapunov equa-

tions

AQc +QcA
T +BBT = 0, ATQo +QoA+ CTC = 0. (1.15)

Due to the positive semi-definiteness of the Gramians, there exist two factors Lc

and Lo, such that Qc = LcL
T
c and Qc = LoL

T
o . We compute the singular value

decomposition of LT
o Lc:

LT
o Lc =

[
U1 U2

]

 Σ1

Σ2



[
V1 V2

]T
, (1.16)

where Σ1 = diag(σ1, ..., σq), Σ2 =diag(σq+1, ..., σn) and σ1 ≥ ... ≥ σq ≥ σq+1 ≥ ... ≥ σn

are called the Hankel singular values. To this end, the left projection matrix W and

the right projection matrix V are constructed as

W = LoU1Σ
− 1

2

1 , V = LcV1Σ
− 1

2

1 . (1.17)

Finally, the ROM could be constructed as Ar = W TAV , Br = W TB, Cr = CV . One

advantage of balanced truncation is that an upper error bound is provided for the

resulting transfer matrix

‖H(s)−Hr(s)‖∞ ≤ 2
n∑

k=q+1

σk. (1.18)

Compared with moment-matching methods, BT is capable of providing stable ROMs

and an analytical error bound, but it is much more expensive (O(n3) complexity).
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An ADI iteration and its low-rank variant (LR-ADI) are proposed in [57,58] to solve

Lyapunov equations at the cost comparable to that of Krylov-subspace projection.

The details of ADI and LR-ADI algorithms are not presented here, and interested

readers may refer to [57, 58] for details.

Classic BT can generate stable macromodels, but the ROMs are not guaranteed

to be passive, which is normally expected in interconnect and RF passive component

modeling. To preserve system passivity, PRBT (for admittance/impedance systems)

or BRBT (for scattering systems) can be used. In PRBT, we need to solve the dual

Lur’e equations [26] or algebraic Riccati equations (AREs) [30], which are essentially

equivalent. The dual AREs are formulated as

AQc +QcA
T +

(
QcC

T −B
)
P−1(CQc − BT ) = 0

ATQo +QoA+
(
QoB − CT

)
P−1(BTQo − C) = 0

(1.19)

where P = D + DT > 0 for strict positive real systems, Qc and Qo (which are

positive semidefinite) denote the positive-real controllability Gramian and positive-

real observability Gramian, respectively. After computing Qc and Qo, the projection

matrices W and V can be computed in the same way as in classic BT. PRBT is the

same with BRBT, except for that the bounded real controllability and observability

Gramians Qc and Qo are the solutions to (1.19) after replacing P with I − DDT .

An ARE equation could be solved via Newton iteration, and inside each iteration a

Lyapunov equation needs to be solved. Recently, a quadratic ADI (QADI) is proposed

in [30] to solve the ARE at the cost of approximately only that of one Lyapunov

equation.

For the DS in (1.5), stability-preserving balanced truncation has also been de-

veloped based on solving the dual generalized Lyapunov equations. The ADI and

LR-ADI algorithms have also been extended to efficiently solve the dual generalized
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Lyapunov equations. Details about DS BT and related fast matrix solvers could be

found in [54–56].

1.4.3 Passivity-Preserving DS MOR

In practice, almost all LTI models encountered in circuit simulation are in the DS

form, including linear circuit equations formulated by modified nodal analysis (MNA),

RF passive component models extracted by EM field solvers, as well as many lin-

earized models from nonlinear equations. For DS cases, the passivity-preserving MOR

becomes much more involved.

There indeed exists a special case: positive semidefinite (PSD) structured DS,

where passivity-preserving MOR could be easily performed. For example, in the

MNA formulation of linear RLC circuits, if we are interested in the port admittance

or impedance parameters, the DS matrices are PSD structured:

E ≥ 0, A+ AT ≤ 0, C = BT . (1.20)

Subsequently, using congruence transform would generate a positive-real ROM, as

detailed in the famous PRIMA paper [22]. But there are many cases where their

system matrices are not PSD structured, thus system passivity cannot be preserved

by simply using Krylov-subspace based moment matching. Even for a PSD structured

DS, system passivity could not be preserved by congruence transform when its transfer

matrix represents the scattering parameters.

To preserve system passivity during the MOR of general DSs, we need to use

passivity-preserving DS BT [16–18]. Assuming the DS (1.5) is impulse-free, the DS-

PRBT algorithm is based on solving the dual generalized algebraic Riccati equations
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(GAREs):

AQcE
T + EQcA

T +
(
EQcC

T −B
)
P−1(CQcE

T − BT ) = 0

ATQoE + ETQoA+
(
ETQoB − CT

)
P−1(BTQoE − C) = 0

(1.21)

with D + DT > 0. Similar to the classic BT and PRBT, we can get the Cholesky

factor (or square-root factor) of the Gramian matrices, such that Qc = LcL
T
c and

Qo = LoL
T
o . Then we continue to compute the skinny SVD:

LT
o ELc =

[
U1 U2

]

 Σ1

Σ2



[
V1 V2

]T
, (1.22)

where Σ1 and Σ2 contain the descending Hankel singular values. Finally, the pro-

jection matrices could be constructed as in (1.17), and the reduced-order model is

obtained by

Er = W TEV, Ar = W TAV, Br = W TB, Cr = CV, Dr = D. (1.23)

In the above MOR, the dual GARE (1.21) may be solved by state-of-the-art ma-

trix solvers in [59, 60]. These GARE solvers use Newton iteration that converts the

quadratic matrix equations (generalized algebraic Riccati equations) to linear matrix

equations (generalized Lyapunov functions), and then solve each generalized Lya-

punov equation by (LR)-ADI. Consequently, the overall cost approximates that of

solving tens of generalized Lyapunov functions. Note that some DSs may not be

impulse-free, and the improper part may be extracted by spectral projectors. If the

circuit topology is given, the spectral projector could be constructed by a closed

form [17,18]. Nevertheless, the spectral projector construction is not trivial for most

DSs (such as DS models from EM solvers). A fast numerical implementation will be
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presented in Chapter 5.

1.5 Thesis Contributions

The work included in this thesis consists of two parts. Chapters 2 to 4 propose a set

of new methods for DS passivity assessments, including both admittance/impedance

DSs and S-parameter DSs; Chapter 5 and Chapter 6 address some issues involved in

DS MOR: passivity preservation and the multi-port problem.

1.5.1 Generalized Hamiltonian Methods (GHMs)

In Chapter 2, we present the generalized Hamiltonian method (GHM) for DSs with

admittance or impedance transfer matrices.

First, a pre-processing step called improper part test (IMPT), is proposed to

characterize the improper part without system decomposition. If the improper part

is passive, GHM could be used to test the proper part.

Then, GHM is proposed. GHM is a generalization (and superset) of the widely

used Hamiltonian method. But different from traditional Hamiltonian methods,

GHM can be used to test the passivity of both standard state-space models and

DS models, without system decomposition. Similar to the Hamiltonian method, the

proposed GHM is capable of detecting and locating every possible nonpassive region,

thus it could be used as a reliable test in DS passivity enforcements.

Then, we further develop a half-size variant of GHM, called HGHM. HGHM can be

used to test the passivity of symmetric DSs. On top of all the advantages of GHM,

HGHM is more efficient (8× faster over GHM). From the numerical perspective,

HGHM is also more reliable.
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1.5.2 Spectral Projector Technique and Fast GHM

Chapter 3 presents a DS passivity test for large-scale systems, such as those from

EM solvers. We aim to efficiently test the proper part of a DS model even when its

improper part is nonpassive.

First, we present the theories regarding canonical projectors, and then show how

to construct a right (or left) spectral projector via a canonical projector technique.

Based on the spectral projector technique, the proper and improper parts of a DS

model can be separated in an elegant way.

However, the conventional canonical projector-based spectral projector construc-

tion is inefficient. To solve this problem, we present a fast numerical implementation,

based on sparse LU-based fast null space construction, as well as low-rank matrix

multiplication. To this end, the spectral projector could be efficiently computed for

large-scale DSs.

After decomposing the original DS into its proper and improper subsystems, the

improper part can be tested easily. To efficiently test the proper subsystem, we use

the GHM approach presented in Chapter 2, based on fast numerical implementation.

In our implementation, the multi-shift Arnoldi iteration [78] is extended to compute

those generalized eigenvalues close to the imaginary axis. Since only a small part

of the eigenvalues are needed for passivity test, the GHM-based verification can be

applied to large systems with size up to 104.

1.5.3 S-Parameter GHMs (S-GHMs)

Chapter 4 addresses the passivity test of a scattering DS, based on the bounded

realness of its transfer matrix.

We first extend the GHM theory to a scattering DS, to characterize the singular

values of its transfer matrix; then, for symmetric S-parameter DSs, a half-size variant
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of S-GHM, called S-HGHM, with better numerical accuracy and efficiency, is also

developed.

With the S-GHM and S-HGHM theories, we can test general DS models very

efficiently. We also present an interesting method for admittance/impedance DS

passivity test: using Moebious transform, the original admittance/impedance DS is

converted to a new S-parameter model, which is then tested by S-GHM/S-HGHM.

1.5.4 Fast DS PRBT

Chapter 5 is concerned with Gramian-based passivity-preserving MOR of DSs. We

aim to solve two problems in DS MOR: 1) preservation of the possible improper part,

if any; 2) preservation of system passivity. To achieve these objectives, we first use

a spectral projector to extract the proper and improper subsystems efficiently; after

that, we use PRBT to get a ROM of the proper subsystem.

For the reduction of the proper subsystem, we develop a fast algorithm to solve

the dual generalized algebraic Riccati equations (GAREs). Unlike existing state-of-

the-art GARE solver that uses Newton’s iteration, we propose a generalized AQDI

(GQADI) to solve the dual GAREs with much shorter CPU times. We then give the

theoretical proofs of the convergence and well posedness of the proposed algorithm.

Finally, noting the positive semidefiniteness of the Gramians, a low-rank algorithm

called LR-GQADI is proposed, which solves the GARE with further speedup.

1.5.5 Block-Diaognal Structured MOR for Multi-Port DSs

Chapter 6 addresses the issue in the MOR of multi-port LTI descriptor systems.

Multi-port systems are normally used in power grid simulation. Due to the huge port

size, Krylov-subspace projections cannot generate good macromodels that allow fast

subsequent simulation.
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Our proposed block-diagonal structured model reduction (BDSM) can generate

sparse and structured ROMs that can be efficiently simulated. First, using input ma-

trix splitting and parallel connection of LTIs, a block-diagonal structured (but much

larger) DS model is constructed, which has the same transfer matrix of the original

one. Then we use Krylov subspace to generate the projection matrices. In the pro-

jection matrix construction, the columns corresponding to different ports are sorted

to different groups, which finally results in block-diagonal structured projection ma-

trices and ROMs. The BDSM has several advantages: 1) it is based on exact moment

matching, thus it is very accurate; 2) it has the same size as traditional Krylov-

subspace MORs, but the resulting ROMs are sparse and block-diagonal structured;

3) its special structure allows fast computation and very flexible parallel implementa-

tion; 4) in power grid simulation, the problem size of the BDSM ROM can be further

scaled down, if the power gating technique is considered.



Chapter 2

Generalized Hamiltonian Methods

(GHMs)

A generalized Hamiltonian method (GHM) and its half-size variant (HGHM) are pro-

posed to characterize the spectral behaviors of descriptor systems (DSs). With the

preprocess ImPT (Improper Part Test), GHM and HGHM can be applied to test the

passivity of immittance (impedance or admittance) DSs without system decompo-

sition, system index assumption or minimal realization requirement, which are the

major bottlenecks of existing algebraic DS passivity tests. The proposed method

allows exact detection of nonpassive frequency intervals which is not possible with

frequency sweeping techniques. Numerical results confirm the effectiveness of the

proposed method.

2.1 Introduction

This work is motivated by the demand of passive modeling of admittance or impedance

on-chip components and electrical circuits in VLSI simulations [11,22,25]. In this case,

23
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system passivity can be interpreted as the positive realness of system transfer ma-

trix, which is of great importance for stable global simulations. However, nonpassive

models may be generated from some stability-preserving algorithms (e.g., vector fit-

ting (VF) [48] and balanced truncations (PVL) [57, 58]) or even some theoretically

passivity-preserving techniques (e.g., [22]) on finite-precision machines. As a remedy,

passivity enforcement techniques [11] can eliminate or mitigate passivity violations.

These enforcements need to locate the possible nonpasive regions via passivity test in

advance. For regular (or nonsingular) systems, numerous passivity assessments have

been proposed. Readers are referred to [11,14] and the references therein.

Nevertheless, DS passivity tests are much less developed compared with their reg-

ular system counterparts. The O(n6) computation renders the extended LMI (linear

matrix inequality) tests [39, 42] impractical for general DSs. Reference [42] presents

a cheaper method based on generalized Schur decomposition, but it poses strict re-

strictions on system observability and controllability. Some literatures assess positive

realness via generalized algebraic Riccati equations (GAREs) [43,44], but the admis-

sible requirement is also a very strong condition for practical physical models. Fur-

thermore, none of these methods can locate the possible nonpassive frequency regions,

which is normally required in testing the validity of circuit and component models.

Some decompose-and-test flows [46, 47] require the DSs to be minimal, and the sys-

tem decomposition and transformation may induce large numerical errors (caused by

possibly ill-conditioned matrix inversions). The eigenvalue-based DS passivity test

in [64] is only applicable to scalar function. Frequency sweeping methods [20, 41]

detect nonpassive regions at a set of frequency points, but they may miss nonpassive

frequency intervals. Therefore, it is desirable to develop a passivity assessment that

can identify the nonpassive regions of general DSs efficiently and accurately.

We propose, for the first time, a flexible passivity test flow for general DSs based

on generalized Hamiltonian methods. The main contribution of this chapter includes:
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1) GHM and HGHM to characterize the eigenvalues of DS spectral functions; 2) A

complete DS passivity test based on ImPT, GHM and HGHM to test the improper

and proper parts easily without system decomposition; 3) The observation that the

GHM- and HGHM-based passivity tests are the supersets of traditional Hamiltonian

method and its half-size [14] counterpart, respectively, as well as the connection of

GHM with GAREs [43, 44]. Part of this work is presented in [65], which mainly

discusses GHM and ImPT.

2.2 Review of DS Positive Realness

We first recall the positive realness of LTI models. For an immittance linear time-

invariant (LTI) system, the (strict) passivity is equivalent to its square transfer matrix

H(s) being (strictly) positive real [39]:

1. H(s) has no poles in Re(s) > 0;

2. H(s) = H(s̄) where ō stands for the conjugate of o;

3. The spectral function G(jω) = (H(jω) +H∗(jω)) /2 ≥ 0 for all ω ∈ R (> for

strict positive realness), where ∗ means the conjugate transpose operation.

For a regular state-space system H(s) = C(sI −A)−1B+D, its positive realness can

be tested by the Hamiltonian matrix [14]:

M =


 Â −R̂

P̂ −ÂT


 (2.1)

of which any purely imaginary eigenvalue defines a boundary frequency of passivity

violations. In (2.1), Â = A − B(D + DT )−1C, R̂ = B(D + DT )−1BT and P̂ =

CT (D +DT )−1C.
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In circuit modeling and reduction, we usually use the LTI DS:

Eẋ = Ax+Bu, y = Cx+Du, (2.2)

where x ∈ R
n denotes the state variables, E,A ∈ R

n×n, B,CT ∈ R
n×m, D ∈ R

m×m,

and rank(E) ≤ n (“=” corresponds to regular cases). The transfer matrix of (2.2) is

H(s) = C(sE − A)−1B +D. (2.3)

Here (A,E) is assumed to be regular, i.e., det(sE −A) is not identically zero. There

exists a Weierstrass form [39]:

(A,E) = W (


 F 0

0 In−q


 ,


 Iq 0

0 N


)T, (2.4)

where W and T are nonsingular, Iq denotes an identity matrix of dimension q, F

and N (an index-µ nilpotent matrix, i.e., Nµ = 0 and Nµ−1 6= 0) correspond to the

finite and infinite generalized eigenvalues of (A,E), respectively. The Weierstrass

form implies

H(s) = Cp(sIq − F )−1Bp +M0︸ ︷︷ ︸
Hp(s)

+

µ−1∑

k=1

skMk

︸ ︷︷ ︸
Himp(s)

, (2.5)

where
[
Cp C∞

]
= CT−1 and


 Bp

B∞


 = W−1B, M0 = D − C∞B∞, Mk =

−C∞NkB∞ (k = 1, ..., µ − 1). Hp(s) and Himp(s) are the proper and improper

parts, respectively. The immittance DS in (2.5) is passive if and only if [39]: 1) Hp(s)

is passive; 2) M1 ≥ 0 and Mk = 0 for any k ≥ 2. An LMI test [at the cost of O(n6)]

is developed in [39] for the characterization of DS positive realness.
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1. Sufficient Condition: If there exists a solution X to the following LMIs:


 ATX +XTA XTB − C

BTX − CT −D −DT


 ≤ 0, ETX = XTE ≥ 0, (2.6)

then H(s) defined by (2.3) is positive real.

2. Necessary Condition: Assume that (E,A,B,C,D) is a minimal realization

of H(s) and D +DT ≥ M0 +MT
0 , then the LMIs in (2.6) have a solution X if

H(s) is positive real.

Obviously, besides the extremely expensive computation, the minimal realization

requirement is also highly restrictive.

2.3 GHM and HGHM Theories for DSs

2.3.1 GHM for General DSs

Theorem 2.1: Assume that λ is not an eigenvalue of (D+DT )/2 for the stable DS

(E,A,B,C,D) (i.e., any finite s satisfying det(A− sE) = 0 is located on the left half

plane), then λ is an eigenvalue of G(jω) if and only if jω is a generalized eigenvalue

of the matrix pencil (J, K), defined as

(J,K) = (


 A+BQ−1C BQ−1BT

−CTQ−1C −AT − CTQ−1BT


 ,


 E 0

0 ET


), (2.7)

where Q = (2λI −D −DT ). Note that the matrix J is a Hamiltonian matrix.

Proof: Assume that λ is an eigenvalue of the spectral function defined as G(jω) =

(H(jω) +H∗(jω)) /2. Since the system matrices are real, we haveH∗(jω) = HT (−jω),
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then there exists x 6= 0, such that

2G(jω)x =



[
C BT

]
Ω−1

ω


 B

−CT


+D +DT


x = 2λx. (2.8)

Here we have used Ωω to denote


 jωE − A

jωET + AT


 for simplicity. We could

rewrite (2.8) in a compact matrix form as

Q−1
[
C BT

]
z = x (2.9)

with z = Ω−1
ω


 B

−CT


 x 6= 0. By pre-multiplying both sides of (2.9) by Ω−1

ω


 B

−CT


,

we further get

Ω−1
ω


 B

−CT


Q−1

[
C BT

]
z = z (2.10)

which is essentially equivalent to

Jz = jωKz. (2.11)

To this end, we have shown that the imaginary scalar jω is a generalized eigenvalue

of matrix pencil (J,K) if λ is an eigenvalue of G(jω).

To prove the converse, we denote w := Q−1
[
C BT

]
z [which should be a

nonzero vector, since z 6= 0 in (2.10)]. Pre-multiplying both sides of (2.10) by

Q−1
[
C BT

]
, we would reach

Q−1
[
C BT

]
Ω−1

ω


 B

−CT


w = w, (2.12)
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which is equivalent to (2.8), implying λ is an eigenvalue of G(jω) if jω is a generalized

eigenvalue of (J,K).

�

2.3.2 HGHM for Symmetric DSs

Next, we consider a special case: symmetric DSs. For symmetric DSs, the matrix pen-

cil in GHM theory could be reduced to a half-size one, and the imaginary eigenvalue

computation would be replaced by positive real eigenvalue calculation.

Theorem 2.2: For symmetric DSs [i.e., H(s) = HT (s)], if λ is not an eigenvalue

of D, the matrix pencil (J,K) defined in (2.7) could be reduced to a half-size matrix

pencil

(Jh, Kh) = (A+B(λI −D)−1C, EA−1E), (2.13)

and accordingly, the generalized eigenvalue jω could be replaced by β = ω2.

Proof: Given a symmetric DS, we haveH∗(jω) = H(−jω) = −C(jωE +A)−1B+

D. In such case, the matrix pencil (J,K) could be written as

(J,K) =




 S T

−T −S


 ,


 E 0

0 E




 (2.14)

where S = A + B(2λI − 2D)−1C, T = B(2λI − 2D)−1C. Noting that (J ′, K ′) =

Z(J,K)ZT has the same generalized eigenvalues as (J,K) if Z is invertible, if we set

Z =


 I I

I −I


, then we could get a structured matrix pencil

(J ′, K ′) =




 0 2(S − T )

2(S + T ) 0


 ,


 2E

2E




 . (2.15)
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Assume that λ is an eigenvalue of G(jω), then jω is a generalized eigenvalue of (J,K)

(which is a trivial result from the proposed GHM theory). Because (J,K) and (J ′, K ′)

have the same spectrum, jω should also be a generalized eigenvalue of (J ′, K ′). Based

on this, we know that there exist x1 and x2, such that


 −jωE S − T

S + T −jωE




 x1

x2


 = 0,


 x1

x2


 6= 0. (2.16)

This is a size-2n matrix equation, which can be further reduced to

(Jh − ω2Kh)x1 = 0, x1 6= 0. (2.17)

Therefore, β = ω2 is a generalized eigenvalue of (Jh, Kh).

Conversely, by setting x2 = jω(S − T )−1x1, we can arrive at (2.16) from (2.17)

and then go back to Theorem 2.1.

�

2.4 Admittance/Impedance DS Passivity Assess-

ment

DS passivity test is more involved than its standard state-space model because it

requires testing both the proper and improper part. In this section, we introduce

a passivity verification flow for DSs with admittance or impedance transfer matrix,

based on the proposed GHM and HGHM theory. In the first step, a preprocessing

step is needed to check the improper part.
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2.4.1 Testing the Improper Part by ImPT

We begin the passivity verification with ImPT (Improper Part Test), which is de-

veloped to characterize the improper part of a DS. Denoting the highest order of

Himp(s) by the integer ζ − 1 (1 ≤ ζ ≤ µ), then the improper part could be written as

Himp(s) =
ζ−1∑
k=1

skMk with Mζ−1 6= 0. Given a set of positive real scalars si (i = 1, 2, ...)

with si+1 = ηsi (η > 1), the matrix norm of H(si) could be written as

‖H(si)‖ = sζ−1
i

∥∥∥∥∥Mζ−1 +
Mζ−2

si
+ · · ·+ Hp(si)

sζ−1
i

∥∥∥∥∥ . (2.18)

Clearly, if si is large enough, the highest-order term sζ−1
i Mζ−1 would dominate H(si).

As a result, we have Mζ−1 +
Mζ−2

si
+ · · ·+ Hp(si)

sζ−1

i

≈Mζ−1, which further implies

‖H(si+1)‖
‖H(si)‖

≈ ηζ−1. (2.19)

Consequently, the system index can be evaluated by

ζ =

[
logη(

‖H(si+1)‖
‖H(si)‖

)

]
+ 1, (2.20)

where [o] represents rounding operation. We select positive real scalar si in the

computation based on two reasons: 1) for a stable DS, its poles are located on the

left-half plane, thus the peaks from the proper part could be avoided; 2) numerical

calculation on real numbers is faster and more reliable than on complex numbers.

In practical implementations, η can be set around 10 − 100, and we may start with

a randomly selected number (e.g., s1 = 105) and then replace si with si+1 until∣∣∣
[
logη(

‖H(si+1)‖
‖H(si)‖

)
]
− logη(

‖H(si+1)‖
‖H(si)‖

)
∣∣∣ < δ. Here δ is a small positive constant used to

control numerical errors. Since si is exponentially increased, the iteration would

converge very fast. If ζ ≥ 3, we have M2 6= 0 and thus the DS is nonpassive, since
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repeated infinite poles exist in the transfer matrix. If ζ = 2, we have H(si) =

Hp(si) + Himp(si) ≈ siM1 + M0, then the coefficient of the improper part could be

computed by

M1 ≈
H(si+1)−H(si)

si+1 − si
. (2.21)

With a numerical error control, (2.21) can be used to compute M1 with a high ac-

curacy. In impulse-free DSs, the denominator in (2.20) might approach zero in case

M0 = 0, and directly using (2.20) may give erroneous results. In this case, we replace

H(si) with H(si) + Im to compute ζ.

Hereafter, we assume that Himp(s) has been checked by ImPT, ζ ≤ 2, and M1 ≥ 0

(or else the passivity test terminates since we have already known the improper part

is nonpassive). In this case Hp(jω) + H∗
p (jω) = H(jω) + H∗(jω), then the proper

part can be tested by GHM or HGHM.

2.4.2 Testing the Proper Part by GHM and HGHM

In admittance/impedance passivity assessment, we are most interested in the situ-

ations where the positive realness is violated. Clearly, λ = 0 is the boundary case

where a system becomes nonpassive from being passive (or vice versa). By setting

λ = 0, we could have (J,K) = (J0, K0) with

J0 = M =


 Â −R̂

P̂ −Â


 , K0 = K. (2.22)

Here M is the Hamiltonian matrix [66] defined in (2.1). For HGHM, setting λ = 0

gives a half-size matrix pencil

(Jh0, Kh0) = (A−BD−1C, EA−1E). (2.23)
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The resulting matrix pencils (J0, K0) and (Jh0, Kh0) could be used to test the positive

realness of a DS, i.e., the passivity of an admittance or impedance DS model: any

purely imaginary (or positive real) generalized eigenvalue jω (or β = ω2) of (J0, K0)

(or (Jh0, Kh0) for symmetric DSs) defines a crossover angular frequency ω where

the eigenvalue of G(jω) crosses the imaginary axis on the complex plane. These

crossover points can be used to locate the possible nonpassive frequency intervals.

Denote Θ := {ω1, ..., ωp} where ωi (i = 1, ..., p) represents the p crossover points

obtained from GHM or HGHM, then the passive and nonpassive regions of H(jω)

can be identified as follows.

1. If Θ is empty, test G(jω0) at a randomly selected sampling point ω0. The

system is strictly passive if G(jω0) > 0, otherwise nonpassive at any frequency point.

2. If Θ is not empty, test G(jω′
k) at ω

′
k ∈ `k (k = 1, 2, ..., p+1) where `1 =(0, ω1),

`i =(ωi−1, ωi) for i = 2, ..., p and `p+1 =(ωp,∞). If G(jω′
k) > 0, then the DS is passive

in the interval `k, otherwise nonpassive in `k.

An illustrative example is shown in Fig. 2.1. For this DS, GHM and HGHM

produce 3 crossover points. We randomly select one sampling point in each interval.

Since G(jω′
3) < 0 and G(jω′

k) > 0 for k = 1, 2, 4, the DS is nonpassive in (ω2, ω3) but

passive in other frequency bands.

2.4.3 Equivalent Model Conversion

At the first glance, GHM/HGHM test requires D + DT to be nonsingular, which is

not always satisfied in practical DSs. In this case, we need to perform an equivalent

model conversion in advance. Assume that α ∈ R is not an eigenvalue of D, then

Dα = αI −D is nonsingular. A new DS H ′(s) realized by (E ′, A′, B′, C ′, D′) can be



34

0 1 2 3 4 5 6 7
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Angular frequency

G
(jω

)

ω
1

ω
2

ω
3ω’

1 ω’
2 ω’

3
ω’

4

Figure 2.1: An illustrative example for nonpassive region identification.

constructed as

E ′ =


 E

0


 , A′ =


 A

D−1
α


 , B′ =


 B

I


 ,

C ′ =
[
C I

]
, D′ = αI.

(2.24)

We note that the resulting DS model has the same transfer matrix as the original one

[i.e, H ′(s) = H(s)], but D′ +D′T and D′ are nonsingular. Therefore, the proper part

of H(s) can be assessed by testing the passivity of H ′(s) via GHM or HGHM. We

remark that, given a standard state-space model (with E = I), the equivalent model

conversion would generate a DS model, which can be tackled by GHM, or HGHM if

its transfer matrix is symmetric. The main computation in GHM and HGHM tests

is the O(n3) generalized eigenvalue solution. HGHM-based test should be 8 times

faster than GHM-based method due to its half-size nature. With equivalent model

conversion, GHM (HGHM) can also be applied to (symmetric) regular systems with

singular D+DT (D) where traditional Hamiltonian method and half-size singularity

test [14] fail to work.
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Figure 2.2: The complete passivity test flow for DSs, including regular systems.

2.4.4 Connection to Traditional Hamiltonian Methods

An interesting observation is that the proposed GHM and HGHM methods are in fact

a superset of the widely used Hamiltonian method [11] and its half-size variant [14].

Given a standard state-space models (E = I), the generalized eigenvalue solution

of (J,K) reduces to the eigenvalue solution of J defined in (2.7), which has been

widely used in passivity enforcements [11] for nonpassive regular state-space models.

To check system passivity, we could set λ = 0 and get J0 = M [defined in (2.1)].

For symmetric standard state-space models, the generalized eigenvalue solution of
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(Jh0, Kh0) in (2.23) can be replaced by the eigenvalue solution of

Mh = A(A−BD−1C) (2.25)

which is the half-size singularity test recently proposed in [14].

Therefore, Hamiltonian method and its half-size variant are special cases of GHM

and HGHM, respectively. All of them detect passivity violation regions by finding

boundary frequencies, but GHM and HGHM can deal with DSs as well as regular

systems, without restrictions on D, which implies much wider applications. The

complete test flow is illustrated in Fig. 2.2, where ImPT and traditional Hamiltonian

methods are also included.

2.4.5 Strict Positive Realness of Impulse-free DSs

GARE [43,44] is widely used to characterize the positive realness of impulse-free DSs.

This part shows its connection with GHM.

Lemma 2.1: Suppose (A,E) is regular, impulse-free and D+DT > 0 (otherwise,

the proposed equivalent model conversion can be performed to meet this requirement),

then the following statements are equivalent.

1) H(s) is strictly positive real.

2) The generalized algebraic Riccati equation (GARE)

ÂTX +XT Â+XT R̂X + P̂ = 0, ETX = XTE ≥ 0 (2.26)

has a solution X such that (Â+ R̂X,E) is stable.

3) The matrix pencil (J0, K0) has no purely imaginary generalized eigenvalues and

M0 > 0 [M0 is defined in (2.5)].

Proof: The equivalence of 1) and 2) has been proved in [43]. The proof of 3)⇒1)
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is trivial based on the GHM theory. From Statement 2), we get

det(J0 − sK0) = det




 I

−XT I


 (J0 − sK0)


 I

X I






= det




 sE − (Â+ R̂X) 0

0 sET + (ÂT +XT R̂T )






= det
(
sE − (Â+ R̂X)

)
det
(
sE + (Â+ R̂X)

)
.

(2.27)

Since (Â + R̂X,E) is stable, Â + R̂X ± jωE is nonsingular. Therefore, the matrix

pencil (J0, K0) has no purely imaginary generalized eigenvalues. The equivalence of

1) and 2) also implies M0 > 0, therefore, 3) can be derived from 2) and the above

statements are equivalent.

�

We remark that GARE requires (E,A) to be admissible, but GHM only requires

M1 = MT
1 . GHM can locate the passive/nonpassive regions whereas GARE cannot.

2.5 Numerical Examples

This section presents some numerical examples to verify the proposed passivity test

flow. All experiments are performed in MATLAB R2006a on a 2.66-GHz 2G-RAM

PC.

2.5.1 MNA Example for ImPT

This 9-port order-10913 MNA model describes a large RLC network. Since the RLC

circuit is passive, ζ should be 1 or 2 and M1 ≥ 0. To show the convergence of ImPT,

we set s1 = 103 and η = 10, and plot the numerical error εi for i = 1, 2, .., 6 in
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Figure 2.3: ImPT test for the MNA model [the iteration number means i in (2.20)].

Fig. 2.3(a), which shows εi decreases by about 2 orders in each iteration. Setting

si = 104 and si+1 = 105 in (2.20) yields ζ = 2 after 2.1 seconds. The frequency

response of port-2 to port-2 in Fig. 2.3(b) shows its magnitude increases linearly in

the high-frequency band, which also implies ζ = 2. Via (2.21), we get a 9×9 diagonal

matrix with positive diagonal elements, so M1 > 0.

To verify the numerical accuracy of M1, we compute ζ of the “proper part”

H1(s) = H(s)−sM1 by (2.20). We get ζ = 1 for H1(s), implying H1(s) is impulse-free

as expected. Meanwhile, the port-2 to port-2 response of H1(s) in Fig. 2.3(c) also

shows H1(s) has no impulsive part. This example shows that ImPT is efficient and

accurate in practical implementations.
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Figure 2.4: GHM and frequency sweeping results for the PEEC model.

2.5.2 PEEC Example for GHM

The SISO order-51 reduced model is obtained by performing PRIMA [22] on a PEEC

DS model of dimension 480 with D = 0. Both of them are nonpassive in the low-

frequency band. ImPT shows they are impulse-free. After equivalent model conver-

sion, GHM test on the original model produces 59 crossover points. We compute

the transfer functions at these 59 points (denoted by Hc(s)). Fig. 2.4 shows that

the real part of Hc(s) is zero. By frequency sweeping, we get 29 boundary frequency

points. The frequency sweeping result Hs(s) is plotted in Fig. 2.4. We note that all

these 29 points are also detected by GHM. However, the other 30 crossover points are

missed in frequency sweeping test. Therefore, GHM is more reliable than frequency

sweeping.

For the reduced model, GHM produces 4 purely imaginary results listed in Ta-

ble 2.1, which represent 2 crossover frequency points. We also plot the real part of

the transfer function of the reduced model (Hr(s)) in Fig. 2.5. The GHM results are

accurately located at the crossover points of real (Hr(s)) with the x-axis. We note

that GHM test results in Table 2.1 contain some numerical noise in the real parts,

which is also observed in traditional Hamiltonian method [14].



40

0 1 2 3 4 5 6 7 8 9 10
−4

−3

−2

−1

0

1

2

3

4
x 10

−3

Angular frequency (rad/sec)

R
ea

l p
ar

t

 

 

Real part of H
r
(s)

Crossover points from GHM test

Figure 2.5: Real part of Hr(s).

Table 2.1: GHM test results for the reduced model.
Imaginary generalized eigenvalues of (J0, K0) Hr(jω)

3.65e-13 ± j3.3078 0.0000 +j0.0031
5.00e-14 ± j1.2345 0.0000 −j0.0060

2.5.3 A SAW Filter for HGHM

This order-126 admittance symmetric DS is from a 3-terminal SAW filter. ImPT

shows this DS is impulse-free. HGHM test produces 3 positive real generalized eigen-

values, and GHM test produces 6 imaginary generalized eigenvalues. Table 2.2 shows

that the results from GHM test have numerical noise in the real parts, but HGHM

does not suffer from this problem. The 3 crossover frequency points from HGHM are

plotted in Fig. 2.6, which shows the HGHM test is very accurate.

2.5.4 CPU Time Comparison

We compare the CPU timing of GHM and HGHM with two decompose-and-test

methods: SHH [46] and Weierstrass passivity test [47]. For fairness, in decompose-

and-test routines the proper parts are tested by Hamiltonian method. Experiments

are performed on some symmetric DSs with order from 50 to 800. The CPU times
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Figure 2.6: HGHM test for the SAW model.

Table 2.2: GHM and HGHM test results for the SAW model.
Imaginary results of GHM Positive results of HGHM (β)

√
β

−1.4e-8 ±j21671.377 469648579 21671.377
−1.9e-8 ±j18029.84 325075192.6 18209.84
3.38e-8 ±j2645.316 6997698.35 2645.316

of GHM, HGHM, SHH and Weierstrass passivity tests are listed in Table 2.3. It is

shown that HGHM is about 8 times faster than GHM, which is expected due to its

half-size property. GHM is (> 2 times) faster than SHH. The additional cost of SHH

is mainly from system decompositions. GHM, HGHM and SHH are all faster than

Weierstrass test, which coincides with the observations in [46].

2.6 Summary

A new DS passivity test flow based on GHM and HGHM has been proposed for the

first time. The most significant advantage of the proposed method is its ability of

accurately detecting the possible nonpassive regions, some of them may be missed with

frequency sweeping techniques. With ImPT and equivalent model conversion, GHM
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Table 2.3: CPU times (sec) of different DS passivity tests.

Model order Weierstrass SHH GHM HGHM

50 0.2270 0.0781 0.0156 0.0013
100 0.4470 0.2969 0.1406 0.0156
150 1.1093 0.9375 0.3906 0.0625
200 2.6872 2.3281 0.8706 0.1250
300 10.725 8.2500 3.3750 0.3906
400 32.781 20.125 7.7938 0.8906
500 51.676 39.719 17.328 1.7788
600 124.83 69.208 25.813 2.9688
700 161.21 108.40 38.906 4.9219
800 289.37 166.64 65.670 7.6406

and HGHM can be used to deal with general and symmetric DSs, respectively, without

system decompositions. Experiments have demonstrated the much higher accuracy

of GHM than frequency sweeping, and faster computation than SHH and Weierstrass

test. In symmetric DSs, HGHM enjoys a 8× speedup and a higher numerical accuracy

over GHM.



Chapter 3

Projector-Based Passivity Test for

Large Descriptor Systems

This chapter presents an efficient passivity test based on canonical projector tech-

niques for admittance/impedance DSs with large sizes. The test features a natural

flow that first evaluates the index of a DS by matrix chain, followed by possible

decoupling into its proper and improper subsystems by spectral projectors. Explicit

state-space formulations for respective subsystems are derived to facilitate further pro-

cessing such as MOR and/or passivity enforcement. Efficient projector construction

and a fast generalized Hamiltonian test for the proper-part passivity are also elab-

orated. Numerical examples then confirm the superiority of the proposed method

over existing passivity tests for DSs based on linear matrix inequalities (LMIs) or

skew-Hamiltonian/Hamiltonian (SHH) matrix pencils.

3.1 Introduction

The GHMmethods in Chapter 2 has provided a reliable solution to admittance/impedance

DS models. Two issues still need to be addressed. First, in GHM test, the proper

43
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part is tested based on the assumption that the improper part is passive, otherwise,

the passivity test flow terminates. Second, the complexity of GHM is O(n3), which is

prohibitively expensive for large-scale DS models (such as those extracted from EM

field solvers). In practice, we expect to verify the validity of the proper part even

when the improper part is nonpassive, such that passivity enforcement could be used

to modify the model. In such a case, we need to extract the proper and improper

parts from a given DS. Also, we expect to reduce the complexity of passivity verifica-

tion scheme to extend its application to larger systems. Therefore, faster numerical

implementation is highly desired.

To overcome the computational hurdle of system decomposition, the emerging

canonical projector technique [19,73,74] is revised and utilized to formulate a highly

efficient DS passivity test. In short, the canonical projectors give rise to a spectral

projector that provides a natural and conceptually simple way to decouple a DS into

its proper (impulse-free) subsystem and improper (impulsive) subsystem, if any. Such

decoupling is considered the major difficulty in the passivity tests for DSs [46] (this

is different from the early work of Cauer [75] on passive systems based on matrix

polynomial transfer functions where subsystem decomposition is trivial compared to

the otherwise DS formulation here). A major difference that marks the efficiency of

the proposed method over existing ones is the early knowledge of the matrix pencil

index, which quickly manifests as a direct consequence of constructing the matrix

projector chain. Given that an (infinite) minimal passive system is of index at most

two, the test quickly screens out nonpassive systems after two initial matrix chain

iterations. Then, depending on the need, the proper and improper parts can be

completely decoupled via spectral projectors and respectively tested for passivity.

In this chapter, we present a novel LU-based construction of projectors and an

efficient implementation of the generalized Hamiltonian method proposed in Chapter

2, for testing the passivity of the proper part. Such combination has made the
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proposed test truly applicable to large-scale practical DSs, as demonstrated in the

numerical section wherein the model sizes are up to 104. We also present a concise

complexity analysis of existing DS passivity tests.

3.2 DS Passivity and System Decomposition

We study a linear time-invariant (LTI) DS in the form

Eẋ = Ax+Bu, y = Cx+Du, (3.1)

where E,A ∈ R
n×n and B,CT ∈ R

n×m. Also, u, y ∈ R
m and x ∈ R

n are the

input, output and state vectors, respectively. The matrix E is generally singular with

rank(E) ≤ n. We assume that the matrix pencil λE−A is regular, i.e., det(λ0E−A) 6=
0 for some λ0 ∈ C. Recalling from Chapters 1 & 2, we have the Weierstrass canonical

form [73]:

E = W


 Iq 0

0 N


T, A = W


 J 0

0 In−q


T, (3.2)

as well as the left and right (spectral) projectors, Pl and Pr, respectively, as

Pl = W


 Iq 0

0 0


W−1, Pr = T−1


 Iq 0

0 0


T. (3.3)
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Given either of them, the DS transfer matrix can be decomposed as follows

G(s) =D + C(sE −A)−1B

=D − C∞B∞ + Cp(sIq − J)−1Bp︸ ︷︷ ︸
Gp(s)

−sC∞NB∞ − s2C∞N2B∞ − s3C∞N3B∞ − · · ·︸ ︷︷ ︸
G∞(s)

, (3.4)

where Gp(s) is the proper part (bounded as s → ∞) and G∞(s) the improper part

(unbounded as s→∞) of G(s).

If G(s) in (3.4) is viewed as

G(s) =

Gp(s)︷ ︸︸ ︷
Gsp(s)︸ ︷︷ ︸

strictly proper

+M0 + sM1 +
∞∑

k=2

skMk

︸ ︷︷ ︸
G∞(s)

, (3.5)

then G(s) is positive real if and only if Gp(s) is positive real, M1 ≥ 0 and Mk = 0 for

k ≥ 2. Comparing (3.5) and (3.4), it is obvious that (3.1) is passive if and only if Gp(s)

in (3.4) is passive and M1 = −C∞NB∞ ≥ 0, whereas C∞N iB∞ = 0, i = 2, 3, · · · .
Consequently, a key to testing the passivity of a DS is to first decouple it into its

proper and improper parts.

3.3 Matrix Projector Chain

Setting E0 := E and A0 := A, we consider a matrix chain

Ej+1 := Ej + AjQj, Aj+1 := AjPj, (3.6)

where Qj is a projector onto kerEj, i.e., Q
2
j = Qj and imQj = kerEj, and Pj = I−Qj

is a projector along kerEj for j = 0, 1, . . .. Obviously, PjQj = QjPj = 0. The
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following theorem establishes the properties of the matrices Ej’s.

Theorem 3.1 [73] For a regular index-µ pencil λE−A, the matrices E0, · · · , Eµ−1

are singular, while Eµ is nonsingular.

Consequently, for the matrix chain {Ej, Aj} we have:

• If E1 is nonsingular, i.e., µ = 1 or N = 0, then system (3.1) is impulse-free [46].

In this case, a standard state space system can be extracted and tested for

passivity, see Section 3.4.1.

• If E1 is singular but E2 is nonsingular, we then proceed to form the spectral

projector Pr (or Pl) through constructing canonical projectors, which allows

the decoupling of G(s) into the proper and improper parts Gp(s) and G∞(s),

respectively.

• If E2 is singular, then (infinite) minimality of the DS dictates Mk 6= 0 for

k ≥ 2 [39] (see also discussion #3 in Section 3.7), so the system is nonpassive

and the passivity test is complete.

Next, we present some important properties of the matrix chain.

1. Post-multiplying the left equation in (3.6) by Qj and Pj, respectively, yields

Ej+1Qj = AjQj, (3.7a)

Ej+1Pj = Ej, (3.7b)

for j = 0, 1, · · · , µ− 1.

2. The projectors Q0, · · · , Qµ−1 are called admissible if they satisfy QjQi = 0

for j > i. Many new properties arise from using admissible projectors. For
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example, for j = 0, · · · , µ− 1, we have

EµQj = AjQj, (3.8a)

Aj+1 = A− Eµ(Q0 + · · ·+Qj). (3.8b)

3. Canonical projectors are admissible projectors that further satisfy

Qj = QjPj+1 · · ·Pµ−1E
−1
µ Aj

= QjPj+1 · · ·Pµ−1E
−1
µ A, (3.9)

for j = 0, · · · , µ− 2, and

Qµ−1 = Qµ−1E
−1
µ Aµ−1 = Qµ−1E

−1
µ A. (3.10)

The second equality signs in (3.9) and (3.10) can be established from (3.8b).

4. In the matrix chain (3.6), the projector Qj is, generally, not unique as only its

range is constrained. Suppose that Q̄j = Q̄2
j is another projector onto kerEj.

Then Q̄jQj = Qj, QjQ̄j = Q̄j and −Q̄jPj = QjP̄j. This permits a relationship

between the Ej+1’s generated by different projectors. We have

Ēj+1 = Ej + AjQjQ̄j = Ej + AjQj(I − P̄j)

= (Ej + AjQj)(I + Q̄jPj)

= Ej+1(I + Q̄jPj). (3.11)

Provided Ej+1 is invertible, the inverse of Ēj+1 is easily shown to be Ē−1
j+1 =

(I − Q̄jPj)E
−1
j+1.

The following depicts the formation of canonical and spectral projectors for the
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non-trivial case µ = 2. Compared to [19], our presentation is highly straightforward

and the proofs in the appendices are either new or much more elegant.

3.3.1 Constructing Canonical projectors

Setting E0 := E and A0 := A, the matrix chain in the case of µ = 2 takes the form

E1 := E0 + A0Q0 and A1 := A0P0, (3.12a)

E2 := E1 + A1Q1, (3.12b)

where E2 is nonsingular. The projectors Q0 and Q1 in (3.12) are, generally, neither

canonical nor admissible, but a new matrix chain with canonical (and, therefore,

admissible) projectors can be derived from (3.12) with careful reformulation, as il-

lustrated in Appendix 3.9.1. In short, the canonical projectors Q′
1 and Q′

0 can be

computed as

Q′
1 = Q1E

−1
2 A1, (3.13a)

Q′
0 = Q0P

′
1E

′−1
2 A0 = Q0P

′
1(I −Q′

1P1)E
−1
2 A0

= Q0P
′
1E

−1
2 A0 = Q0(I −Q1E

−1
2 A1)E

−1
2 A0. (3.13b)

3.3.2 Constructing Spectral Projectors

Following from above, an important result of canonical projectors is that the right

spectral projector Pr is readily given by

Pr = P ′
0P

′
1 = (I −Q′

0)(I −Q′
1). (3.14)
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The proof is shown in Appendix 3.9.2. Via the expressions in (3.13) and (3.14)

[or (3.47)], it can be shown that simple analytical spectral projectors are readily de-

rived for some structured DSs [56, 77], thereby allowing fast spectral decomposition.

Nonetheless, analytical projectors generally do not exist and specific numerical consid-

erations are needed for practical spectral projector construction, as will be discussed

in Section 3.5.1.

3.4 Passivity Test

The canonical projector technique provides a natural way to decouple the proper

(impulse-free) and improper (impulsive) parts of the DS in (3.1), which translates

into a highly effective way for checking passivity based on the conditions listed af-

ter (3.5). Moreover, all that is needed is one, either the left or right, spectral projector.

Without loss of generality, we assume the availability of Pr in (3.3). The case when

Pl is available follows analogously. In the following, we see how Pr permits a sim-

ple and explicit construction of the proper and improper subsystems by the additive

decomposition procedure.

3.4.1 Additive Decomposition by Spectral Projectors

Assume that the proper part is realized by Gp(s) = C̃(sẼ − Ã)−1B̃ + D̃. With

spectral projectors, the proper subsystem can be formed in various ways. By additive

decomposition, a regular system can be constructed explicitly as

Ẽ = EPr − A(I − Pr), Ã = A,

C̃ = CPr, B̃ = B, D̃ = M0, (3.15)
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where M0 is readily obtained from (3.16) below. It is straightforward to prove that Ẽ

is nonsingular by this formulation, thus no further efforts (such as SVD) are needed

to convert this DS to a regular one. To extract G∞(s) in (3.4), we first construct an

improper DS using the right spectral projector

G1(s) = D + C(I − Pr)(sE −A)−1B

= D + CT−1


0

I




sI − J

sN − I



−1

W−1B

= D − C∞B∞︸ ︷︷ ︸
M0

−sC∞NB∞ − s2C∞N2B∞ − · · · . (3.16)

Contrasting (3.4) and (3.5), it follows that M1 = −C∞NB∞ which can be shown to

be

M1 = −CA−1E∞A−1B, (3.17a)

= −C(Ef + A∞)−1E∞(Ef + A∞)−1B, (3.17b)

where Ef := EPr and A∞ := A(I −Pr). Subsequently, M0 and Gp(s) can be decided

by (3.15) and (3.16). The merit of the alternative expression in (3.17b) is that the

inverse of (Ef +A∞) always exists despite the invertibility of A [or equivalently that

of J in (3.2)]. The positive semidefiniteness of M1 and M0, necessary for a passive

DS, can then be easily tested. In fact, M1 and M0 are normally small-size m × m

square matrices since the number of input/output ports is usually much fewer than

the state space dimension, i.e., m� n.

At the first glance, the passivity test for Gp(s) can make use of the Hamiltonian

matrix eigenvalue test for standard state space systems [11], since Ẽ is nonsingular

such that its inverse can be absorbed into Ã and B̃ (though this is sometimes not

preferable as Ẽ may be ill-conditioned). For large systems, a fast numerical approach
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is developed [78] to compute the eigenvalues along the imaginary axis. However,

Hamiltonian-based approach becomes computationally infeasible due to the expensive

matrix inversion of Ẽ. Further, the matrix inversion also destroys the sparsity of

system matrices, which further slows down the calculations. An alternative approach

is to combine the fast eigenvalue solver of [78] with the generalized Hamiltonian

method (GHM) proposed in Chapter 2, which is further elaborated in Section 3.5.2.

This method directly tests passivity on the DS-form proper subsystem without loss

of sparsity, thus it is more efficient than using Hamiltonian method on the converted

standard state-space model.

The flow of the proposed projector-based decoupled-DS passivity test is summa-

rized in Fig. 3.1. A note about the infinite minimality assumption of the initial DS

can be found in Section 3.7 discussion #3.

3.4.2 Reconstruction into a DS

Finally, if Gp(s) = D̃ + C̃(sẼ − Ã)−1B̃ is passive (possibly after passivity enforce-

ment [11]) and M1 ≥ 0, a passive DS corresponding to the transfer function Gp(s) +

sM1 can be reconstructed for export to a simulator. Indeed, let M1 = ZZT be a

Cholesky factorization, where Z ∈ R
m×m. Then the DS can be formulated as




Ẽ

0 Im

0 0


 ẋ =




Ã

Im 0

0 Im


 x+




B̃

0

ZT


 u,

y =
[
C̃ −Z 0

]
x+ D̃u, (3.18)

whose transfer function is easily checked to be Gp(s) + sM1.
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Given an infinite-minimal 
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G(s)=D+C(sE-A)��B

Form the matrix chain in (3.12). 
Find index  of the matrix pencil 

{E,A} by testing the 
nonsingularity of E�and E�

Yes

No

No

=2 (i.e., E�
nonsingular)?

Form Q’�and Q’� in (3.13) 
and P’�=I-Q’�, P’�=I-Q’�. Set 

P�=P’�P’�. Then form 
E�=E(I-P�) and E�=EP�

�≥0?
Extract the proper
part G�(s) as in 
Section 3.4.1

G�(s) passive?
System is passiveSystem is nonpassive

No

Yes

No

Yes

Yes

Extract the improper 
part G�(s)=sM�as in 

Section 3.4.1

Test passivity of G�(s) 
using fast GHM test or 
any standard regular 
state space technique

=1 (i.e., E�
nonsingular)?

Figure 3.1: Flowchart for the proposed DS passivity test in a pseudocodes style.

3.5 Implementation and Complexity

3.5.1 Fast Spectral Projector Construction

Although there exist closed-form spectral projectors in terms of the initial (not nec-

essarily canonical) projectors as in (3.13) and (3.14), or for some special cases further

simplified forms as in [56, 77], the computation can still be expensive and constitute

a bottleneck due to large-size nullspace identification, matrix multiplication and in-

verse. Here we elaborate an efficient numerical construction of spectral projectors,
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mainly by exploiting sparsity and low-rank matrix operations inherent to many phys-

ical problems. The illustration below is based on index-2 (µ = 2) systems, and that

for index-1 (µ = 1) systems follows similarly.

First, a key step to forming the canonical projectors in (3.13) is to find the initial

projectors Q0 and Q1 spanning the nullspaces of the usually sparse or structured E0

and E1. Standard ways of identifying the nullspace include SVD or alike, which do

not utilize matrix patterns and can be expensive for large-size matrices. To this end,

we employ the sparse LU decomposition-based routine from [79], called LUQ, which

decomposes Ej, j = 0, 1, into

ET
j = Lj


 Uj 0

0 0


Rj, (3.19)

where Lj, Rj ∈ R
n×n are nonsingular matrices, Uj ∈ R

r×r is a nonsingular upper

triangular matrix, r is the rank of Ej and often n− r � n. Therefore, (3.19) is also

used in our implementation for checking the nonsingularity of Ej. If Ej is singular, its

nullspace is then computed via the left nullspace of ET
j (solely due to the reason that

Lj is produced with higher numerical accuracy than Rj by the LUQ routine [79]).

For completeness, the LUQ routine is outlined in Appendix 3.9.3. Obviously, using

I(r+1:n,:) to denote the last n − r rows of an n × n identity matrix, the columns of

(I(r+1:n,:)L
−1
j )T span kerEj. In practice, direct computation of this column matrix

is not preferred as the condition number of Lj can be large rendering ill-conditioned

inverse. Instead, we perform a LU factorization of Lj with permutation,

P̃jLj = L̃jŨj , (3.20)

where L̃j, Ũj , P̃j ∈ R
n×n such that P̃j is the permutation matrix with P̃ T

j P̃j = I, Ũj is

upper triangular and L̃j is lower triangular with unit diagonal entries and a condition
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number around unity. Then, it is easily checked that, due to the upper triangular

structure of Ũj, (I(r+1:n,:)L̃
−1
j P̃j)

T spans the same range as that by (I(r+1:n,:)L
−1
j )T

and has intrinsically better accuracy due to the low condition number of L̃j. It is

noted that computing L̃j does not really add to the computational load since the

inverse of Lj would generally proceed with an LU decomposition, of which L̃j is a

by-product, followed by backward/forward substitutions. Next, a (modified) Gram-

Schmidt process, denoted by gs(◦) below, leads to an orthonormal and usually thin

column matrix, namely

Ψj = gs((I(r+1:n,:)L̃
−1
j P̃j)

T ), (3.21)

such that Qj = ΨjΨ
T
j forms an orthogonal projector onto kerEj. Subsequently,

Q0 = Ψ0Ψ
T
0 and Q1 = Ψ1Ψ

T
1 are in low-rank factored forms that facilitate fast

computation of canonical projectors in (3.13) by

Q′
1 := Ψ1

(
(ΨT

1E
−1
2 )A1

)
, (3.22a)

Q′
0 := Ψ0

(
(ΨT

0 P
′
1E

−1
2 )A0

)
, (3.22b)

which are again low-rank. Further computational savings can be achieved in (3.14)

by recognizing that

Q′
0Q

′
1 = Q′

0(Q0 + P0)Q
′
1

= Q0Q
′
1 +Q0P

′
1E

′−1
2 A1Q

′
1

= Q0Q
′
1 +Q0P

′
1E

′−1
2 E ′

2Q
′
1 = Q0Q

′
1,

so that Pr = I−Q′
0−Q′

1+Q0Q
′
1 where Q

′
0, Q

′
1 and Q0Q

′
1 all involve low-rank factors

only.
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3.5.2 Fast GHM Test for Proper-Part Passivity

The spectral projector, with efficient implementation as above, allows fast decoupling

of the proper and improper parts of a DS. However, the computational bottleneck for

the DS passivity test still lies in testing the passivity of the proper part. To speed up

the overall DS passivity test, having an efficient test for the proper part is important.

For the DS-form proper subsystem constructed by (3.15), its passivity can be assessed

by the matrix pencil (J ,K) according to GHM in Chapter 2

J =


 Ã− B̃(D̃ + D̃T )−1C −B̃(D̃ + D̃T )−1B̃T

C̃T (D̃ + D̃T )−1C̃ −ÃT + C̃T (D̃ + D̃T )−1B̃T


 , K =


 Ẽ 0

0 ẼT


 ,

(3.23)

any purely imaginary generalized eigenvalue of which pinpoints a crossover point of

passivity violations. The proper part is strictly passive if and only if D̃+ D̃T > 0 and

(J ,K) has no eigenvalues on the imaginary axis. This eigenvalue problem consumes

an O((2n)3) complexity, which is infeasible for large sparse system. In practice, the

system matrices of Gp(s) are normally sparse, and only results close to the imaginary

axis are wanted for passivity verification. Based on this observation, the fast passivity

characterization of [78] exclusive to large sparse state-space models can be extended

to the DS case in (3.15).

To outline the fast Hamiltonian passivity test [78], we first assume the proper

subsystem is a standard state-space model. In this case eig(J ,K) = eig(J ) where K
reduces to an identity matrix. In [78], the imaginary eigenvalues of J is computed via

multi-shift Arnoldi iterations. This algorithm first builds a p-dimensional orthogonal

basis

Vp = [v1, v2, · · · , vp] , (3.24)
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of the Krylov subspace

{v1, (J − θI)−1v1, · · · , (J − θI)−(p−1)v1}, (3.25)

(θ ∈ jR) with a randomly generated initial vector v1 6= 0. After that, a p × p

Hessenberg matrix Hp is constructed by

Hp = V H
p (J − θI)−1Vp. (3.26)

Subsequently a few largest eigenvalues λ̂j of the low-dimension Hessenberg matrix

can be used to approximate the true eigenvalues λj of J close to θ by

λj ≈ θ + λ̂−1
j . (3.27)

With an error control all λ’s close to θ can be accurately computed. To compute all

possible purely imaginary eigenvalues of J , θ should be shifted along the imaginary

axis on the upper half plane. In [78], a bisection scheme is adopted in the interval

(0, θmax) to fix the shifted parameters, such that all imaginary eigenvalues close to

θ’s are accurately found (cf. [78] for the details about error control and bisection

scheme). Here θmax is an estimated largest-magnitude imaginary eigenvalue, which

can be easily approximated by sparse power iteration. In this section, we focus on

how to extend this approach to the matrix pencil (J ,K). Note that Ã is assumed to

be diagonal in [78], which is waived here.

Assume λ ∈ eig(J ,K), the nonsingularity of K implies eig(J ,K) = eig(K−1J ).
To apply the above fast eigenvalue solver, the main bottleneck lies in computing

(K−1J −θI)−1vi. First, (K−1J −θI) and its inverse are not sparse, which renders the

matrix-vector production inefficient. Second, the matrix inversions involved are pro-

hibitively expensive, time-consuming and unstable for large-scale systems. Therefore,
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fast, sparse and stable matrix operations are needed. SinceK−1J−θI = K−1(J−θK),
the matrix-vector production in each iteration can be expressed as

(K−1J − θI)−1vi = (J − θK)−1Kvi. (3.28)

By the matrix inverse lemma [40], we have

(J − θK)−1Kvi

=




 Mθ

−MH
θ


−


 B̃

−C̃T


 (D̃ + D̃T )−1

[
C̃ B̃T

]



−1

wi

=


 M−1

θ

−M−H
θ


wi +


 M−1

θ B̃

M−H
θ C̃T


×

(
D̃ + D̃T − C̃M−1

θ B̃ − B̃TM−H
θ C̃T

)−1 [
C̃M−1

θ −B̃TM−H
θ

]
wi

(3.29)

where Mθ = Ã − θẼ, wi = Kvi. We first denote wi1 = w(1:n) and wi2 = w(n+1:2n).

Making use of the sparsity of Mθ, (3.29) can be implemented as follows:

1. Perform a sparse LU decomposition on the n× n matrix

Mθ = LθUθ, (3.30)

then the sparse LU of MH
θ is readily obtained as MH

θ = UH
θ LH

θ .

2. Compute the following vectors (or vector-like narrow matrices)

x1 = U−1
θ L−1

θ wi1, (3.31a)

x2 = −L−H
θ U−H

θ wi2, (3.31b)

x3 = U−1
θ L−1

θ B̃, (3.31c)

x4 = L−H
θ U−H

θ C̃T , (3.31d)
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by forward/backward iteration. Since Lθ and Uθ obtained by sparse LU are

normally sparse, the above linear system solution can be as cheap as O(n).

3. Finally, the inverse iteration can be computed by

(K−1J − θI)−1vi =


 x1

x2


+


 x3

x4




×
(
D̃ + D̃T − C̃x3 − B̃Tx4

)−1 (
C̃x1 + B̃Tx2

)
.

(3.32)

Due to the low dimension, the matrix inversion in this step is trivial.

In the above procedures, the total computation and storage are low since only one

n × n sparse LU factorization is needed, and only sparse upper/lower triangular

matrices and vectors are stored.

To this end, the multi-shift Arnoldi algorithm can be used to compute all gener-

alized eigenvalues of (J ,K) close to (or located on) the imaginary axis. The error

control and bisection methods are the same as those of the original algorithm [78],

which is omitted here. It is clear that compared with standard Hamiltonian method,

the GHM-based method avoids large-scale matrix inversion and preserves system

sparsity.

3.5.3 Complexity Analysis

DS passivity test by the extended positive real lemma in [39] via solution of LMIs is

impractical for large systems due to its O(n6) complexity [46] where n is the dimension

of the state vector in (3.1). Also, direct transformation to the Weierstrass canonical

form (3.2) can be numerically unstable and expensive. For example, the GUPTRI

algorithm requires essentially ≥3×SVD, ≥2×QR and 1×QZ decompositions to pro-

duce a generalized Schur form, followed by solving an additional generalized Sylvester
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equation to reach the Weierstrass form, all costing expensive O(n3) work [80, 81].

Consequently, the more efficient SHH transformation technique is proposed [46] to

decouple the original DS into its proper and improper subsystems. A careful inspec-

tion reveals that the major SHH steps call for 3×SVD and 2×QR factorizations, plus

the optional solution of an algebraic Riccati equation (ARE) and a Lyapunov equa-

tion if the proper part is to be explicitly extracted. We are also aware of an O(n3)

DS decoupling procedure in [42, 47], which costs at least 3×URV (similar to SVD),

1×QR and one generalized Schur decomposition, and therefore has comparable com-

plexity to the SHH test (but the lack of implementation details in [42, 47] allow no

further conclusion about its actual speed). A similar procedure in [72], based on the

Van Dooren technique [82], also suffers from multiple SVDs, numerically sensitive

sub-matrix annihilations and the costly solution of an ARE. Finally, the recent DS

decoupling approach, though not exactly related to passivity test, utilizes the iterative

disk function method [83]. But again it requires 10 ∼ 20 iterations of QR factoriza-

tions (on 2n × n matrices) for convergence, followed by special subspace extraction

procedures. Another demanding requirement in all the above mentioned procedures,

where SVD/QR of dense matrices are necessary, is the O(n2) memory requirement.

After DS decoupling, either by the disk function, Weierstrass-form or SHH de-

coupling, the improper subsystem (specifically the residual M1) is then checked for

positive semidefinite which is fast and trivial. On the other hand, the proper-part

passivity can be checked with standard regular-system passivity tests such as the

Hamiltonian matrix eigenvalue test of O ((2n)3) work [11], or the faster but less reli-

able frequency sweeping test of O(m3) to O(n3) work [9] depending on the availability

of closed-form rational transfer function (e.g., a possible case where analytical trans-

fer matrix exists is when the state-space matrices are obtained from vector fitting as

in [9], but this is not always the case if the initial model is not built from rational fit-

ting). In this chapter, we directly perform GHM passivity test on the DS-form proper
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subsystem, which is implemented by the fast multi-shift Arnoldi iteration based al-

gorithm. Assume t shift parameters in the interval (0, θmax) are used to compute all

eigenvalues close to the imaginary axis, then t sparse LUs are needed. For each shift,

several to tens of Krylov subspace iterations are needed to approximate the neigh-

borhood eigenvalues, which depends on how dense these eigenvalues are distributed.

In practice, only a small number of eigenvalues are distributed around the imaginary

axis, so usually t is in the tens. Since the expensive matrix inversion is avoided and

sparsity is preserved, this method is much more efficient than standard Hamiltonian

test on the standard state-space model converted from (3.15).

It is seen that all the above DS decomposition/decoupling approaches require at

least SVD or iterative QR operations which can of course be employed for the matrix

chain formation and projector construction in Section 3.3 (e.g., [20]). Nonetheless, a

key advantage of the projector-based DS passivity test is that the singularity test and

spectral projector formulation can all be accomplished with the much cheaper LU-

type decomposition, with ≈ O(2n3/3) work versus ≈ O(20n3) in SVD or ≈ O(2n3)

in QR for general dense matrices [40], as described in Section 3.5.1. If sparsity

and low-rank operations are further exploited, the projector can be realized with

O(n2) ∼ O(n3) work and O(n) storage, depending on the sparsity extent. In fact, for

index-2 problems, the main load in the projector construction involves only 5×sparse
LU factorizations (viz. 3 rank tests and 2 nullspace computations). Subsequently,

sparsity-aware LU factorization has much reduced memory storage requirement than

the SHH or transformations to the Weierstrass form, where dense SVD, QR or matrix

equation solves are generally unavoidable. Together with the fast GHM passivity test

in Section 3.5.2, the proposed DS passivity test features remarkable computational

savings and is applicable to large systems, as will be seen in the following numerical

examples.
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3.6 Numerical Examples

In this section, some practical DS benchmarks are tested for passivity to demonstrate

the effectiveness of the proposed projector framework. These examples are mostly

taken from [84] except the order-1232 and order-10082 ones which are RC networks.

The order-480 system is a patch antenna model from partial element equivalent circuit

(PEEC) modeling, while other higher order examples are MNA benchmarks. All

MNA benchmarks are passive, while the PEEC model is nonpassive. Nonpassive

PEEC models may be caused by poor meshing generation, inadequate numerical

integration, matrix sparsification or inappropriate geometrical discretization, which

is discussed in detail by J. Ekman, et al [85]. All codings are done in MATLAB and

executed on a 2.66GHz PC with 2GB memory.

3.6.1 Projector-Based Decomposition

We begin by timing the index tests based on checking the nullities of E1 and E2

[via (3.19)] of these benchmarks, which forms the initial step in the proposed DS

passivity test. Two approaches are contrasted, namely, the standard SVD and the

(sparse) LU singularity test discussed in Section 3.5.1. Expectedly, Table 3.1 shows

that the LU way is much more efficient than the SVD approach even though in some

cases the sparsity of E2 may not be significant due to the “fill-ins” by matrix chain

formation.

Table 3.1: Total CPU times in DS index check
system system number of nonzero elements in time (sec)
order index A0 E0 E1 E2 SVD LU

480 2 1346 (0.584%) 18290 (7.94%) 19001 (8.25%) 71521 (31.04%) 2.411 0.8125
578 2 1694 (0.507%) 25432 (7.61%) 26601 (7.96%) 224130 (67.09%) 4.506 2.8231
980 2 2872 (0.299%) 83568 (8.70%) 85339 (8.89%) 666669 (69.42%) 20.359 12.80
1232 2 3634 (0.239%) 3608 (0.238%) 3610 (0.238%) 5504 (0.363%) 29.250 0.0469
10082 2 30184 (0.030%) 29568 (0.029%) 29570 (0.029%) 31464 (0.031%) fail 0.0938
10913 2 54159 (0.045%) 35904 (0.030%) 36087 (0.030%) 5385968 (4.522%) fail 93.28
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Table 3.2: CPU times excluding proper-part passivity check

system CPU time (sec)
order proposed SHH Weierstrass

480 1.73 9.53 10.92
578 3.26 15.90 18.50
980 14.84 75.83 95.41
1232 0.0625 132.2 801
10082 0.1563 fail fail
10913 159.68 fail fail

Next, the proposed DS passivity test is compared to the SHH [46] and the Weier-

strass tests in terms of proper and improper part decoupling, where in the Weierstrass

approach the public routine GUPTRI [80] and the SLICOT [86] generalized Sylvester

equation solver slgesg (both calling compiled Fortran routines) are employed. The

extended LMI test in [39] has been shown by [46] to be computationally impractical

and is therefore not included here.

Table 3.2 again demonstrates the superiority of the projector approach, owing to

the techniques presented in Section 3.5.1 and the reasonings in Section 3.5.3. It is

noted that the much longer time in the Weierstrass column in the order-1232 case is

due to the generation of complex entries by GUPTRI which has also been observed

in [46]. In the same example, the speed gain from the projector approach is especially

impressive (namely, four orders faster) due to the strong sparsity of the RC network.

This further highlights the efficiency of the projector approach and in particular its

suitability for electrical networks commonly used in VLSI interconnect/package mod-

eling. To confirm the accuracy of the spectral projector decoupling, we decompose the

10913×10913 example which is a 9-input-9-output system. The proper and improper

parts are extracted by additive decomposition (cf. Section 3.4). Fig. 3.2 shows the

port-2 to port-2 decoupled responses, wherein the error is in the order of 10−10 (and

similarly for other port-to-port responses).
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Figure 3.2: (a) Bode plots of the original, proper- and improper-subsystem responses.
(b) Error between the original system and the sum of decomposed subsystems.

3.6.2 Proper Part Testing

After the decoupling, the proper part can be tested by SHH, Weierstrass and the

proposed fast GHM method.

We continue to show the applicability of the projector-based DS passivity test at

higher system orders than those considered in [20,46], where the highest order is 800

and the SHH and Weierstrass tests consume about 350 ∼ 600s on a standard PC.

The multi-shift Arnoldi iteration based GHM test in Section 3.5.2 is adopted.

We begin with the order-480 PEEC example which is a single-input-single-output

DS. The projector-based decomposition shows that it is impulse-free. Its proper-part

is then tested by the proposed fast GHM test. Fig. 3.3 shows that some eigenvalues

of (J ,K) locate on the imaginary axis, implying that this DS is nonpassive.

The next example is the order-980 case originating from a 4-input-4-output RLC

network, which does not contain an improper part either. The proper-part admittance

transfer function is also checked by the proposed fast GHM test. Fig. 3.4 shows the

corresponding passivity test matrix pencil does not contain any purely imaginary
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Figure 3.3: Eigenspectrum of the generalized Hamiltonian matrix pencil (J ,K) for
the PEEC model. Only the results close to the imaginary axis are plotted.
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Figure 3.4: Eigenspectrum of the generalized Hamiltonian matrix pencil (J ,K) for
the order-980 RLC model. Only the results close to the imaginary axis are plotted.
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Figure 3.5: Passivity test results for the order-10913 DS model. (a) Eigenspectrum
of the generalized Hamiltonian matrix pencil (J ,K). Only the results close to the
imaginary axis are plotted. (b) Zoom-in of the eigenvalues with small real parts
(circled in the left plot).

generalized eigenvalues. This confirms the model is passive which is expected due to

the RLC nature of the example. The third example is the 9-input-9-output order-

10913 MNA example. The improper part contains only sM1 where M1 is a diagonal

9×9 positive definite matrix. As for its proper part, Fig. 3.5 plots the GHM test

results which confirm its passivity, whereas the SHH, Weierstrass transformations

and full-size GHM test simply fail at such high orders. In Chapter 2, the superiority

of GHM over SHH and Weierstrass tests has been illustrated. We further show the

speedup of the proposed fast GHM over the full-size GHM in Table 3.3. The CPU

timing shows the speedup of the proposed Arnoldi iteration based GHM (fast GHM)

is faster than full-size GHM, and the speedup is more significant as problem size

grows. Due to the expensive storage requirement, full-size GHM is not applicable

to large sparse systems, but the proposed fast GHM algorithm can still be used to

characterize passivity.
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Table 3.3: CPU times of full-size GHM and fast GHM tests on the proper subsystem.

system order full-size GHM fast GHM speedup

480 21.3s 7.3s 2.9
980 83.7s 15.2s 5.6
10913 fail 11hrs 37min N/A

3.7 Discussions

1. Compared to the Weierstrass-form or SHH-transformation DS passivity tests,

the proposed algorithm is conceptually simple and straightforward. As de-

scribed in Section 3.5.3, former DS passivity tests all involve expensive SVD

or QR operations for subsystem decoupling, while the projector approach only

calls for the much cheaper LU factorizations and much reduced memory re-

quirement when sparsity is exploited. To the knowledge of the authors, this

projector-based passivity test flow for DSs is by far the fastest one reported in

the literature.

2. Along the same line, the speed of the proposed projector construction (either

explicitly or implicitly as in [56]) is dependent on the sparsity degree and pat-

tern. In many real-world problems, E0 and E1 are highly sparse and therefore

the LUQ decomposition [79] is fast. If E2 is also sparse enough, the speedup

can be drastic as observed in the order-1232 & 10082 examples in Table 3.1.

Moreover, the nullities of practical E0 or E1 are usually low which lead to ef-

ficient low-rank formulation of canonical projectors and therefore the spectral

projector [cf. (3.21) and (3.22)]. This also reinforces the advantageous use of

projector techniques in analyzing real-world DSs.

3. Existing DS passivity tests [16, 39, 42, 46, 47] all assume a a minimal (i.e., com-

pletely controllable and observable) initial DS, otherwise a pre-processing is

done to remove the uncontrollable/unobservable states for minimal realization
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(e.g., by the O(n3) algorithm in [3] or [46] which essentially reduces a DS into its

Kalman canonical form using orthogonal transformations). However, such pre-

processing is expensive and destroys sparsity of the system. In fact, Theorem 3.3

holds under the only assumption of regularity, and what we really require in the

DS is the infinite minimality equivalent to rank
[
E B

]
= rank[ ET CT ] =

n [39] which determines the highest power of s in (3.5). Such infinite mini-

mality can be obtained by running the reduction algorithms in [3, 46, 72] only

partially and is therefore much cheaper to achieve than full minimality. Conse-

quently, the minimality assumption in the proposed test is the least restrictive

one among existing tests.

4. By virtue of the explicit formulation of regular state spaces for the proper and

improper subsystems in Section 3.4, further processing can be readily exer-

cised. In particular, standard state-space MOR and/or passivity enforcement

procedures, e.g., [9, 11,26], are all reusable on the extracted proper part Gp(s).

Perturbation of the improper part G∞(s) into a positive semidefinite first-order

residue matrix M1, due to its small size (viz. m×m), is also trivial.

5. In Chapter 2, GHM is directly performed on DS models for passivity check.

However, it terminates if the improper part is nonpassive, and then the pas-

sivity of the proper subsystem cannot be verified. With the spectral projector

technique, the proper part can still be checked regardless of the passivity of the

improper part.

3.8 Summary

This chapter has presented a canonical projector-based passivity test for DS mod-

els commonly found in circuit modeling. Compared to the existing LMI and SHH
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transformation approaches for testing DS passivity, the proposed test is theoreti-

cally straightforward and exhibits simple codings and superior computational speed.

The index of a DS comes at an early stage which immediately reveals the possible

passivity of a DS. Fast sparse LU-based construction of the spectral projector then

permits efficient decomposition of the DS into its proper and improper subsystems,

whose individual passivity can be efficiently evaluated with existing passivity check

techniques. State spaces for these subsystems have also been explicitly formulated

for utilization in subsequent MOR and/or passivity enforcement. A sparse LU fac-

torization approach to projector construction, together with a fast GHM algorithm

based on multi-shift Arnoldi iteration, have made possible the efficient passivity test

of high-order DSs unamendable before.

3.9 Appendices

3.9.1 Matrix Chain with Canonical Projectors

We begin by making the projector in (3.12b) canonical. This is done by replacing Q1

with

Q′
1 := Q1E

−1
2 A1. (3.33)

To see that Q′
1 is a valid projector onto kerE1, we note that Q′

1Q1 = Q1E
−1
2 A1Q1 =

Q1E
−1
2 E2Q1 = Q1 and Q1Q

′
1 = Q′

1, which implies Q′
1(= Q′2

1 ) is a projector onto the

same range as Q1. To show Q′
1 and Q0 are admissible, we have Q′

1Q0 = Q1E
−1
2 A1Q0 =
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Q1E
−1
2 A0P0Q0 = 0. Using Q′

1 in place of Q1, (3.12) is updated to

E1 := E0 + A0Q0 and A1 := A0P0, (3.34a)

E ′
2 := E1 + A1Q

′
1. (3.34b)

Note that again E ′
2 is guaranteed to be nonsingular. Now to verify the canonicity of

Q′
1 in (3.34b), we make use of the property in (3.11) to get E ′

2 = E2(I + Q′
1P1) and

have

Q′
1E

′−1
2 A1 = Q′

1(I −Q′
1P1)E

−1
2 A1

= Q′
1Q1E

−1
2 A1 = Q1E

−1
2 A1 = Q′

1, (3.35)

thus completing the proof. Next, we set

Q′
0 := Q0P

′
1E

′−1
2 A0. (3.36)

Noting A0Q0 = E ′
2Q0, it follows that Q′2

0 = Q′
0 is a projector onto kerE0. Recom-

pute (3.34a) with this new projector to give

E ′
1 := E0 + A0Q

′
0 and A′

1 := A0P
′
0. (3.37)

Again, from (3.11), E ′
1 = E1(I + Q′

0P0) and it turns out Q′
1 is also a projector onto

kerE ′
1, namely,

E ′
1Q

′
1 = E1(I +Q′

0P0)Q
′
1 = E1(I +Q0P

′
1E

′−1
2 A0P0)Q

′
1

= E1Q
′
1 + E1Q0P

′
1E

′−1
2 A1Q

′
1 = 0,
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since A1Q
′
1 = E ′

2Q
′
1. With Q′

0, (3.34) is further updated as

E ′
1 := E0 + A0Q

′
0 and A′

1 := A0P
′
0, (3.38a)

E ′′
2 := E ′

1 + A′
1Q

′
1. (3.38b)

Because Q′
1Q0 = 0, so is Q′

1Q
′
0 = 0 (i.e., admissible) and

Q′
0Q

′
1 = Q0P

′
1E

′−1
2 A0Q

′
1 = Q0P

′
1E

′−1
2 A0(Q0 + P0)Q

′
1

= Q0P
′
1E

′−1
2 E ′

2Q0Q
′
1 +Q0P

′
1E

′−1
2 A1Q

′
1

= Q0Q
′
1 +Q0P

′
1E

′−1
2 E ′

2Q
′
1 = Q0Q

′
1. (3.39)

This also implies P ′
0Q

′
1 = P0Q

′
1 and A′

1Q
′
1 = A1Q

′
1, from which a link can be found

between E ′′
2 and E ′

2 as

E ′′
2 = E1(I +Q′

0P0) + A1Q
′
1

= E ′
2P

′
1(I +Q′

0P0) + E ′
2Q

′
1 = E ′

2(I +Q′
0P0). (3.40)

Still, we need to show both Q′
0 and Q′

1 in (3.38) are indeed canonical. Utilizing

properties (3.39), (3.40) and noting that A1 = A0P0 = A0P0P
′
0 = A′

1 − E ′
2Q0P

′
0, we

get

Q′
0P

′
1E

′′−1
2 A0 = Q′

0(I −Q′
1)(I −Q′

0P0)E
′−1
2 A0

= (Q′
0 −Q′

0Q
′
1 −Q′

0P0)E
′−1
2 A0

= (Q′
0Q0 −Q′

0Q
′
1)E

′−1
2 A0 [cf. (3.39)]

= Q0P
′
1E

′−1
2 A0 = Q′

0 [cf. (3.36)]
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Q′
1E

′′−1
2 A′

1 = Q′
1(I −Q′

0P0)E
′−1
2 A′

1

= Q′
1E

′−1
2 (A1 + E ′

2Q0P
′
0)

= Q′
1E

′−1
2 A1 = Q′

1 [cf. (3.35)].

Of course, in practice, only the canonical projectors Q′
0 and Q′

1 are required for

computing the spectral projectors, and the matrix chain updates from (3.12) to (3.34)

and then to (3.38) never need to be computed explicitly.

3.9.2 Spectral Projectors from Canonical Projectors

We give a constructive proof for Pr = P ′
0P

′
1 for the case µ = 2. This complements,

and is also in contrast to, the indirect argument towards spectral projector presented

in [19]. Taking the Weierstrass viewpoint for E0 and A0 (wherein N2 = 0) and

assuming canonical Q′
0 and Q′

1, we can easily show

Q′
0 = T−1


0 0

0 Q̂′
0


T and Q′

1 = T−1


0 0

0 Q̂′
1


T, (3.41)

where Q̂′
0, Q̂

′
1 ∈ R

(n−q)×(n−q) project onto kerN and ker(N + Q̂′
0), respectively. More-

over,

N2 := N + Q̂′
0 + P̂ ′

0Q̂
′
1 = N + I − P̂ ′

0P̂
′
1 (3.42)

is nonsingular due to Theorem 3.3. By canonicity,

Q̂′
0 = Q̂′

0P̂
′
1N

−1
2 , Q̂′

1 = Q̂′
1N

−1
2 and Q̂′

1Q̂
′
0 = 0. (3.43)



73

Next, we prove P̂ ′
0P̂

′
1 = 0. First,

NN2 = N2 +NQ̂′
0 +NP̂ ′

0Q̂
′
1 = NQ̂′

1. (3.44)

Post-multiplying N−1
2 to (3.44) and using (3.43) we have N = NQ̂′

1 or equivalently

NP̂ ′
1 = 0. Next, recognizing P̂ ′

0P̂
′
1 is a projector by itself, i.e., (P̂ ′

0P̂
′
1)

2 = P̂ ′
0P̂

′
1, and

post-multiplying it to (3.42), we obtain

N2P̂
′
0P̂

′
1 = NP̂ ′

0P̂
′
1 = NP̂ ′

1 = 0. (3.45)

Nonsingularity of N2 then implies P̂ ′
0P̂

′
1 = 0. Consequently, the right (spectral)

projector Pr in (3.3) is given by

Pr = P ′
0P

′
1 = T−1


Iq 0

0 P̂ ′
0P̂

′
1


T = T−1


Iq 0

0 0


T. (3.46)

To obtain the left projector, canonical projectors are constructed from the matrix

chain starting instead with E0 := ET and A0 := AT . It is then easily verified that

Pl = (P ′
0P

′
1)

T = W


Iq 0

0 0


W−1. (3.47)

3.9.3 Outline of the LUQ Factorization

Given a sparse n× n matrix Z, the LUQ routine gives

Z = LZ


UZ 0

0 0


QZ , (3.48)
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with LZ , UZ , QZ being nonsingular and UZ being upper triangular. In the first step

of LUQ, Z is factorized by sparse LU with permutation

Z = PL


U1 U2

0 U3


Q. (3.49)

Here P and Q are permutation matrices, L is lower triangular, U1 is an upper tri-

angular matrix with nonzero diagonal elements, U3 ∈ R
s×s is a very sparse upper

triangular matrix with zero diagonals, and U2 is a nonzero matrix. The zero/nonzero

diagonal elements can be distinguished by setting a small numerical threshold as

adopted in economic SVD in Matlab. Denoting L :=
[
L1 L2

]
and Q :=


Q1

Q2


,

(3.49) can be rewritten as

Z = P
[
L1 L2

]

U1 0

0 U3




Q1 + U−1

1 U2Q2

Q2


 . (3.50)

If U3 (which is normally of low dimension if Z has a low nullity) has nonzero elements,

we can recursively perform LUQ on this block such that

U3 = LU3


UU3 0

0 0


QU3

, (3.51)

with UU3 being a nonsingular upper triangular matrix. Then LZ , UZ and QZ in (3.48)

can be decided by

LZ =
[
PL1 PL2LU3

]
, (3.52a)

UZ =


U1 0

0 UU3


 , (3.52b)
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QZ =


Q1 + U−1

1 U2Q2

QU3Q2


 . (3.52c)

The cost of LUQ mainly comes from the sparse LU of Z, since U3 is highly sparse and

of low dimension. From (3.52) it is clear that LZ is a product of a permutation matrix

and a sparse lower triangular matrix. Nevertheless, QZ might be full and inaccurate

since U−1
1 is involved. That is why we perform LUQ on ET

j (see (3.19)) to construct

the null space of Ej.



Chapter 4

S-Parameter Generalized

Hamiltonian Methods (S-GHMs)

This chapter extends the generalized Hamiltonian method (GHM) and its half-size

variant (HGHM) to their S-parameter counterparts (called S-GHM and S-HGHM,

respectively), for testing the passivity of S-parameter descriptor-form models widely

used in high-speed circuit and electromagnetic (EM) simulations. The proposed meth-

ods are capable of accurately detecting the possible nonpassive regions of descriptor-

form models with either scattering or hybrid (impedance or admittance) transfer

matrices. Their effectiveness and accuracy are verified with several practical exam-

ples. The S-GHM and S-HGHM methods presented here provide a foundation for the

passivity enforcement of S-parameter descriptor systems (DSs).

4.1 Introduction

The transfer matrix of a LTI system may represent the admittance, impedance or

scattering parameters in the frequency domain. The admittance/impedance case has

been discussed in Chapters 2 & 3. In high-frequency applications where the electrical

76
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variables behave like waves, scattering parameters are more commonly used, due to

their relative ease of measurement. Besides its wide application in EM simulation,

measured or simulated scattering parameters may also be used to build compact

macromodels by data fitting techniques, such as vector fitting [48] that constructs

standard state-space macromodels. Recently, the Loewner matrix interpolation tech-

nique [49, 50] has been advocated to fit measured/simulated data of electronic cir-

cuits/systems to produce the corresponding DS. Such framework is superior to the

traditional vector fitting approach in the sense that no manual pole initialization

is needed and that the optimal model order can be automatically extracted. For

these S-parameter models, passivity is crucial for stable simulation, thus passivity

verification and enforcement are needed to preserve model validity [8–12].

For DS models, several algebraic passivity tests have been proposed for hybrid

(admittance or impedance) cases [39, 42–44, 46, 47]. However, their expensive com-

putation [39] and requirements of minimal or admissible [42–44, 46, 47] realizations

render them impractical for general DS models. Moreover, due to their inability to

locate DS nonpassive regions, they are not good choices for passivity enforcement

flows. To address this problem, the frequency sweeping technique has been extended

to DS cases [20, 41]. However, due to the sampling nature of frequency sweeping, no

guarantee can be made for the complete identification of all nonpassive regions. In

Chapters 2 & 3, the proposed GHM/HGHM test delivers as high a numerical accu-

racy (of locating all nonpassive frequency intervals) for DSs as that of Hamiltonian

methods [10–14] for regular state spaces.

In the context of S-parameter DSs, passivity verification is still not well addressed.

Although the extended bounded-real lemma [45] and GARE-based method [77] have

been proposed for passivity check, no reliable technique exists for the nonpassive re-

gion identification. Due to the lack of reliable S-parameter DS passivity verification

algorithms, passivity enforcement can not be performed for nonpassive models at
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present. Motivated by this demand, this chapter extends the GHM and HGHM theo-

ries to their S-parameter counterparts called the S-GHM and S-HGHM, respectively,

to verify the passivity of the S-parameter models in circuit or EM simulation.

4.2 Review of Passivity Check for S-Parameter Mod-

els

We consider the continuous linear time-invariant (LTI) S-parameter DS model [de-

noted by Σ : (E,A,B,C,D)], with the state-space equations

Eẋ = Ax+Bu, y = Cx+Du. (4.1)

Here E,A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n, D ∈ R

m×m, and x ∈ R
n represents the state

variables. In this DS, rank(E) ≤ n and the matrix pencil (A,E) is assumed to be

regular, i.e., det(A− sE) 6= 0 for some s ∈ C. If E is full-rank (or invertible), the DS

reduces to a regular system which can be converted to a standard state-space equation

by absorbing E−1 into A and B. To distinguish from the admittance/impedance cases,

we use S(s) to denote the S-parameter transfer matrix

S(s) = C(sE − A)−1B +D. (4.2)

Recalling from Chapter 1.3.1, the (strict) passivity of the S-parameter DS (4.1) is

equivalent to the (strict) bounded realness of S(s) (s = δ + jω, where δ, ω ∈ R), i.e.,

1. S(s) is analytic on the open right half plane Re(s) > 0);

2. I − S∗(jω)S(jω) ≥ 0 (> for strict bounded realness) for all ω.
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The second condition implies σ1 (S(jω)) ≤ 1 (or < 1 for strict bounded realness),

which can be checked by sampling some points (frequencies) along the imaginary axis

s = jω [8, 9, 41]. However, erroneous results may be obtained if nonpassive regions

between sampling points are missed. For standard state-space models (A,B,C,D)

[with E = I in (4.1)], the more reliable Hamiltonian method is preferred. The corre-

sponding 2n× 2n Hamiltonian matrix for S-parameter standard state-space model is

defined as

M =


A−BDT Ŝ−1C −BR̂−1BT

CT Ŝ−1C CTDR̂−1BT − AT


 (4.3)

where Ŝ = (DDT − I) and R̂ = (DTD − I). Since any purely imaginary scalar

jω ∈ λ(M) pinpoints a crossover point ω (in rad/sec) of passivity violations, the

(possible) nonpassive regions can be accurately located by the imaginary eigenvalue

calculation of M. To speed up calculation, [13] has further developed a half-size

singularity matrix for symmetric standard state-space models:

P =
(
A−B(D − I)−1C

) (
B(D + I)−1C − A

)
. (4.4)

It has been proved that ω is a crossover point of passivity violation if and only if β̂

is an eigenvalue of P , where β̂(∈ R) = ω2 > 0. Since P ∈ R
n×n and the eigenvalue

computation has O(n3) complexity, the half-size singularity test is about 8× faster

than the full-size Hamiltonian method. Both of them are reliable but only applicable

to standard state-space models. Besides that, another limitation of Hamiltonian-

based passivity test is that (4.3) [or (4.4)] requires I−DTD (or I−D2 for symmetric

cases) to be nonsingular, which is not guaranteed in all cases.
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4.3 S-GHM and S-HGHM

In this section we present the S-parameter GHM theories, which characterize the norm

of S(jω) and thus could be utilized for reliable passivity assessment of S-parameter

DSs. For symmetric DSs, a half-size matrix pencil can be derived to characterize the

bounded realness of an S-parameter model.

4.3.1 S-Parameter GHM (S-GHM) Theory

Theorem 4.1: Given the DS (4.1), assume that jω is not a system pole [i.e.,

jω /∈ λ(A,E)] and γ is not a singular value of D [i.e., γ /∈ σ(D)], then γ is a

singular value of S(jω) if and only if jω is a generalized eigenvalue of the matrix

pencil (M,N). The size-2n matrix pencil is defined as

M =


A−BDTS−1C −γBR−1BT

γCTS−1C −AT + CTDR−1BT


 , N =


E

ET


 (4.5)

where S = DDT − γ2I and R = DTD − γ2I. It is trivial to prove that M is a

Hamiltonian matrix.

Proof: Since the system matrices are real, we have S∗(jω) = BT (−jωET −
AT )−1CT + DT . Assuming γ ∈ σ(S(jω)) and γ /∈ σ(D), singular value decompo-

sition (SVD) implies that there exist non-zero vectors v and u such that S(jω)u = γv

and S∗(jω)v = γu, i.e.,

[
C(jωE − A)−1B +D

]
u = γv,

[
BT (jωET + AT )−1(−CT ) +DT

]
v = γu.
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The above relationship can be reformulated as the compact matrix form


C

BT


Ω−1

ω


B

−CT




u
v




︸ ︷︷ ︸
z

=


−D γI

γI −DT




u
v


 . (4.6)

Here


 jωE −A

jωET +AT


 has been denoted by Ωω. Because γ is not a singular

value of D, it is straightforward to prove that


−D γI

γI −DT


 is a nonsingular matrix,

thus no non-zero vectors are contained in its null space. Since neither u nor v is zero,

the right-hand side of (4.6) is non-zero, which further implies z is a non-zero vector

[since it is a factor of the left-hand side of (4.6)]. Pre-multiplying both sides of (4.6)

by


B

−CT




−D γI

γI −DT



−1

would lead to


B

−CT




−D γI

γI −DT



−1 
C

BT


 z = Ωωz. (4.7)

Because

M − jωN =


B

−CT




−D γI

γI −DT



−1 
C

BT


− Ωω

(4.7) can be rewritten as

Mz = jωNz. (4.8)

Therefore, jω is a purely imaginary generalized eigenvalue of the matrix pencil (M,N).

To prove the converse, we define

z′ =


 −D γI

γI −DT



−1 
 C

BT


 z =


 u′

v′


 (4.9)
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which is a factor for the left-hand side of (4.7). Here u′, v′ ∈ C
n. Because Ωω is

nonsingular and z 6= 0, the right-hand side of (4.7) and thus z′ should be non-zero

vectors. Pre-multiplying (4.7) by


C

BT


Ω−1

ω would lead to


C

BT


Ω−1

ω


B

−CT


 z′ =


−D γI

γI −DT


 z′. (4.10)

From (4.10), one can easily get S(jω)u′ = γv′ and S∗(jω)v′ = γu′. Because neither

u′ nor v′ is zero (otherwise z′ should be a zero vector), γ is a singular value of S(jω).

�

4.3.2 S-Parameter HGHM (S-HGHM) for Symmetric DSs

Theorem 4.2: Assume the S-parameter DS (4.1) is symmetric [i.e., ST (jω) =

S(jω)], jω is not a generalized eigenvalue of (A,E) and γ is not a singular value of

D, then γ is a singular value of S(jω) if and only if β = ω2 > 0 is a generalized

eigenvalue of the half-size matrix pencil

(Mh, Nh) =
(
X + Y,E(Y −X)−1E

)
(4.11)

with X and Y defined as

X = A− BDS−1C, Y = −γBR−1C. (4.12)

Proof: If the S-parameter transfer matrix of DS (4.1) is symmetric, we have

S∗(jω) = S(−jω) = C(jωE + A)−1(−B) +D. (4.13)
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Consequently, ET , AT , BT , CT and DT in (4.5) can be replaced by E,A,C,B and

D, respectively. The following congruence transform on (M,N) gives a new matrix

pencil

(M ′, N ′) =


 I I

I −I


 (M,N)


 I I

I −I




=




 2X − 2Y

2X + 2Y


 ,


 2E

2E




 .

(4.14)

An important property of the above nonsingular congruence transform is that: jω

is a generalized eigenvalue of (M ′, N ′) if and only if it is a generalized eigenvalue of

(M,N). As we have proved the equivalence of jω ∈ λ(M,N) with γ ∈ σ (S(jω)) in

Section 4.3.1, jω should also be a generalized eigenvalue of(M ′, N ′) if γ ∈ σ(S(jω)).

In this case, det(M ′ − jωN ′) = 0, and there exist a pair of vectors w1 and w2, such

that 
 −jωE X − Y

X + Y −jωE




 w1

w2


 = 0,


 w1

w2


 6= 0. (4.15)

Assuming X−Y being invertible, we get w2 = jω(X−Y )−1Ew1 from the upper part

of (4.15). Here w1 is nonzero (otherwise w2 is also zero). By virtue of this, (4.15)

reduces to

[
Mh − ω2Nh

]
w1 = 0. (4.16)

Therefore, β = ω2 ∈ λ(Mh, Nh) if γ ∈ S(jω). Analogous to S-GHM, the converse can

also be proved. Setting ω2 = jω(X − Y )−1Eω1 we can reach (4.15) from (4.16). And

then using λ(M,N) = λ(M ′, N ′) we can return to Theorem 4.1.

�

Note that S-HGHM only requires the DS transfer matrix S(jω) to be symmetric,

and it does not pose any restrictions on the symmetry of the system matrices.
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Figure 4.1: Illustrative examples for different kinds of DSs. (a) A globally strictly
passive DS. This DS has no crossover points and its transfer matrix is always unit-
bounded. (b) A consistently nonpassive DS. This DS does not have any crossover
points, but it is nonpassive at any frequency point. (c) A DS with locally passive and
nonpassive regions. This DS is nonpassive in intervals l2 = (ω1, ω2), l4 = (ω3, ω4) and
l6 = (ω5, ω6).

4.4 Passivity Test of DSs

4.4.1 Passivity Test of S-Parameter DSs

In passivity test, we are interested in the special case of γ = 1, which represents the

boundary of passivity violations of an S-parameter DS. By setting γ = 1, from S-

GHM [in (4.5)] we get a passivity test matrix pencil (M,N) = (M0, N0) for scattering

DSs with

M0 =M, N0 = N. (4.17)

Here M is the Hamiltonian matrix defined in (4.3). Analogously, for symmetric

cases, from S-HGHM [in (4.11)] one can get a half-size passivity test matrix pencil

(Mh0, Nh0) defined as

Mh0 = A−B(D − I)−1C, Nh0 = E[(B(D + I)−1C − A]−1E. (4.18)

If the matrix pencil (M0, N0) (or (Mh0, Nh0) for symmetric DSs) has any purely imag-

inary (or positive real) generalized eigenvalue jω (or β = ω2), then ω is a crossover
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frequency point where passivity violation happens.

Note that the scattering DS of interest may still be nonpassive even though no

crossover points are computed via S-GHM or S-HGHM. To further identify the pos-

sible nonpassive regions, the following procedures could be used.

1. If no crossover points are found, check S(jω0) at an arbitrarily selected fre-

quency point ω0. If ||S(jω0)|| < 1, the DS is globally strictly passive [as illus-

trated in Fig. 4.1 (a)]. Otherwise, if ||S(jω0)|| > 1 the DS is nonpassive at any

frequency point [as shown in Fig. 4.1 (b)].

2. If S-GHM/S-HGHM test produces p crossover points ω1, ω2, ..., ωp which are

increasingly ordered, one can select p + 1 sampling points ω̃k (k = 1, 2, ..., p +

1) such that ω̃k ∈ `k where `1 =(0, ω1), `i =(ωi−1, ωi) for i = 2, ..., p and

`p+1 =(ωp,∞). If ||S(jω̃k)|| < 1, the DS is passive in the interval `k; otherwise,

it is nonpassive in `k. An illustrative example is given in Fig. 4.1 (c).

Note that if the DS (4.1) is a regular system (when E is invertible), it can be

converted to a standard state-space model with E = I. Subsequently, for a regular

system, the generalized eigenvalue solution in the test pencil (M0, N0) can be replaced

by the standard eigenvalue computation of M0 =M. This is in fact the S-parameter

Hamiltonian passivity verification (in (4.3) of Section II-A). For symmetric regular

systems, substituting E = I into the half-size test pencil in (4.18), the generalized

eigenvalue problem reduces to the standard eigenvalue computation of P [defined in

(4.4)]. Therefore, the S-parameter Hamiltonian method and the half-size singularity

test in (4.3) and (4.4) are the subsets (or special cases) of S-GHM and S-HGHM,

respectively.
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4.4.2 Passivity Test of Hybrid DSs

Given a square admittance or impedance transfer matrix H(s) with det(I+H(s)) 6= 0

for all Re(s) > 0, its Moebius-transformed function is defined as [77]

G(s) = (I −H(s))(I +H(s))−1. (4.19)

If I +D is invertible, a realization of G(s) = CS(sES − AS)
−1BS +DS is

ES = E, AS = A−B(I +D)−1C, BS = −
√
2B(I +D)−1,

CS =
√
2(I +D)−1C, DS = (I −D)(I +D)−1.

(4.20)

Conversely, H(s) is also a Moebius-transformed function of G(s). For Moebius trans-

formation, the following properties hold [77].

1. Let H(s) = C(sE − A)−1B + D be a positive real DS transfer matrix with

nonsingular I + D, then its Moebius-transformed function G(s) is bounded

real.

2. Given a bounded real DS transfer matrix G(s) = CS(sES − AS)
−1BS + DS

with I + DS being nonsingular and det(I + G(s)) 6= 0 for all Re(s) > 0, its

Moebius-transformed function H(s) is positive real.

Since D usually has a much lower dimension than E and A, the above transfor-

mation is very cheap. If we see G(s) as a scattering system, then H(s) is passive if

and only if G(s) is passive (i.e., bounded real). Therefore, we can test the passivity of

H(s) by checking the bounded realness of G(s) using S-GHM. Further, we note that

G(s) = 2(I +H(s))−1 − I (4.21)
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Table 4.1: Applicability of different passivity tests

System model S-GHM S-HGHM Hamiltonian Half-size
method singularity

singular system yes yes no no
regular system yes yes yes yes

asymmetric system yes no yes no
symmetric system yes yes yes yes

which implies that G(s) is symmetric if and only if H(s) is symmetric. Therefore,

S-HGHM can also be used for symmetric hybrid cases after Moebius transformation.

4.4.3 Comparison with Traditional Approaches

Table 4.1 compares the applicability of different passivity tests. There are some

distinctions among S-GHM/S-HGHM approach with traditional Hamiltonian method

and half-size singularity test.

1. S-GHM/S-HGHM can be applied to both singular and regular LTI models,

while S-parameter Hamiltonian method and half-size singularity test are only

applicable to regular systems.

2. S-HGHM and half-size singularity test are exclusive to symmetric models, but

their full-size counterparts can be used for general cases without symmetric

restrictions.

3. S-GHM and S-HGHM search for the passivity violation points via generalized

eigenvalue calculation, while traditional methods use standard eigenvalue com-

putation.

4. Due to the half-size nature, S-HGHM and half-size singularity test are 8× faster

than S-GHM and Hamiltonian test, respectively.
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5. As will be discussed in Section 4.4.4, S-GHM/S-HGHM can test the LTI models

with I −DTD being singular, whereas the traditional approaches fail to work.

4.4.4 Numerical Issues

1. The requirement of 1 /∈ σ(D) limits the applications of Hamiltonian method

and half-size singularity test. For S-GHM and S-HGHM this restriction can be

removed after a small modification called equivalent model conversion similar to

the method in Chapter 2.4.3. The basic idea is to construct a new DS S ′(jω) =

C ′(jωE ′ − A′)−1B′ + D′, such that S ′(jω) = S(jω) and 1 /∈ σ(D′). S ′(jω)

can be constructed in different ways. In this chapter, S ′(jω) is constructed, if

necessary, as

E ′ =


 E

0


 , A′ =


 A

I


 ,

B′ =


 B

I


 , C ′ =

[
C αI −D

]
, D′ = αI

(4.22)

with α ∈ R and |α| 6= 1. Subsequently, the passivity of S(jω) can be checked

by performing S-GHM/S-HGHM on S ′(jω).

2. With the equivalent model conversion in (4.22), the restriction of I +D being

nonsingular in Moebius transformation can also be removed.

3. In S-HGHM passivity test, A − B(D + I)−1C is assumed to be nonsingular,

which is equivalent to 1 /∈ λ(S(0)). A proof is given in Appendix 4.8.

4. The “purely” generalized eigenvalues of (M0, N0) may appear as conjugate

pairs λk = ak ± jbk (ak, bk ∈ R). Here ak is the numerical noise induced by

the finite machine precision, which is also observed in traditional Hamiltonian
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method [14]. A small numerical tolerance tol > 0 can be used to eliminate the

noise, and only those solutions with |ak| < tol are regarded as expected results.

The proposed passivity test is summarized in Algorithm 4.1.

4.5 Numerical Examples

This section presents some numerical examples to verify the validity and effectiveness

of S-GHM/S-HGHM for S-parameter and hybrid DSs. All examples are tested in

MATLAB R2006a on a 2.66 GHz 2G-RAM PC.

4.5.1 A Synthetic DS Model

To show the complete test flow, we consider the bounded realness of the following

order-4 single-input single-output (SISO) DS:

E =




1

1

0 1

0




, A =




−4
−120

1

1




, B =




1

1

0

10−5



,

C =
[
10 200 10−5 0

]
, D = −1.

(4.23)

The transfer function of this DS is

S(jω) =
10

jω + 4
+

200

jω + 120
− 1 + jω × 10−10. (4.24)

Solving the equation

|S(jω)| = 1 (4.25)
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Algorithm 4.1: Passivity test by S-GHM/S-HGHM.

Input: An LTI model Σ : (E,A,B,C,D), with E,A ∈ R
n×n, B,CT ∈ R

n×m and
D ∈ R

m×m.
Output: The passive regions Upassive and nonpassive regions Unonpassive.
begin

1. Initialization: set Upassive = Unonpassive = ∅
2. if Σ : (E,A,B,C,D) is a hybrid system then

perform Moebius transform (4.20) and update Σ.

3. Compute crossover points.
if 1 /∈ σ(D) and E is nonsingular then

if Σ is symmetric then

compute the crossover points by half-size singularity test (4.4);
Θ← {ω1, ..., ωp}, where the p crossover points ω1, ..., ωp are increasingly
ordered.

else

compute the crossover points by traditional Hamiltonian method (4.3);
Θ← {ω1, ..., ωp}.

else

if 1 ∈ σ(D) then
perform equivalent model conversion (4.22), update Σ.

if Σ is symmetric then

compute the crossover points by S-GHM (4.17);
Θ← {ω1, ..., ωp}.

else

compute the crossover points by S-HGHM (4.18);
Θ← {ω1, ..., ωp}.

4. Locate the passive/nonpassive regions
if Θ = ∅ then
compute S(jω0) (the transfer matrix of Σ) at ω0

if ||S(jω0)|| < 1 then

Upassive = [0,∞);
system is strictly passive, return.

else

Unonpassive = [0,∞);
system is consistently nonpassive, return.

else
`1 ← [0, ω1), `2 ← (ω1, ω2), ..., `p ← (ωp−1, ωp), `p+1 ← (ωp,∞).
for i = 1, ..., p+ 1 do

compute S(jω̇i), with ω̇ ∈ `i;
if ||S(jω̇i)|| < 1 then

Upassive = Upassive ∪ `i;
else

Unonpassive = Unonpassive ∪ `i.



91

we get two crossover frequency points: ω = 22.86 rad/sec and ω = 304491.7 rad/sec.

Then we use S-GHM/S-HGHM to compute the crossover points. Note that in this DS

D = −1, so we need to use equivalent model conversion in advance, which produces

an order-5 DS S ′(jω) with D′ = 0. Since the transfer function is symmetric, S-

HGHM can also be applied for passivity test. The computed results of S-GHM and

S-HGHM are listed in Table 4.2. The results of S-GHM and S-HGHM coincide with

the solutions to (4.25), which is illustrated in Fig. 4.2. Therefore, this scattering DS is

bounded real in the angular frequency band of (22.86, 304491.7), and it is nonpassive

in the bands of (0, 22.86) and (304491.7,∞).
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Figure 4.2: S-GHM and S-HGHM test results for the order-4 DS model.

Table 4.2: S-GHM/S-HGHM test results for the order-4 DS.

Imaginary results ofλ(M0, N0) (jω) Positive results of λ(Mh0, Nh0) (β)
√
β (rad/sec)

5.5e-7 ±j304491.7 92715196749 304491.7
2.05e-14 ±j22.86 522.6 22.86
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Figure 4.3: S-GHM and S-HGHM test results for the three-terminal filter.

4.5.2 A Symmetric S-Parameter Three-Terminal Filter

We use a three-terminal filter with symmetric port response to illustrate the appli-

cation of S-GHM/S-HGHM and the connection to their standard state-space coun-

terparts. The frequency-dependent scattering parameters are measured at 1601 sam-

pling points ranging from 50 MHz to 6 GHz. Since it is impulse-free, the input-output

response can be described by either a standard state space or a DS. To use the tradi-

tional Hamiltonian method and half-size singularity test, we first build an order-120

standard state-space model (A,B,C,D) by vector fitting [48] with 40 common poles.

Both the traditional Hamiltonian method [10] and the half-size singularity test [13]

show that this model has 9 crossover points. The imaginary eigenvalues of M and

the positive real eigenvalues of P are illustrated in the first and second columns of Ta-

ble 4.3, respectively. The obtained standard state-space model is then converted to a

DS model Hd(jω) described by (Ed, Ad, Bd, Cd, Dd), via the following transformation
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Table 4.3: Experimental results of various passivity tests for the three-terminal filter
model.

Hamiltonian method: Half-size singularity test: positive real S-GHM: imaginary S-HGHM: positive real results of
imaginary results of λ(M) results of λ(P)/crossover points results of λ(M0, N0) λ(Mh0, Nh0)/crossover points

6.9e-10 ±j112253 12600780132/112253 2.17e-7 ±j112253 12600780132/112253
2.6e-10 ±j42988.4 18479990052/42988.4 2.58e-8 ±j42988.4 18479990052/42988.4
1.3e-10 ±j38173.7 14572294488/38173.7 1.06e-5 ±j38173.7 14572294488/38173.7
2.2e-11 ±j34551.3 1193794989.3/34551.3 2.93e-8 ±j34551.3 1193794989.3/34551.3
4.0e-12 ±j3109.22 9667288.145/3109.22 2.80e-6 ±j3109.22 9667288.145/3109.22
2.1e-12 ±j1631.07 2660378.573/1631.07 6.02e-7 ±j1631.07 2660378.573/1631.07
3.0e-10 ±j15871.8 251914404.4/15871.8 1.85e-8 ±j15871.8 251914404.4/15871.8
8.7e-11 ±j9879.71 97608669.57/9879.71 5.17e-7 ±j9879.71 97608669.67/9879.71
8.5e-11 ±j9895.29 97916796.34/9895.29 5.20e-7 ±j9895.29 97916796.34/9895.29

Ed =


 I120

0


 , Ad =


 A

I3


 , Bd =


 B

I3


 ,

Cd =
[
C −D

]
, Dd = 0.

(4.26)

Then S-GHM and S-HGHM tests on Hd(jω) also give 9 crossover points shown

in the third and fourth columns of Table 4.3. Table 4.3 shows that the experimental

results of all the four methods pinpoint the same boundary frequency points, which

coincides with the singular value curves of the transfer matrix in Fig. 4.3.

4.5.3 A Symmetric Admittance PEEC Reduced Model

We use the PEEC example to show the validity of S-GHM and S-HGHM in the

passivity test of admittance or impedance DS models. This example is also used

in Chapter 2.5.2 to verify the validity of GHM/HGHM. The original SISO model is

an order-480 DS describing a patch antenna structure with admittance parameter as

its transfer function, which is obtained by partial element equivalent circuit (PEEC)

method [63]. This PEEC model is nonpassive, which may be induced by poor meshing

generation, inadequate numerical integration, matrix sparsification or inappropriate

geometrical discretization [85]. After model order reduction via PRIMA [22], an

order-53 reduced model is obtained, which is nonpassive in the low-frequency band.
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Table 4.4: S-GHM and S-HGHM test results for the admittance reduced model (on
the Moebius-transformed system).

λ(M0, N0) (jω) λ(Mh0, Nh0) (β)
√
β (rad/sec)

1.309e-11 ±j0.505080 0.255103 0.505080
1.307e-11 ±j0.505082 0.255110 0.505082
1.127e-13 ±j1.234402 1.523749 1.234402
3.650e-13 ±j2.465012 6.076287 2.465012
3.169e-13 ±j2.560446 6.555922 2.560446
7.587e-13 ±j4.074095 16.59825 4.074095

Since this model is a hybrid system, S-GHM and S-HGHM can not be directly
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Figure 4.4: S-GHM and S-HGHM test results on the Moebius-transformed transfer
function of the order-53 admittance reduced model.

used. The Moebius-transformed system is first constructed by (4.20), and then its

transfer function G(s) is tested by S-GHM and S-HGHM, respectively. The computed

crossover points are listed in Table 4.4. Fig. 4.4 shows the magnitude of the Moebius-

transformed transfer function equals unity at the computed crossover points. To show

the validity, the real part of the original admittance transfer function H(jω) is also
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plotted in Fig. 4.5, which shows that the proposed S-GHM and S-HGHM methods

have accurately found the passivity violation points of this hybrid DS.
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Figure 4.5: The real part of the transfer function of the original order-53 admittance
DS model. The dots are the results from S-GHM and S-HGHM tests, which are
accurately located at the boundaries of passivity violations.

4.5.4 A Multi-Port DS Model

Table 4.5: CPU time (sec) comparison of S-GHM and S-HGHM.

Model Size Port Number S-GHM S-HGHM Speedup

1080 60 241.2 30.45 7.92

This example is used to verify the validity of S-GHM and S-HGHM in general

multi-port DS models, and to compare their numerical efficiency. The order-1080

symmetric DS model has 60 ports, and it is built from the measured S-parameter

data of an electronic system, via the DS-format Loewner matrix fitting [49,50]. Using

S-GHM and S-HGHM tests, 18 crossover points are obtained, which are plotted in
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Figure 4.6: S-GHM/S-HGHM test results for the multi-port S-parameter DS model.
The dots are the results from S-GHM and S-HGHM tests, which are accurately located
at the boundaries of passivity violations.

Fig 4.6. Due to the large amount of crossover points, they are not listed by table.

Clearly, Fig 4.6 (b) shows that the computed results are very accurate. We have listed

the CPU times of S-GHM and S-HGHM tests in Table 4.5. It is clear that S-HGHM

is about 8× faster over S-GHM, which is expected due to its half-size nature and the

O(n3) complexity of generalized eigenvalue calculation.

4.6 Discussions

1. S-GHM and S-HGHM are purely algebraic passivity verification with similar

accuracy to Hamiltonian method and half-size singularity test. Therefore, they

are much more reliable and accurate than frequency sweeping methods, which

has been verified by their hybrid counterparts (see Chapter 2). Compared

with Hamiltonian method and half-size singularity test, S-GHM and S-HGHM

are not restricted by the restriction on D matrix, as verified by the synthetic

example.
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2. As illustrated in Tables 4.2 to 4.4, the numerical results of S-GHM and Hamil-

tonian method contain some numerical noise in the real part, which can be

eliminated by setting a tolerance. S-HGHM and half-size singularity tests do

not suffer from this problem. From the numerical perspective, they are more

accurate over the full-size S-GHM and Hamiltonian methods.

3. Due to the half-size nature and the O(n3) complexity of (generalized) eigenvalue

computation, S-HGHM and half-size singularity test are 8× faster than their

full-size counterparts. This has been verified by the results in Chapter 2 and

the CPU timings in Table 4.5. S-GHM and S-HGHM algorithms presented here

are based on full-matrix eigensolver, so they are feasible to medium-size (e.g.,

order-1000) physical models. If we consider the Hamiltonian structure of M0

and only compute the purely imaginary roots in S-GHM test, the proposed flow

is expected to be faster and thus extensible to large and/or sparse DSs. This

work has been discussed in Chapter 3.

4. In this chapter, the passivity at the interval of two adjacent crossover points is

identified by the sampling scheme (as shown in Algorithm 4.1). An alternative

approach is to compute the slope signs of the singular value curves at the cal-

culated boundary points, according to the generalized eigenvalue perturbation

theory of Hamiltonian matrix pencils. And furthermore, using the perturbation

theory, our proposed S-GHM/S-HGHM approach also leads to a DS passivity

enforcement scheme. These issues will be reported soon in the future document.

4.7 Summary

We have extended GHM and HGHM theories of Chapter 2 to S-parameter DSs,

which reflect the relationship of the singular values of a DS transfer matrix with its
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operating frequency. With the proposed methods, the passivity of S-parameter and

hybrid DSs can be efficiently assessed, and the passive/nonpassive regions can be

accurately located. For symmetric DSs, S-HGHM enjoys higher numerical accuracy

and an 8× speedup over S-GHM.

4.8 Appendix

In S-HGHM passivity test, the assumption of A − B(I + D)−1C is equivalent to

det[I − S(jω)] 6= 0 at the DC point (i.e., ω = 0). The proof is as follows.

Proof: Firstly, we assume that A − B(I +D)−1C is singular, then there exists a

vector p such that

[A− B(I +D)−1C]p = 0 p 6= 0. (4.27)

Since A is nonsingular, the above equation is equivalent to

A−1B(I +D)−1Cp = p. (4.28)

Denote (I + D)−1Cp by q, which should be a nonzero vector [otherwise, p 6= 0 in

(4.28)]. Pre-multiplying both sides of (4.28) by C yields

CA−1Bq = (I +D)q, q 6= 0. (4.29)

Because S(0) = D − CA−1B, (4.29) can also be written as

[I − S(0)]q = 0, q 6= 0 (4.30)

which shows I − S(0) is singular [i.e., 1 ∈ λ(S(0))].

Next, we start with (4.29) to prove the converse. Since the right side of (4.29) is

nonzero (because 1 /∈ σ(D) and q 6= 0), we denote p′ = A−1Bq which should also be
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nonzero. Equation (4.29) is equivalent to

(I +D)−1CA−1Bq = q. (4.31)

Pre-multiplying this equation by A−1B we get

A−1B(I +D)−1Cp′ = p′, p′ 6= 0. (4.32)

Hence, A−B(I +D)−1C is singular.

�



Chapter 5

Fast Positive-Real Balanced

Truncation of Descriptor Systems

Modified nodal analysis (MNA) descriptions of linear VLSI circuits, such as RLC

networks, normally yield index-1 or index-2 descriptor systems (DSs) which some-

times contain improper parts. This chapter presents an improper-part preserving

passive model order reduction (MOR) procedure for RLC circuits, which consists of

two steps: additive decomposition and passive MOR on the proper subsystem. In ad-

ditive decomposition, spectral projectors are used to avoid unstable and prohibitively

expensive Weierstrass decomposition. In the passive reduction of the proper part,

we propose generalized quadratic alternating direction implicit (GQADI) iteration

and its low-rank variant (LR-GQADI) to efficiently solve the generalized algebraic

Riccati equations (GAREs). The effectiveness of the proposed algorithm is confirmed

by some practical RLC benchmarks.

100
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5.1 Motivation

The MNA description of a RLC networks yields the LTI DS

E0ẋ = A0x+B0u, y = C0x+D0u, (5.1)

where E0, A0 ∈ R
n×n, B0, C

T
0 ∈ R

n×m , D0 ∈ R
m×m. The state vector x represents

nodal voltages, and currents flowing through voltage sources and inductors; E0 in-

cludes the capacitance and inductance terms, and A0 denotes the conductance matrix.

This DS model is widely used in interconnect [22] and power grid [24, 91] modeling.

Due to the huge size of the original DS model, linear model order reduction

(MOR) [22, 24–27, 91] is normally used to reduce the circuit complexity. When the

transfer matrix represent the admittance or impedance parameters (such as in in-

terconnect modeling), it is desired to preserve system passivity to guarantee global

stability. Typical passivity-preserving algorithms include MPVL [25] for symmetric

RC circuits and PRIMA [22] for RLC models. These Krylov-subspace projection-

based moment-matching schemes are applicable to DS models. However, they do

not give numerical error bounds. Moreover, the possible impulsive response can-

not be preserved [26]. Standard balanced truncation (BT, e.g. [28]) provides opti-

mal approximations with global error bounds, and is generally much more accurate

than Krylov-subspace projections. And the positive-real balanced truncation (PRBT,

e.g., [26, 29, 30]) can further preserve such important system properties as passivity.

However, for DS-form circuit models, a numerical transformation to the Weierstrass

canonical form [26] is required before performing BT or PRBT. By Weierstrass canon-

ical form, the possible improper part can be extracted, and the proper part is then

constructed as a standard state-space model. Unfortunately, this procedure is pro-

hibitively expensive and numerically unstable [17, 18,20].

With spectral projectors in Chapter 3, the proper and improper parts can be
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elegantly separated [20], and standard BT and PRBT can be extended to DS models

with impulsive response [17, 18, 54]. The stability-preserving DS-BT requires solving

the (projected) generalized algebraic Lyapunov equations (GALEs), which can be

tackled by the generalized alternating direction implicit (GADI) iteration or its low-

rank variant (LR-GADI) [55,56]. To preserve passivity, DS-PRBT [17,18] solves the

(projected) generalized algebraic Riccati equations (GAREs), which utilizes Newton’s

iteration in recent literatures [17,59]. Inside each step of Newton’s iteration, one needs

to solve one (projected) GALE, so the complexity is comparable to solving tens of

GALEs, which is still expensive.

Spectral projector construction is another bottleneck with DS-PRBT flow. The-

oretically, spectral projectors can be obtained by the Weierstrass canonical form [17,

18, 54]. However, even for an order-1000 DS, computing its Weierstrass canonical

form on a general machine can be prohibitively time consuming and numerically un-

stable. An alternative approach is to use the canonical projector technique [19, 20],

which however requires expensive null space computation, matrix inversion and full

matrix-matrix products. With the special topology of RLC circuits, [18] has pro-

posed an explicit form for spectral projectors. In some cases where circuit topological

information is unavailable (e.g., for those DS models obtained by EM field solver),

the fast spectral projector construction in Chapter 3.5.1 can significantly reduce the

computational load.

In this chapter, we propose a fast PRBT-based passive MOR algorithm for DSs.

By exploiting the sparsity of circuit equations, the spectral projectors are constructed

with a low cost as in Chapter 3.5.1. The proper and improper subsystems, say, of an

RLC network, are then extracted by additive decomposition. Afterwards, the proper

part is reduced by DS-PRBT, where generalized quadratic alternating direction im-

plicit (GQADI) iteration and its low-rank version (LR-GQADI) (namely, extensions

of the QADI and LR-QADI iterative schemes in [30]) are proposed to solve the GARE
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Figure 5.1: (a) A C-V loop. (b) An L-I cutset.

at approximately the cost of solving only one GALE. Both system passivity and the

possible impulsive response are preserved by this DS-PRBT flow.

5.2 Preliminaries

5.2.1 Problems in DS MOR

Assume the matrix pencil (E0, A0) is regular (i.e., ∃ s0 ∈ C, det(s0E0 − A0) 6= 0),

then the DS transfer matrix reads

G(s) = D0 + C0(sE0 − A0)
−1B0. (5.2)

Assuming the DS is index-µ and recalling the results from Chapters 1, 2 & 4, we

know that

G(s) = Gp(s) +Gimp(s) (5.3)

where Gp(s) and Gimp(s) are the proper and improper parts, respectively. In the time

domain, the improper part generates impulsive response. The DS in (5.1) is passive if

and only if: i) Gp(s) is positive-real; ii) Gimp(s) = sM1 where M1 = −C∞NB∞ ≥ 0.

The above DS circuit model can be reduced by either Krylov-subspace projection
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Figure 5.2: (a) An index-1 circuit without any L-V cutsets or C-V loops. (b) An
index-2 circuit with a C-V loop formed by Vin and C1.

or PRBT. For positive semidefinite (PSD) DS, PRIMA [22] can be used to preserve

system passivity, but the improper part is normally lost. To preserve both the im-

proper part and system passivity, [26] first decomposes the original system by Weier-

strass decomposition and then uses PRBT to reduce the proper part. Unfortunately,

Weierstrass decomposition is too expensive to implement and usually numerically

unstable. Besides, the resulting proper part normally has dense and ill-conditioned

matrices, which is not preferred for ARE solvers.

5.2.2 Projected GALEs and GAREs

The projected GALEs of the DS in (5.1) are given as

AT
0 X̄E0 + ET

0 X̄A0 + P T
r C

T
0 C0Pr = 0, X̄ = P T

l X̄Pl, (5.4a)

A0Ȳ ET
0 + E0Ȳ AT

0 + PlB0B
T
0 P

T
l = 0, Ȳ = PrȲ P T

r . (5.4b)

Here the left and right spectral projectors

Pl = W


 Iq 0

0 0


W−1, Pr = T−1


 Iq 0

0 0


T, (5.5)
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project onto the left and right deflating subspaces of (E0, A0) corresponding to their

finite eigenvalues, respectively. Some general assumptions are posed on the circuit

topologies [18]: i) there exist no loops of voltage sources or cutsets of current sources;

ii) the resistance, inductance and capacitance matrices are positive definite. Under

the above assumptions, the DS index is at most 2 (i.e., µ ≤ 2). Specifically, if no

loops consisting of capacitors and voltage sources (C-V loops) or cutsets connecting

inductors and current sources (L-I cutsets) exist, the circuit is index-1; otherwise, the

circuit is index-2 [5]. Illustrative examples are given in Figs. 5.1 & 5.2.

If (E0, A0) is stable, (5.4a) and (5.4b) have unique solutions X̄, Ȳ ≥ 0. Using the

GALE (5.4b) as an example, it can be solved by the generalized ADI (GADI) [55]

(E0 + siA0)Ȳi− 1

2

AT
0 + A0Ȳi−1(E0 − siA0)

T = −PlB0B
T
0 P

T
l , (5.6a)

(E0 + s̄iA0)ȲiA
T
0 + A0Ȳi− 1

2

(E0 − s̄iA0)
T = −PlB0B

T
0 P

T
l , (5.6b)

with s1, ..., si ∈ C
− where C

− denotes the open left-half plane. If we set Ȳ0 = 0, Ȳi

can be obtained by

Ȳi = −2Re(si)(E0 + siA0)
−1PlB0B

T
0 P

T
l (E0 + s̄iA0)

−T+

(E0 + siA0)
−1(E0 − s̄iA0)Ȳi−1(E0 − siA0)

T (E0 + s̄iA0)
−T .

(5.7)

By exploiting the low-rank and positive semidefinite (PSD) properties of Ȳi, a low-

rank variant of GADI is further developed in [56], which significantly speeds up the

computation.
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In DS-PRBT, one needs to get the positive-real gramians, i.e., the minimal solu-

tions X, Y (∈ R
n×n) ≥ 0 to the dual projected GAREs

ATXE + ETXA+ ETXBBTXE + P T
r C

TCPr = 0, (5.8a)

AY ET + EY AT + EY CTCY ET + PlBBTP T
l = 0, (5.8b)

such that X = P T
l XPl, Y = PrY P T

r , (E,A + BBTXE) and (ET , AT + CTCY ET )

are stable [60]. Here E = E0, M0 = D0 − C∞B∞, B = B0D,C = DTC0, A =

A0 − PlBCPr, D is defined by DDT = (M0 +MT
0 )

−1. A popular method of solving

projected GARE (e.g., (5.8b)) is by Newton’s iteration (as summarized by Algo-

rithm 5.1) [18]. Inside each iteration, a (projected) GALE needs to be solved. One

can solve this (projected) GALE by GADI or LR-GADI. Obviously, solving a (pro-

jected) GARE requires solving multiple (usually tens of) (projected) GALEs.

Algorithm 5.1: Newton’s iteration for projected GARE (5.8b)

Input: E,A ∈ R
n×n, B,CT ∈ R

n×m, Pl, Pr, an initial guess Y0, and a
numerical tolerance tol.

Output: The approximate solution Yi to (5.8b).
begin

for j = 1,2,... do
Compute Kj = EYj−1A

T and Aj = A+KjA.
Solve the projected GALE: EYjA

T
j +AjYjE

T = −Pl(BBT −KjK
T
j )P

T
l ,

Yj = PrYjP
T
r .

if ||Yj − Yj−1|| < tol then
Return Yj and exit;

else
Continue.
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5.3 DS-MOR via DS-PRBT

The proposed DS-PRBT flow consists of two steps: i) additive decomposition that

separates the proper and possible improper parts; ii) PRBT of the proper part.

5.3.1 Additive Decomposition

We first decompose the DS by using the right spectral projector Pr (either Pr or Pl

is needed, and the procedures by using Pl are completely analogous). This chapter

considers index-2 circuits (index-1 cases are trivial [18,20]). Directly computing Pr by

Weierstrass decomposition is prohibitively expensive. From the circuit topology, Pr

can be easily obtained by its closed form [18]. If the topology is unknown, canonical

projector technique [19, 20] can be applied to compute Pr, by the sparse LU-based

fast numerical implementation elaborated in Chapter 3.5.1.

With Pr, the proper and improper subsystems can be easily separated. First, we

note

Ĝ(s) = C0(I − Pr)(sE0 − A0)
−1B0 +D0

= C0T
−1


 0

I




 sI − J

sN − I



−1

W−1B0 +D0

= C∞(sN − I)−1B∞ +D0 = Gimp(s) +M0.

(5.9)

Since the original linear RLC circuit is passive, we have Gimp(s) = sM1, then M0 and

M1 can be computed by

M0 = Ĝ(0), M1 =
Ĝ(s1)− Ĝ(s2)

s1 − s2
(5.10)

where s1 and s2 are positive real scalars. Subsequently, an impulse-free DS Gp(s)
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realized by (E0,A0,B0, C0,D0) is constructed as follows:

E0 = E0Pr − A0(I − Pr) = W


 Iq

−In−q


T

A0 = A0, C0 = C0Pr, B0 = B0, D0 = M0.

(5.11)

It is straightforward to prove that Gp(s) = Gp(s), E0 is nonsingular, (E0,A0) is stable.

The flow of additive decomposition is summarized in Algorithm 5.2.

Algorithm 5.2: Additive Decomposition for RLC Circuits

Input: E0, A0 ∈ R
n×n, B0, C

T
0 ∈ R

n×m, D0 ∈ R
m×m

Output: E0,A0,B0, C0,M0 and M1.
begin

1. Compute Pr via canonical projector technique;
2. Extract M0 and M1 by (5.10), construct Gp(s) by (5.11).

5.3.2 PRBT of the Proper Subsystem

To perform passive MOR on the proper subsystem Gp(s), one needs to solve the dual

projected GAREs. Since E0 andA0 are nonsingular, the spectral projectors of (E0,A0)

are

Pl = Pr = I. (5.12)

Consequently, the projected GAREs of Gp(s) reduce to

ATXE + ETXA+ ETXBBTXE + CTC = 0, (5.13a)

AYET + EYAT + EYCTCYET + BBT = 0, (5.13b)

which are two GAREs. Here we define D by DDT = (D0 + DT
0 )

−1, B = B0D,
C = DTC0. A = A0−BC and E = E0. The unique PSD stabilizing solutions X and Y
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to (5.13a) and (5.13b) are the positive real observability and controllability gramians

of Gp(s), respectively.
After getting the positive real gramian matrices, the proper subsystem Gp(s) can

be balanced and reduced to a much smaller DS Gpr = Cr(sEr − Ar)
−1Br +M0. The

complete DS-PRBT flow is listed in Algorithm 5.3.

Algorithm 5.3: DS-PRBT of The Proper Part

Input: A proper subsystem described by (E0,A0,B0, C0,D0), reduced order r.
Output: The reduced model of Gp(s) described by (Er,Ar,Br, Cr,Dr).
begin

1. Solve the dual GAREs (5.13a) and (5.13b) to get the gramians X and Y ;
2. Compute the factors L and R such that X = LLT , Y = RRT ;
3. Compute the skinny singular value decomposition

LTE0R =
[
U1 U2

] [ Σ1

Σ2

] [
V1 V2

]T
, where Σ1 = diag(σ1, ..., σr),

Σ2 =diag(σr+1, ..., σn̂) and σ1 ≥ ... ≥ σr ≥ σr+1 ≥ ... ≥ σn̂;

4. Compute the projection matrix: TL = Σ
− 1

2

1 UT
1 L

T , TR = RV1Σ
− 1

2

1 ;
5. Compute the reduced model of the proper part
(Er,Ar, Br, Cr, Dr) = (TLE0TR, TLA0TR, TLB0, C0TR,M0);

Finally, the transfer matrix of the reduced model of the original circuit is

Gr(s) = Cr(sEr −Ar)
−1Br +M0︸ ︷︷ ︸

Gpr(s)

+sM1. (5.14)

A DS realization of Gr(s) by (Er, Ar, Br, Cr, Dr) is

Er =




Er
0 Im

0 0


 , Ar =




Ar

Im

Im


 , Br =




Br
0

M1


 ,

Cr =
[
Cr −Im 0

]
, Dr = M0.

(5.15)

The improper part sM1 is preserved by additive decomposition without numerical
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errors, the errors are only induced in the MOR of the proper part. Analogous to

other BT methods [18], there exists an error bound for the proper subsystem:

‖Gp − Gpr‖H∞

≤ 2
∥∥∥
(
M0 +MT

0

)−1
∥∥∥
∥∥Gp +MT

0

∥∥
H∞

×
∥∥Gpr +MT

0

∥∥
H∞

(σr+1 + · · · σn̂),
(5.16)

where ‖Gp‖H∞

= supω∈R ‖Gp(jω)‖.
The main computation in Algorithm 5.3 lies in solving the dual GAREs (5.13a)

and (5.13b), which is tackled by GQADI or LR-GQADI described below.

5.4 GQADI and Low-Rank GQADI

This section presents the GQADI and LR-GQADI algorithms to solve the dual

GAREs in (5.13a) and (5.13b). At the first glance, one may transform Gp(s) to a

standard LTI by absorbing E0 into A0 and B0 and then perform PRBT via solv-

ing standard AREs [30]. However, computing E−1
0 A0 consumes O(n3) operations and

O(n2) physical memory. Furthermore, large numerical errors may be induced since E0
may be ill-conditioned. In [59], (5.13a) and (5.13b) are solved by Newton’s iteration

and LR-GADI, where the computation is about that of solving tens of GALEs.

5.4.1 GQADI

We use (5.13a) as an example to illustrate the proposed GQADI algorithm, which

is a generalization of GADI [55, 56] and QADI [30]. GARE (5.13b) can be solved

similarly. With an initial guess X0 = 0 and some shift parameters s1, s2, ..., si ∈ C
−,

the generalized QADI iteration for the GARE (5.13a) is given by:

(AT + ETX T
i−1BBT + siET )X T

i− 1

2

E = −CTC − ETX T
i−1(A− siE), (5.17a)



111

(AT + ETXi− 1

2

BBT + s̄iET )XiE = −CTC − ETXi− 1

2

(A− s̄iE). (5.17b)

Similar to [30], the solution Xi can be written as:

Xi = Π
(i)
11 +Π

(i)
12Xi−1(I − Π

(i)
22Xi−1)

−1(Π
(i)
12 )

H (5.18a)

Π
(i)
11 = −2Re(si)SH

i CH(I − CS iBBHSH
i CH)−1CS i, (5.18b)

Π
(i)
22 = −2Re(si)ES iB(I − BHSH

i CHCS iB)−1BHSH
i EH (5.18c)

Π
(i)
12 = 2Re(si)SH

i EH − I − SH
i CHCE−1Πi

22. (5.18d)

Here Si = (A+Esi)−1, and the superscript H denotes conjugate transpose. We remark

that we do not need to compute E−1 in (5.18d) since it is canceled with E in Π
(i)
22 .

The derivation of GQADI is detailed in Appendix 5.7.1.

5.4.2 Well Posedness

Analogous to [30], we demonstrate that the solution Xi is well defined and PSD. Since

the existence of the PSD solution X to (5.13a) implies the strict bounded realness of

the DS Σ1 : (E ,A,B, C, 0), we have

max
(
σ
(
C(A+ siE)−1B

))
= max (σ(CS iB)) < 1, ∀si ∈ C

− (5.19)

where σ(o) denotes the set of singular values. Therefore, the matrix inversions in

(5.18b)–(5.18d) are well defined.

Next, we prove the well posedness of (5.18a). The GARE (5.13a) can be rewritten

as

(A+ Re(si)E)TXE + ETX (A+Re(si)E) + ETXBBTXE + CTC − 2Re(si)ETXE = 0

(5.20)



112

which implies the LTI DS Σ2 : (E2,A2,B2, C2, 0) is also strictly bounded real where

the corresponding system matrices are defined by

E2 = E , A2 = A+Re(si)E ,

B2 = B, C2 =
[
CT

√
−2Re(si)ETZ

]H
,

(5.21)

where X = ZZH . Setting ωi = −Im(si) and G2(jωi) = C2(jωiE2 − A2)
−1BT

2 , the

bounded real lemma implies

max(σ(GH2 (jωi)G2(jωi))) = max(σ(BHSH
i (CHC − 2Re(si)ETXE)SiB)) < 1. (5.22)

Lemma 5.1: If the GARE (5.13a) has a stabilizing solution X ≥ 0 and X ≥
Xi−1, then we have X ≥ Xi.

Proof: Refer to Appendix 5.7.2.

�

Since X0 = 0, we have X ≥ X0. Then according to Lemma 1, X ≥ Xi follows for

i = 1, 2, · · · . Since X ≥ Xi, (5.22) can be extended to

max(σ(BHSH
i (CHC − 2Re(si)ETXiE)SiB)) < 1. (5.23)

Using matrix inverse lemma [40], we get

Xi−1(I −Π
(i)
22Xi−1)

−1 = Xi−1[I + 2Re(si)ESiB(I − BHSHi CHCSiB)−1BHSHi EHXi−1]
−1

= Xi−1

(
I −

√
−2Re(si)ESiB(I − BHSHi CHCSiB)−

1

2

√
−2Re(si)(I − BHSHi CHCSiB)−

1

2BHSHi EH
)
−1

= Xi−1 − 2Re(si)Xi−1ESiB
(
I − BHSHi (CHC − 2Re(si)ETXi−1E)SiB

)−1BHSHi EHXi−1

(5.24)

From (5.23) and the last line of (5.24), we know that Xi−1(I − Π
(i)
22Xi−1)

−1 is well

defined and PSD, therefore Xi ≥ 0 is also well defined. The matrix inversion in the

last line of (5.24) is numerically easy to compute due to the low dimension.
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5.4.3 Convergence

Now we prove that Xi indeed converges to X . Since X0 = 0, using equation (5.48) and

the star product of linear fractional transform (LFT, [4]) (see (5.40) in Appendix 5.7.1

of this chapter), ∆i = X − Xi can be formulated as a lower LFT of X :

∆i = Fl




 0 Mi

MH
i Ni


 , X


 =MiX (I −NiX )−1MH

i , (5.25a)

Mi =
i∏

j=1

ŜH
j T̂ H

j , (5.25b)

Ni = 2Re (si)
i∑

j=1

(
j−1∏

k=1

ŜkT̂k
)
ŜjBBT ŜH

j

(
j−1∏

k=1

T̂ H
k ŜH

k

)
, (5.25c)

where Ŝj and T̂j are defined in Appendix 5.7.2. Since si ∈ C
−, −Ni ≥ 0, assume

−Ni = LiLH
i and X = ZZH , then

X (I −NiX )−1 = ZZH
(
I + LiLH

i ZZH
)−1

= ZZH
(
I − Li(I + LH

i ZZHLi)
−1LiZZH

)

= X − ZZHLi(I + LH
i ZZHLi)

−1LiZZH .

(5.26)

The last line of (5.26) shows X ≥ X (I −NiX )−1, hence

0 ≤ X − Xi ≤MiXMH
i . (5.27)

Since the spectrum of ŜjT̂j locates inside the unit circle on the complex plane, Mi

approaches 0 as i increases. According to (5.27), Xi converges to X as i → ∞.

Analogous to [30,55,56], for k iterations of GQADI the shift parameters si (i = 1, ..., k)
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can be selected by solving the minimax problem

min
s1,··· ,sk∈C−

(
max

λi∈spec(E,Â)

∣∣∣∣
(s1 − λi) · · · (sk − λi)

(s̄1 + λi) · · · (s̄k + λi)

∣∣∣∣
)
. (5.28)

Since Â = A + BBTXE (see Appendix B), directly computing spec(E , Â) is not

feasible.

Lemma 5.2: Provided that X is a stabilizing solution to the GARE (5.13a), then

we have spec(E , Â)=spec(K,J ) ∩ C
−, where

J =


 A −BBT

CTC −AT


 , K =


 E

ET


 . (5.29)

Proof: Assume X is the stabilizing solution to (5.13a) and λ ∈ spec(K,J ) (i.e.,
det(J − λK) = 0), we have

det(J − λK) = det




 I

ETX I


 (J − λK)


 I

−XE I






= det


 A+ BBTXE − λE BBT

0 −AT − ETXBBT − λET


 ,

(5.30)

which shows spec(K,J ) = spec(E , Â) ∪ spec(−ET , ÂT ). Since X is a stabilizing

solution to (5.13a), we have spec(E , Â) ∈ C
− and spec(−ET , ÂT ) ∈ C

+.

�

By Lemma 5.2, the spectral of (E , Â) can be decided as spec(K,J ) ∩ C
−.
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5.4.4 Low-Rank GQADI (LR-GQADI)

Since Xi ≥ 0, we have Xi = ZiZH
i . The low-rank factor Zi is defined as

Zi =
[
Hi Π

(i)
12Fi

]
. (5.31)

Here Hi and Fi are the low-rank factors of Π
(i)
11 and Xi−1(I−Π

(i)
22Xi−1)

−1, respectively.

Denote SCi := SH
i CH , (5.18b) tells

Hi =
√
−2Re(si)SCi(I − SCHi BBHSCi)−

1

2 . (5.32)

Since Xi−1 = Zi−1ZH
i−1, it is easy to prove that

Xi−1(I − Π
(i)
22Xi−1)

−1 = Zi−1(I −ZH
i−1Π

(i)
22Zi−1)

−1ZH
i−1. (5.33)

Then Fi is decided as

Fi = Zi−1(I −ZT
i−1Π

(i)
22Zi−1)

− 1

2 . (5.34)

Denote SBi := SiB, the low-rank factor of Π
(i)
22 is expressed as

Ri =
√
−2Re(si)ESBi(I − SBH

i CHCSBi)
− 1

2 . (5.35)

Finally, the second column block of Zi can be computed by

Π
(i)
12Fi = 2Re(si)SH

i EHFi −Fi

−
√
−2Re(si)SCiCSBi(I − SBH

i CHCSBi)
− 1

2RH
i Fi.

(5.36)

The procedures of LR-GQADI are summarized in Algorithm 5.4, where all computa-

tions are based on low-rank operations.
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Algorithm 5.4: LR-GQADI for the GARE (5.13a)

Input: E ,A ∈ R
n×n, B, CT ∈ R

n×m, and shift parameters s1, ..., si ∈ C
−.

Output: The approximate solution Xj = ZjZH
j to (5.13a).

begin

Z1 =
√
−2Re(s1)SC1(I − SCH1 BBHSC1)−

1

2 , where SC1 = SH
1 CH ;

for i = 2,3,...,j do
1. Compute SCi := SH

i CH and SBi = SiB;
2. Compute Hi =

√
−2Re(si)SCi(I − SCHi BBHSCi)−

1

2 ,

Ri =
√
−2Re(si)ESBi(I − SBH

i CHCSBi)
− 1

2 ,

and Fi = Zi−1(I −ZT
i−1RiRH

i Zi−1)
− 1

2 ;

3. Compute
Π

(i)
12Fi = 2Re(si)SH

i EHFi −Fi−√
−2Re(si)SCiCSBi(I − SBH

i CHCSBi)
− 1

2RH
i Fi;

4. Compute Zi =
[
Hi Π

(i)
12Fi

]
.

5.4.5 Numerical Complexity

GQADI consumes approximately the cost of solving one projected GALE by GADI

[see (5.7)]. Since Newton’s iteration (Algorithm 5.1) needs to solve k (k is usually 10

to 30) GALEs for one projected GARE (and then perform GADI for each GALE),

GQADI is about k times faster than the Newton’s iteration method. If LR-GQADI

is adopted, all full-size computations can be replaced by low-rank operations, which

leads to a further speedup. In LR-GQADI, the main cost is dominated by computing

SCi := SH
i CH and SBi = SiB, which can be tackled by direct or iterative linear

solvers with O(n2) computation for sparse cases. Furthermore, by LR-GQADI, the

low-rank factors of X and Y are readily available, so Step 2 of Algorithm 5.3 can be

skipped and the SVD in Step 3 is very cheap due to the small size of LTE0R.
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5.5 Experimental Results

This section presents some RLC benchmarks to verify the proposed DS-MOR flow.

Experiments are performed in Matlab R2009a on a 2.5GHz PC with 6G memory.

5.5.1 Subsystem Extraction

First, the proposed additive decomposition (Algorithm 5.2) is compared with Weier-

strass decomposition used in [26]. Experiments are performed on four RLC circuits.

In Weierstrass decomposition, the popular package GUPTRI [80] is used to compute

the Weierstrass canonical form. As shown in Table 5.1, the proposed additive decom-

position (Algorithm 5.2) is much faster than the method in [26] due to the efficient

sparse LU-based spectral projector construction. As the system dimension increases,

the speedup becomes more significant. In Weierstrass decomposition routines such

Table 5.1: CPU times (sec) of DS decompositions.

Circuit Order Weierstrass [26] Algorithm 5.2 Speedup

ckt1 363 7.811 0.1813 43.10
ckt2 903 82.37 0.9984 82.50
ckt3 1505 392.5 2.8810 136.2
ckt4 10913 break down 129.47 N/A

Table 5.2: CPU times (sec) of solving one GARE (5.13a)

Circuit Newton’s iteration Newton’s iteration GQADI LR-
model with GADI with LR-GADI GQADI

ckt1 43.60 9.425 3.328 0.724
ckt2 266.3 38.92 40.87 5.922
ckt3 2240 256.7 230.2 12.13
ckt4 break down 3965 break down 572.8

as GUPTRI [80], multiple SVD and QZ [40] factorizations are used. Due to the

O(n2) physical memory requirement, they are not applicable to large sparse circuit
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Figure 5.3: Approximate Hankel singular values of the proper subsystem of ckt3.
Hankel singular values refer to the singular values of LTE0R (i.e., σ1, σ2, · · · in Step
3 of Algorithm 5.3).

systems. The proposed method is based on sparse operations with only O(n) storage

requirement, so it is applicable to large-scale RLC circuits (as shown by the results

of ckt4).

5.5.2 Comparison of GARE Solvers

GQADI and LR-GQADI are then compared with the Newton’s iteration based GARE

solvers. We list the CPU times of solving one GARE [such as (5.13a)] in Table 5.2.

To achieve similar accuracy, the relative error is set as 10−4 for all GARE solvers.

Inside each Newton’s iteration, the relative error of solving the GALE is set as 10−6.

We remark that inside each step of Newton’s iteration, the amounts of (LR)-ADI

iterations are quite different, depending on the convergence rates of the obtained

GALEs. The CPU timing results show that GQADI and LR-GQADI enjoy significant

speedup over GADI and LR-GADI, respectively. For our tested RLC circuits, the

speedup of GQADI over LR-GADI based Newton’s iteration is case-dependent (since

the numbers of Newton’s iterations vary from case to case). For example, GQADI

is faster than LR-ADI based Newton’s iteration for ckt1 and ckt3, but it is slightly
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Figure 5.4: (a) Frequency response (port-1) of ckt3 and the reduced models (or-
der=50) obtained by PRIMA and DS-PRBTs (solving the GAREs by LR-GQADI
and Newton’s iteration, respectively). (b) Relative errors.

slower over the latter for ckt2. Due to the low-rank property, LR-GQADI and LR-ADI

based Newton’s method can be applied to much larger systems (shown by the last

row of Table 5.2), whereas the full-size algorithms break down due to the expensive

physical memory requirement.

5.5.3 Model Reduction Results

We continue to reduce ckt3 (with 5 ports) by DS-PRBTs (proposed DS-PRBT and

that based on Newton’s iteration [18]) and PRIMA. We first perform additive decom-

position, and then reduce the proper subsystem. Via LR-GQADI (Algorithm 5.4,

after 40 iterations) and LR-GADI based Newton’s iteration the 1505× 200 low rank

factors of X and Y (L and R in Algorithm 5.3) are obtained. Fig. 5.3 shows that

the approximate Hankel singular values (i.e., the singular values of LTE0R) decrease



120

dramatically. According to this property, the order of the reduced models is selected

as 50. Fig. 5.4(a) shows the port-1 frequency response of ckt3 and the reduced models

by various MOR methods. The results from DS-PRBT are indistinguishable from the

original response. And more importantly, the improper part is preserved by additive

decomposition. PRIMA is accurate in the low frequency band, but causes large er-

rors in the high frequency band due to the inability of capturing the improper part.

The relative error in Fig. 5.4(b) also shows the proposed DS-PRBT enjoys a higher

numerical accuracy than that based on Newton’s iteration.
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Figure 5.5: GHM passivity test results show that the reduced model is passive. (a)
The eigenvalues of the generalized Hamiltonian matrix pencil. (b) Zoom in of the
central part.

GHM method of Chapter 2 is used to verify the passivity of the reduced model.

The eigenvalues of the generalized Hamiltonian matrix pencil are computed and plot-

ted in Fig. 5.5. Since M0,M1 > 0 (which are preserved from the original system) and

no eigenvalues of the passivity test matrix pencil are located on the imaginary axis,

the reduced model is passive. We remark that, for symmetric DS, the passivity can

also be checked by HGHM (half-size GHM) approach presented in Chapter 2.

We note that a passive DS MOR scheme is reported in [92], which is based on
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the PSD structure of MNA equations and solves GALEs to get the projection matrix.

However, the DS there is assumed to be regular, and practical examples show that the

method fails when a finite improper part is involved. The recently proposed dominant

spectral-zero (DSZ) interpolation [66] method reduces DS models by capturing those

poles close to the imaginary axis, however it still misses the improper parts since

the corresponding poles are located at infinity. These approaches are thereby not

compared here.

5.6 Summary

This chapter has presented a fast improper-part preserving positive-real MOR for gen-

eral DSs including RLC circuits. The proposed method first separates the proper and

improper subsystems by additive decomposition at a negligible cost, and then reduces

the proper part via solving GAREs by the newly proposed GQADI or LR-GQADI

iterative methods. The proposed algorithms are much faster than existing DS-PRBT

procedures and can capture the possible impulsive response which is normally missed

by conventional Krylov-subspace projections.

5.7 Appendices

5.7.1 Derivation of GQADI

Similar to [30], we use linear fractional transform (LFT) [4] techniques to derive the

formulation of GQADI. A lower LFT Fl(P,∆) with

P =


 P11 P12

P21 P22


 (5.37)
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is defined as

Fl(P,∆) = P11 + P12∆(I − P22∆)−1P21. (5.38)

An upper LFT is defined as

Fu(Q,∆) = Q22 +Q21∆(I −Q11∆)−1Q12, (5.39)

where Q is portioned similarly to P . An important result of LFT is the star product

operation [4]:

Fl(P, Fl(Q,∆)) = Fl (W, ∆) (5.40)

with

W =


 Fl(P,Q11) P12(I −Q11P22)

−1Q12

Q21(I − P22Q11)
−1P21 Fu(Q,P11)


 . (5.41)

From (5.17a) and (5.17b) we get

Xi− 1

2

= Fl(Pi, Xi−1), Xi = Fl(PH
i , Xi− 1

2

). (5.42)

Here Pi can be decided as

Pi =


 −C̃

H C̃S̃i C̃H C̃S̃iBBH − T̃ H
i

S̃i S̃iBBH


 (5.43)

with C̃ = CE−1, S̃i = (AE−1 + siI)
−1 = ES i and T̃i = AE−1 − s̄iI. Setting P = PH

i ,

Q = Pi and ∆ = Xi−1in (5.40), Xi can be expressed by Xi−1 via the following LFT:

Xi = Fl(Π
(i),Xi−1) = Fl




 Π

(i)
11 Π

(i)
12

(Π
(i)
12 )

H Π
(i)
22


 , Xi−1


 . (5.44)

The sub-blocks of Π(i) are given in (5.18b)–(5.18d).
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5.7.2 Proof of Lemma 5.1

Proof: Set Â = A + BBTXE . Since X is a stabilizing solution of (5.13a), (Â, E) is

stable, and Â+ s̄iE is nonsingular for any si ∈ C
−. Denoting Ŝi := E(Â+ s̄iE)−1 and

T̂i := (Â − siE)E−1, it is straightforward to prove that any multiplication among Ŝm,
T̂n (m and n are any positive integers) and ÂE−1 is commutative.

According to (5.13a), (5.17a) can be rewritten as

ET
(
X − Xi− 1

2

)(
Â+ s̄iE − BBT (X − Xi−1)E

)

=
(
ÂT − s̄iET

)
(X − Xi−1),

(5.45)

which implies

X − Xi− 1

2

= Fl

(
P̂i, X − Xi

)
. (5.46)

Here P̂i =


 0 −T̂ H

i

Ŝi ŜiBBT


. Similarly, from (5.13a) and (5.17b) we get

X − Xi = Fl

(
P̂H

i , X − Xi− 1

2

)
. (5.47)

By the star product of LFT shown in (5.40), ∆i = X − Xi can be expressed as the

lower LFT with respect to ∆i−1 = X − Xi−1:

∆i = Fl




 0 ŜH

i T̂ H
i

T̂iŜi 2Re (si) ŜiBBT ŜH
i


 , ∆i




= ŜH
i T̂ H

i ∆i−1

(
I − 2Re (si) ŜiBBT ŜH

i ∆i−1

)−1

T̂iŜi.

(5.48)

Denoting ∆i−1 = MiM
T
i and −2Re (si) ŜiBBT ŜH

i = NiN
T
i (since both of them are
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PSD), matrix inverse lemma [40] shows

∆i−1

(
I − 2Re (si) ŜiBBT ŜH

i ∆i−1

)−1

= MiM
T
i

(
I +NiN

T
i MiM

T
i

)−1

= MiM
T
i

(
I −Ni

(
I +NT

i MiM
T
i Ni

)−1
NT

i MiM
T
i

)

= Mi(I +MT
i NiN

T
i Mi)

−1MT
i ≥ 0.

(5.49)

Therefore, it is obvious that ∆i = X − Xi ≥ 0.

�



Chapter 6

Block-Diagonal Structured Model

Reduction for Power Grid Analysis

This chapter proposes a block-diagonal structured model order reduction (BDSM)

scheme for multi-port LTI models, with power grid as a typical example in VLSI de-

sign. Compared with existing power grid model order reductions (MORs), BDSM has

several advantages. First, unlike many power grid reductions that are based on ter-

minal reduction and thus error-prone, BDSM utilizes an exact column-by-column

(or row-by-row) moment matching scheme to provide higher numerical accuracy.

Second, with similar accuracy and macromodel size, BDSM generates very sparse

block-diagonal reduced-order models (ROMs) for massive-port systems at lower cost,

whereas traditional frameworks such as PRIMA produce full dense models rendering

inefficient simulation. Third, different from those MORs based on extended Krylov

subspace (EKS) technique, BDSM is input-signal independent, so the resulting ROM

is reusable under different excitations. Finally, due to its special structure, the ob-

tained ROM can be simulated flexibly: it can be solved either in a parallel fashion

or in a serial flow; and in the column-by-column moment-matching BDSM frame-

work, the problem size can be scaled with the active port number. The accuracy and

125
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efficiency of BDSM are then verified by industrial power grid benchmarks.

6.1 Introduction

Power grid analysis has been a major topic in modern VLSI design. The challenges

for power grid analysis mainly stem from the large problem size and massive port

number. A typical power grid model usually has millions of nodes and up to thousands

of input sources, rendering it extremely difficult to simulate. During the past decade,

numerous efforts have been made to speed up the analysis and/or simulation of power

grid networks, such as domain decomposition technique [93], preconditioned Krylov-

subspace iterative method [94], random walk algorithm [95], simulations based on grid

locality [96], and multi-grid reduction technique [97, 98]. One issue of these methods

is that the computation on the large model needs to be repeated for different inputs

or time steps.

A viable solution is to approximate the many-port original network by MOR, and

then use the much smaller model in subsequent simulation. Krylov-subspace projec-

tions [22, 25] and balanced truncations [28] have been highly successful in intercon-

nect MOR. With some modifications, these standard techniques have been adapted

to reduce more sophisticated models in circuit simulation [33, 34]. Krylov-subspace

projections such as PRIMA [22] have superior efficiency over balanced truncations.

Therefore, they have been modified to reduce power grid models [24, 91, 100]. How-

ever, the efficiency significantly degrades as the port number increases. First, the

MOR cost increases linearly with the port number, making the computation ineffi-

cient. Second, the ROM size increases linearly with the port number, resulting in

a quadratic increase on storage cost. Consequently, the normally large and dense

ROMs make the simulation very inefficient.
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To address the problems induced by the large port number, extended Krylov sub-

space (EKS [100]) and extended truncated balance realization (ETBR [101]) treat

the product of input vector and input matrix as a new frequency-dependent “single-

input matrix”, and then reduce a “single-input multi-output” systems. Based on a

similar idea, triangularization based structure preserving MOR (TBS [91]) generates

structured ROMs to further speed up power grid simulation. However, these meth-

ods are highly dependent on the input signals, and the obtained ROMs can not be

reused for different input patterns. Since there exist some correlations between the

input-output pairs, singular value decomposition (SVD) can be used to compress the

terminals before MOR [102]. Similarly, [103] uses frequency-dependent packing to

improve the numerical accuracy; B. Yan et al. has proposed decentralized MOR (De-

MOR [104]) for multi-port system reduction. However, the terminal reduction process

is error-prone, because the true transfer matrix moments can not be matched.

In this chapter, we present a novel method, called block-diagonal structured MOR

(BDSM), for power grid reduction subject to the following criteria:

1. The ROMs should be cheap to simulate, which means that the obtained ROM

should be compact enough or has a special structure that permits fast compu-

tation;

2. The ROMs should be reusable, which means that the ROM is accurate no

matter what kind of signal waveforms are posed on the input ports;

3. The MOR accuracy should be comparable to that of PRIMA, which means that

a certain number of moments are accurately matched in a predefined frequency

band.

By BDSM, we get ROMs having the same sizes and similar accuracy as those from

PRIMA. Even more, the models from BDSM are sparse and block-diagonal, thereby
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facilitating fast simulation. Since BDSM does not involve terminal reduction, it is

more accurate over terminal-reduction based MOR. On the other hand, BDSM is

input-independent, so the ROMs can be reused for different input patterns. Due to

their block-diagonal structure, the ROMs can be efficiently simulated and allows for

parallel calculations. Furthermore, if we consider the active/dead inputs, the problem

size can be largely reduced, which provides further simulation speedup for power grids

with consideration of clock gating [108].

6.2 Review of Power Grid MOR

6.2.1 Power Grid Model

We consider the modified nodal analysis (MNA) equation of a power grid network

C
dx(t)

dt
= Gx(t) +Bu(t), y(t) = Lx(t) (6.1)

where C,G ∈ R
n×n, B ∈ R

n×m, L ∈ R
p×n. The input vector u(t) normally rep-

resents time-varying current sources from transistor-level circuit blocks; the output

vector y(t) contains the voltage or current variables of interest; the state vector x(t)

represents nodal voltages and the branch currents across inductive components. The

system matrix C includes the capacitance and inductance terms; G denotes the

conductance matrix; B and L are the input and output matrices, respectively. In

this chapter, we focus on the cases with multiple sources, which is very common in

power/ground network models. Sometimes (e.g., in transient simulation) we may

need to solve x(t) for a given u(t). In such a case, L is set to In (a dimension-n

identity matrix), so y(t) = x(t).

Provided the matrix pencil (C,G) being regular (i.e., ∃s ∈ C such that (sC −G)
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is nonsingular), in Laplace domain, the p×m transfer matrix can be written as

H(s) = L(sC −G)−1B. (6.2)

Due to the grounded capacitors at the input nodes, the DS models from power grid

networks are normally impulse-free. In power grid MOR, we attempt to find the left

and right projection matrices W,V ∈ R
n×q with q � n, to construct a small size-q

linear system Σr : (Cr, Gr, Br, Lr)

Cr
dz(t)

dt
= Grz(t) +Bru(t), yr(t) = Lrz(t) (6.3)

with Cr = W TCV , Gr = W TGV , Br = W TB and Lr = LV , such that Hr(s) =

Lr(sCr − Gr)
−1Br ≈ H(s) or yr(s) = Hr(s)u(s) ≈ y(s), subject to some accuracy

requirements.

If W = V , the projection is a congruence transform. For simplicity, we use

congruence transform in chapter. The projection matrices can be constructed by

(rational) Krylov subspace moment matching [22, 25, 106] or balanced truncations

(BT) [28]. Although BT approaches may provide a priori error estimation, they

become inefficient for such large-scale systems as power grid networks whose problem

sizes may be in the millions. Therefore, Krylov-subspace projections are discussed in

this chapter.

6.2.2 Problems with Standard Krylov-Subspace Projection

Given a matrix M and (block) vector R with compatible sizes, an l-th order (block)

Krylov subspace Kl(M,R) is the space spanning the range of a set of (block) vectors,

i.e.,

Kl(M,R) = {R,MR,M2R, · · · ,M l−1R}.
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By (block) Arnoldi algorithm [22], the projection matrices for a congruence transform

can be constructed as

W = V = Kl{(s0C −G)−1C, (s0C −G)−1B} (6.4)

with s0 being a specific expansion point. Then a size-q ROM with q = ml can

be constructed, such that Hr(s) matches the first l moments of H(s) around the

expansion point s0, i.e.,

H(s) = Hr(s) +O
(
(s− s0)

l
)
. (6.5)

If the input signals are distributed in a wide frequency band, multi-point Krylov-

subspace projection may be used to improve the numerical accuracy [106]. For exam-

ple, to match the first l moments of H(s) at k expansion points s0, s1, · · · , sk−1, the

projection matrices are constructed by the union of the Krylov subspace at each ex-

pansion point. We proceed with single-point projection, and the multi-point scheme

readily follows.

The standard projections have some problems when applied to power grid net-

works. First, the obtained ROMs are not efficient for computer-aided simulation.

Since the ROM size q increases linearly with the port number m, it is clear that the

ROM size can be very large. Since the ROM’s matrices from standard projections are

normally dense, storing the ROMs becomes challenging for a general PC, let alone

simulating the ROM. Second, the cost of projection matrix construction is high for

large many-port systems. To construct the projection matrix in (6.4), we need to

perform ml(ml−1)
2

steps of long-vector orthonormalization, whose cost quadratically

increases with m. Therefore, standard moment-matching based projection would be

inefficient for power grid reduction.

Some modifications have been made for MOR of power grid networks. These
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approaches are mainly based on terminal reduction [102–104] or the ideas similar to

extended Krylov-subspace projection [91,100,101]. The former capture the moments

of a low-rank approximated transfer matrix [102–104], rather than the original one.

Therefore, essentially the model compactness is obtained at the cost of model accu-

racy. EKS, ETBR and TBS generate compact ROMs via moment matching of the

output response under a predefined input excitation [91, 100, 101]. However, due to

their strong dependency on input signal waveforms, the ROMs need to be rebuilt

every time as the excitation vector changes. Since the cost in MOR is much more ex-

pensive over simulating a ROM, this kind of approaches may be inefficient for power

grid analysis if we need to simulate the response under different excitations.

6.3 BDSM Scheme

This section presents the proposed BDSM algorithm to generate block-diagonal struc-

tured ROMs for power grid networks. We first decompose the original MIMO (multi-

input multi-output) system into m MIMO subsystems (each with a p×m transfer ma-

trix), via input matrix splitting. Then, we show that the Krylov-subspace projection

matrix of each MIMO subsystem is in fact identical to that of a SIMO (single-input

multi-output) subsystem. To match l moments, the proposed method generates an

ml × ml ROM as by PRIMA. However, the resulting ROM’s system matrices only

contain m blocks in the diagonal, with each one being a small l × l matrix. As will

be discussed in Section 6.4, this structure makes the subsequent simulation highly

efficient. For simplicity, we only discuss the projection at a single point, and the

multi-point projection follows analogously.
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6.3.1 Input Matrix Splitting

Denoting the i-th column of B ∈ R
n×m by bi, the input matrix can be splitted to m

rank-1 matrices, i.e.,

B =
m∑

i=1

Bi, with Bi ∈ R
n×m, Bi(:, j) =





bi, if i = j

0, if i 6= j
(6.6)

for i, j = 1, 2, · · · ,m. Here Bi(:, j) denotes the j-th column vector of Bi. The linear

time-invariant (LTI) system (C,G,Bi, L) is called a splitted system, denoted by Σi.

Σi’s transfer matrix is written as Hi(s) = L(sC −G)Bi. Clearly, the original transfer

matrix H(s) can be rewritten as

H(s) =
m∑

i=1

Hi(s). (6.7)

Subsequently, the original network can be reformulated as the parallel connection of

Σi
′s, and then realized by a size-mn model (C, G, B, L):

C =




C
. . .

C


 , G =




G
. . .

G




B =
[
BT

1 · · · BT
m

]T
, L =

[
L · · · L

]
.

(6.8)

This larger-size block-diagonal system is an equivalent model of the original power

grid network. Note that Hi(s) is a p ×m matrix with only one column vector (the

i-th column) being non-zero, which is identical to the i-th column of H(s).

Generally, if we attempt to match the first l moments of a general m-port size-

mn model via standard Krylov subspace projection such as PRIMA [22] at a single

expansion point, a size-ml ROM would be generated. During the projection, the
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block-diagonal structure would be destroyed and a dense ROM would be produced,

which makes the ROM-based simulation very inefficient. Additionally, reducing a

size-mn linear system is normally much more expensive over reducing a size-n system,

since more calculations are needed in the LU decomposition, linear system solution

and Gram-Schmidt orthonormalization. In BDSM, we aim to keep the block-diagonal

structure of (6.8) such that the storage and calculations could be much cheaper in

the subsequent simulation steps. We also expect the MOR cost to be cheaper than

traditional projection frameworks on (6.1). More importantly, the resulting ROM is

expected to be reusable for repeated simulation under varying input patterns.

To proceed, we consider the i-th splitted system Σi. Excited by the input vector

u(s), the output vector is yi(s) = Hi(s)u(s), and it can be rewritten as

yi(s) = L(sC −G)−1Biu(s) = L(sC −G)−1biui(s) (6.9)

since Bi has only one nonzero vector in the i-th column. Here, ui(s) denotes the i-th

input scalar. This reformulation shows that yi(s) is only dependent on the input ui,

and Bi shields the effects induced by other input signals, although the splitted system

Σi hasm input ports. Since y(s) is the sum of yi(s) for i = 1, · · · , m, the above input

matrix splitting is physically equivalent to decomposing the output response into m

independent components, with each excited by a single input signal. This property

in fact allows for a block-diagonal structure-preserving reduction for model (6.8), at

a lower computational cost over PRIMA.

6.3.2 Block-Diagonal Structured Projection

Unlike traditional projection reduction methods that directly match the moments of

H(s), BDSM uses an indirect moment matching method. Specifically, the ROM of

each splitted model Σi, denoted by Σir, is built such that its transfer matrix Hir(s)
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matches the first l moments of Hi(s), and then all reduced models are parallely

connected to approximate the original linear network (6.1).

Let us consider the splitted model Σi : (L,C,G,Bi). At a single expansion point

s0, a projection matrix spanning the l-th order block Krylov subspace can be con-

structed:

V (i) = Kl{(s0C −G)−1C, (s0C −G)−1Bi}. (6.10)

Then the ROM of Σi, denoted by Σir : (Cir, Gir, Bir, Lir), can be constructed by the

congruence transform

Cir = (V (i))TCV (i) Gir = (V (i))TGV (i)

Bir = (V (i))TBi and Lir = LV (i).
(6.11)

It can be proved that the ROM’s transfer matrix Hir matches the first l moments of

Hi(s), i.e.,

Hir(s) = Lir(siCir −Gir)
−1Bir = Hi(s)−O

(
(s− s0)

l
)

(6.12)

Since Bi ∈ R
n×m, it seems that V (i) is a n×ml matrix and the size of the ROM Σir

would be ml. By noting that Bi has only one nonzero vector bi as its i-th column, it

is straightforward to prove

V (i) = Kl

{
(s0C −G)−1C, (s0C −G)−1bi

}
∈ R

n×l (6.13)

provided that no vectors are deflated in the orthonormalization steps. Therefore, V (i)

is in fact a n× l projection matrix, and Σir is a very small size-l ROM, although Σi

is an MIMO.

After computing the projection matrix for each splitted system Σi, a projection

matrix can be constructed for model (6.8). Using the congruence transform Cr =
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VTCV , Gr = VTGV , Br = VTB and Lr = LV , the system matrices of the final ROM

of (6.8) [denoted by Σr, which is also the final ROM of (6.1)], can be decided as

Cr = blkdiag (C1r, · · · , Cmr) , Gr = blkdiag (G1r, · · · , Gmr)

Br =




B1r

...

Bmr


 = blkdiag

(
(V (1))T b1, · · · , (V (m))T bm

)

and Lr = LV , with V = blkdiag
(
V (1), · · · , V (m)

)
.

(6.14)

Here “blkdiag” denotes the Matlab function that constructs a block-diagonal matrix

from the input arguments. It is clearly shown that the final size-ml ROM is block-

diagonal structured. All diagonal blocks of Cr and Gr (i.e., Cir and Gir for i =

1, · · · , m) are small l× l matrices. The i-th block of Br (i.e., Bir) contains only one

nonzero vector as its i-th column.

From (6.14) and (6.12), the transfer matrix of Σr can be written as

Hr(s) =
m∑

i=1

Hir(s) = H(s)−O
(
(s− s0)

l
)
. (6.15)

Therefore, Hr(s) matches the first l moments ofH(s), and BDSM has similar accuracy

to PRIMA [22]. In PRIMA, the first l moments of H(s) are matched in a matrix

format. However, in BDSM, each p × m transfer matrix Hir(s) captures the first l

moments of H(s)’s i-th column. Consequently, their sum, Hr(s), captures H(s)’s first

l moment matrices in a column-by-column style, as illustrated in the BDSM flow of

Fig 6.1.

6.3.3 Numerical Complexity

The detailed implementation is presented in Algorithm 6.1. Assume that no vectors
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Figure 6.1: The BDSM model reduction scheme for a linear network with m input
ports, which is based on column-by-column moment matching. After input matrix
splitting, the original model is decomposed into m MIMO subsystems. Then using
the projection process, Hir(s) captures the first l moments of H(s)’s i-th column.
Finally, the parallel connection of all ROMs guarantees the preservation of H(s)’s
first l moments.

are deflated in the Krylov subspace projection. To match l moments for a system

with m inputs, BDSM and PRIMA both need one sparse LU factorization, l − 1

multiplications of sparse matrices and block vectors, and l steps of backward plus

forward substitutions. The cost difference comes from the orthonormalization pro-

cess (cf. Step 3 of Algorithm 6.1). In PRIMA, all nl column vectors need to be

orthonormalized, which costs ml(ml−1)
2

O(n) complexity. While in BDSM algorithm,

the vectors are clustered into m groups, and then each group of vectors are orthonor-

malized separately. Consequently, BDSM has a total complexity of ml(l−1)
2

O(n) in the

orthonormalization step, which brings in remarkable computational savings in many-

terminal system reduction. An explanation of the cluster-and-orthonormalization

flow is given in Fig 6.2.

Next, we contrast the resulting ROMs. PRIMA generate dense ROMs with

O(m2l2) nonzeros, while only ml2 nonzero entries need to be stored in a BDSM

ROM. When m becomes large, the ROMs by BDSM would be very sparse (with 1
m
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Algorithm 6.1: Block-diagonal structured MOR (BDSM)

Input: C,G ∈ R
n×n, B ∈ R

n×m,L ∈ R
p×n, and l.

Output: Matrices of the reduced model Cr, Gr, Lr and Br.
begin

1. Perform LU factorization: LU = (s0C −G), calculate X = U−1(L−1B),
and normalize each column of X;
2. Set V (i) = X(:, i) for i = 1, · · · , m;
3. for j = 1, · · · , l − 1 do

calculate Xtemp = CX;
calculate X = U−1(L−1Xtemp);
for j = 1, · · · , l − 1 do

orthonormalize X(:, i) to all columns of V (i) to obtain x̄i;
update V (i): V (i) =

[
V (i), x̄i

]
;

4. Construct the reduced model for Σi as in (6.11) for i = 1, · · · , m, and
then form the reduced model of (6.1) by (6.14).

sparsity). The resulting sparse and block-diagonal structured ROMs would signif-

icantly facilitate numerical simulation, as will be demonstrated in Section 6.4 and

Section 6.6.

6.4 Fast Power Grid Simulation

6.4.1 BDSM-Based Simulation

This section discusses the BDSM-based transient simulation for power grid networks.

Using backward Euler discretization, the time-domain circuit equation can be written

as

(
C

h
−G)x(t) = C

x(t− h)

h
+Bu(t), y(t) = Lx(t) (6.16)

which is a large-size linear system solution problem and extremely expensive to solve.

Here the small constant h is a predefined time step. After performing BDSM MOR,

we replace the original model with the much smaller block-diagonal structured ROM,
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Figure 6.2: Projection matrix construction in the proposed BDSM scheme. Here,
Mj = ((s0C −G)−1C)

j−1
(s0C − G)−1B, j = 1, · · · , l. The i-th columns of Mj’s are

grouped to form V̄i (i = 1, · · · ,m). And then Vi is computed such that Vi = V̄i, for
i = 1, · · · , m. Note that in PRIMA the projection matrix for (6.1) is constructed
without clustering, such that V = span{M1, · · · ,Ml} with more computational cost.

i.e.,

(
Cr

h
−Gr)

︸ ︷︷ ︸
Ar

z(t) = Cr
z(t− h)

h
+Bru(t)

︸ ︷︷ ︸
br(t)

, yr(t) = Lrz(t).
(6.17)

If we attempt to solve all elements of x(t), the output matrix could be set as L = In,

thus Lr = IV with I = [In, · · · , In] ∈ R
n×mn, and then x(t) ≈

[
V (1), · · · , V (m)

]
z(t).

Due to the special structure of Ar, z(t) can be directly solved as

z(t) = A−1
r br(t). (6.18)

The dimension of Ar is ml, which could be up to tens of thousands in power grid

problems. However, due to the block-diagonal structure, the matrix inversion can be

finished at a low cost of O(ml3). Since l is very small (at most several tens), the

matrix inversion is trivial to compute. After that, z(t) can be computed by matrix-

vector production at a cost of O(ml2). Therefore, using the BDSM ROM, the total
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cost of power grid simulation is

Costtotal = O(ml3) +NtO(ml2) (6.19)

where Nt is the number of time points used in simulation.

We assume that the state vector of Σir is zi(t), denote Air = Cir

h
− Gir and

bir(t) = Cir
zi(t−h)

h
+Biru(t), y(t) ≈ Lrz(t) can be represented as

y(t) ≈
m∑

i=1

yir(t)︷ ︸︸ ︷
Lir A

−1
ir bir(t)︸ ︷︷ ︸
zi(t)

. (6.20)

Then we propose two methods that can be used to further speed up the above calcu-

lation.

6.4.2 Problem Size Scaling

Assume that the power grid network is initially zero-conditioned, then zi(t) = 0 if the

i-th input excitation ui(t) is zero during the simulation period, because all entries of

Bir are zero except for its i-th column. This assumption is reasonable in power grid

simulation, especially when power gating technique is adopted in low-power design.

Under power gating, many circuit blocks are disabled and thus the excitations from

these “dead” transistor networks can be regarded as zero [108].

If ui(t) = 0 in the simulation, Σir can be skipped in the simulation. To simplify

the discussion, we define a vector ξ ∈ R
m×1:

ξj =





1, if the j-th input is active

0, if the j-th input is zero.
(6.21)

Provided that ξ has me nonzero elements, which means that there are me active
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inputs, then a scaled ROM Σre : (Cre, Gre, Bre, Lre) can be used to replace Σr in the

simulation. Here Σre is a LTI obtained by the parallel connection of all Σjr’s with

uj(t) being active (or nonzero), and Cre, Gre, Bre, Lre are obtained by deleting the

blocks inside Cr, Gr, Br, Lr corresponding to zero inputs, respectively. Denote the

state vector of Σre by ze(t), then the power grid model can be solved by

(
Cre

h
−Gre)

︸ ︷︷ ︸
Are

ze(t) = Cre
ze(t− h)

h
+Breu(t)

︸ ︷︷ ︸
bre(t)

y(t) ≈ yr(t) = Lreze(t).

(6.22)

Clearly, the problem size has been reduced to qe = mel, and the computational cost

after size scaling would be reduced to

Costscale =
me

m
Costtotal. (6.23)

To distinguish the ROMs before and after size scaling, we call the scaled ROM Σre as

effective reduced-order model (EROM) and its size qe as effective size. The problem

size scaling procedure is summarized in Algorithm 6.2.

Algorithm 6.2: Problem Size Scaling

Input: Cr, Gr ∈ R
q×q, Br ∈ R

q×m, Lr ∈ R
p×q, ξ ∈ R

m×1.
Output: Matrices of the EROM: Cre, Gre, Lre and Bre.
begin

1. Initialize the EROM: Cre = Gre = Lre = Bre = [ ];
2. for i = 1, · · · , m do

if ξi 6= 0 then

Cre = blkdiag(Cre, Cir), Gre = blkdiag(Gre, Gir), Bre =

[
Bre

Bir

]
,

Lre =
[
Lre Lir

]
.
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6.4.3 Parallel Computation

Equation (6.20) shows that yir(t) only depends on Lir, Air and bir(t). On a multi-

core platform, ROMs of the splitted systems can be clustered into several groups, and

then each group can be simulated simultaneously. Provided the m splitted ROMs are

clustered into N groups (N ≤ m), the simulation cost would be reduced to

Costparallel = Nb

(
O(l3) +Nt ×O(l2)

)

with Nb =





m

N
, if

m

N
=
[m
N

]

([m
N

]
+ 1
)
, otherwise.

(6.24)

Here, Nb is the maximum block number in each group, and [o] represents the integral

part of o. In the extremal case, an m× speedup can be achieved if each Σir is regarded

as an individual group (when N = m).

Simulation of Σre (the EROM) can be tackled in a similar way. Keeping N

unchanged and replacing m with me in (6.24), a new maximum block number Nbe

will be obtained which is normally smaller than Nbe. Therefore, the two acceleration

schemes can be used together to achieve the fastest computation if the active port

number is very large.

6.5 Discussions of BDSM

6.5.1 Comparison with Existing Power Grid MORs

Table 6.1 has compared BDSMwith some typical massive-port MOR schemes: EKS [100],

PRIMA [22], and SVDMOR [102] (a typical MOR based on terminal reduction). In

PRIMA and BDSM, we assume that l moments of the transfer matrix are matched;

in SVDMOR, we assume that the port compression ratio is α (i.e., the ratio of port
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MOR ROM ROM Matched ROM ROM
method size pattern moments reusable? scalable?

BDSM ml block-diagonal l yes yes
PRIMA ml full dense l yes no

SVDMOR αml full dense N/A yes no
EKS l full dense N/A no no

Table 6.1: Comparison of various multi-port MOR schemes. In SVDMOR, α repre-
sents the port compression ratio.

number after terminal reduction w.r.t the original port number), and then l mo-

ments of the “thin” transfer matrix is matched; in EKS, it is assumed that the first

l moments of the response under a predefined excitation are captured. In SVDMOR

and EKS, the “true” moments of H(s) are not captured, so they are not exact mo-

ment matching schemes. Among these approaches, PRIMA and SVDMOR generate

full dense matrices, which are expensive for subsequent frequency/time-domain sim-

ulation. Although SVDMOR could compress the port size to some extent (at the

cost of accuracy sacrifice), the obtained dense-matrix ROMs are still memory- and

time-consuming for many-terminal systems. And when the input-output correlation

is not strong, large errors may be induced by the terminal reduction process. EKS

is capable of generating very small (size-l) macromodels, but the resulting ROMs

are not reusable. These problems lead to remarkable efficiency degradation in ROM-

based simulation. Compared with these existing MORs, BDSM does not have these

limitations, thereby allowing for more efficient simulation of massive-port networks.

We remark that EKS ROM is very inaccurate under varying input patterns, due to

its strong dependency on the predefined input waveforms. To increase its accuracy,

more moments of the response should be captured. However, as will be shown in

Section 6.6, EKS is not comparable with PRIMA and BDSM in terms of accuracy,

even if the ROM size is increased to ml, at a cost similar to that of PRIMA which

would be inefficient for power grid networks.
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6.5.2 A Variant: Row-by-Row BDSM Scheme

If the input port number is larger than the output port number (i.e., p < m), a variant

of BDSM based on row-by-row moment matching could be developed to generate a

smaller ROM. First, the output position matrix L could be splitted as

L =

p∑

i=1

Li, with Li ∈ R
p×n, Li(j, :) =





li, if i = j

0, if i 6= j
(6.25)

for i, j = 1, 2, · · · , p. Here li denotes the i-th row of L. Then the splitted LTI

system Σi can be realized by (C,G,B, Li), and the transfer matrix is written as

H̃i(s) = Li(sC −G)B, and the original transfer matrix can be expressed as

H(s) =

p∑

i=1

H̃i(s). (6.26)

For Σi, a projection matrix can be constructed by

V (i) = Kl{(s0C −G)−TCT , (s0C −G)−TLT
i } (6.27)

which is an n × l matrix since Li only contains one nonzero row vector. After that,

Σir can be generated by the approach in (6.11). And finally, by parallel connection of

all Σir’s, a size pl × pl block-diagonal structured ROM could be constructed for the

original power grid model. This model contains p diagonal blocks with each block

being size-l.

It can be proved that Σir’s transfer matrix captures the i-th rows of H(s)’s first

l moment matrices. Therefore, this MOR is in fact a row-by-row moment matching.

Due to the special matrix structure, the resulting ROM can also be simulated in a

parallel style. However, using row-by-row moment matching, the problem size can

not be scaled with the active input number, because the input matrix have multiple
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nonzero columns in each block.

6.5.3 System Passivity

A passive system is one that does not generate energy internally. System passivity is

expected to be preserved when the transfer matrix is square (i.e., p = m) and repre-

sents the admittance/impedance parameters. In such a case u(t)Ty(t) is a power met-

ric, and the resulting ROM should be positive real. The proposed BDSM can not au-

tomatically guarantee system passivity, thus passivity enforcement/compensation [10]

procedures are needed if nonpassive models are produced. The main bottleneck of

passivity enforcement on Σr lies in passivity verification. To ensure that all possible

nonpassive regions are detected, Hamiltonian method [10] or generalized Hamiltonian

method (GHM, c.f. Chapters 2 & 3) should be used which, however, consume O(q3)

complexity (q is the size of Σr). Since q might be up to thousands for multi-port

models, the passivity verification and enforcement can be prohibitively expensive.

Fortunately, the block-diagonal structure of Σr can significantly facilitate the cal-

culations. For simplicity, we assume that Σr is obtained by single-point projection

thus the size of Σir is l. We further assume that Cir is nonsingular after projec-

tion (otherwise, the Weierstrass decomposition [with O(l3) complexity] or canonical

projector technique [20] could be used to convert Σir to a nonsingular system), then

Σir can be transformed to a standard state-space model Σs
ir: (I, G

s
ir, B

s
ir, Lir), with

Gs
ir = C−1

ir Gir and Bs
ir = C−1

ir Bir. An eigenvalue decomposition can be performed on

Gs
ir at a cost of O(l3)

Gs
ir = XiΛiX

−1
i (6.28)

where Λi is a diagonal matrix whose diagonal elements contain the eigenvalues of Gs
ir.

Then Σir can be realized by (I, Λi, X
−1
i Bs

ir, LirXi), and similar to Bi, X
−1
i Bs

ir also

has only one nonzero vector at the i-th column. To this end, Σr can be realized as a
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Figure 6.3: The upper part represents a power grid with consideration of clock gating;
the bottom part is the RLC model.

diagonal-structured LTI via parallel connection of all Σi’s. And finally, the passivity

test and enforcement can be largely simplified via Laguerre’s method at the cost of

only O(q2) [109].

However, we remark that, unlike interconnect macromodeling, in may cases, sys-

tem passivity is not necessarily required to be preserved in power grid reduction. First,

the input and output numbers might not be identical (e.g., in some cases y(t) = x(t)

and p � m), thus H(s) is not a square matrix. Second, even though m = p, the

output variables may not be the nodal voltage (or branch current) variables corre-

sponding to the input current (or voltage) excitations, which means that physically

H(s) does not represent the admittance/impedance parameters.
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6.6 Numerical Results

We use several multi-domain clock gating power grid benchmarks to verify the pro-

posed scheme. As shown in Fig. 6.3, the yellow rectangular represents a power grid

system, which is modeled as a large-scale linear circuit including resistance, capac-

itance and packaging inductance (cf. the bottom part of Fig. 6.3). Time-varying

current sources are used to describe the behavior of active circuit blocks. If clock

gating technique is adopted in low power design to control the behavior of transis-

tor circuit blocks, only part of the transistor networks are active (as marked by the

red areas in Fig. 6.3), whereas other blocks are disabled. The current sources from

these “dead” blocks can be regarded as zero in transient simulation [108]. The MNA

LTI models are extracted from some industrial Spice netlists. All experiments are

performed on a 2.6GHz 4-GB RAM Linux workstation.

6.6.1 MOR Efficiency and Accuracy

We begin by timing different MOR schemes using single-point moment matching on 5

RLC power grid benchmarks (ckt1-ckt5 in Table 6.2). The port numbers range from

several tens to over 1k ; and the node numbers are from 6k to 1.7M. For simplicity, all

ports are first assumed to be active and excited by unit-impulse signals in EKS [91]; in

SVDMOR, α is set around 0.6 for all examples. Specifically,H(s) is first approximated

by UT
l H(s)Ur with H(s) ∈ C

p̂×m̂, p̂ = [αp] and m̂ = [αm] [102], and then the “thiner”

LTI H(s) is reduced by PRIMA. Since sparse LU may still introduce large amounts

of nonzero elements for some cases, this factorization is skipped in ckts3-5 to save

memory, at the cost of more simulation time.

The CPU times and resulting ROM sizes are listed in Table 6.2. With the same

number of moments matched, BDSM and PRIMA generate ROMs with the same size.

Since much fewer long-vector orthonormalizations are needed, BDSM is faster than
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Figure 6.4: The matrix structures of ckt1’s ROMs, obtained from BDSM and PRIMA,
respectively.

PRIMA, and this speedup becomes more remarkable as the problem size and port

number increase. In SVDMOR, although the terminals can be reduced to some extent,

it still needs more orthonormalization steps and thus is slower than BDSM in many-

terminal cases (cf. ckts3-4). Even more, PRIMA and SVDMOR may fail in very-

large-size many-port cases (cf. ckts4-5). This is because: 1) the resulting full-dense

ROMs of PRIMA and SVDMOR can be memory-consuming in many-port cases; 2)

the “fat” projection matrix V (∈ R
n×ml or Rn×αml) is also dense and even more CPU-

consuming. While in BDSM the projection matrix V (i) for each splitted system is very

thin, and the final sparse block-diagonal ROM is cheap to store. To illustrate this,

Fig. 6.4 has compared the ROM matrix structures of ckt1, from BDSM and PRIMA,

respectively. Due to the special structure of Gr, Cr and Br, much smaller EROMs

can be extracted from BDSM ROMs if only a small portion of ports are active (cf.

column 4 of Table 6.2) under clock gating, which can be very efficient in subsequent

simulation. EKS is the fastest one among these schemes. However, the EKS ROM

need to be rebuilt each time when the input pattern changes, making the simulation
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ckt node
port number PRIMA [22] SVDMOR [102] EKS [100] BDSM No. of

total active Time Size Time Size Time Size Time
Size matched

ROM EROM moments

ckt1 6k 51 6 29.37 306 35.60 180 0.30 6 8.18 306 36 6
ckt2 20k 108 19 5.0× 103 1080 1.4× 103 640 15.4 10 3.7× 103 1080 190 10
ckt3 80k 204 21 1.2× 104 2040 1.0× 104 1220 17.7 10 7.1× 103 2040 210 10
ckt4 123k 315 46 break down N/A break down N/A 39.8 8 2.6× 104 2520 368 8
ckt5 1.7M 1429 103 break down N/A break down N/A 610 10 5.9× 104 14290 1030 10

Table 6.2: CPU times (sec) of various MOR schemes. In SVDMOR, we match the
moments of the approximated low-rank transfer matrix after terminal reduction. In
EKS, the moments of the response under unit impulse excitations are captured, but
the transfer matrix’s moments can not be captured, therefore, the EKS ROM is not
reusable.

very inefficient in practice. Furthermore, it is also difficult to exactly predict the

input signals of a power grid network, whereas inexactly modeled inputs may make

the EKS ROM unreliable. Therefore, a reusable ROM is preferred for repeated circuit

simulation. As shown by Table 6.2, BDSM provides the best numerical efficiency

among those reusable power grid MOR schemes.
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Figure 6.5: Comparison of MOR accuracy for ckt1.

Fig. 6.5 plots the transfer function of port(1,2) for ckt1. In EKS, all inputs are set
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ckt
stime PRIMA [22] SVDMOR [102] EKS [100] BDSM No. of No. of

without
stime size stime size stime size

without scaling with scaling expansion matched
MORs stime size stime size points moments

ckt1 320 266 1020 44.3 600 0.20 20 12.1 1020 1.31 120 5 20
ckt2 529 2.3× 103 3240 331 1920 0.50 30 43.2 3240 6.20 570 6 30
ckt3 2.5× 103 1.8× 103 3060 259 1830 0.05 15 23.7 3060 2.44 315 5 15
ckt4 5.1× 103 N/A N/A N/A N/A 0.20 15 61.9 4725 8.84 690 5 15
ckt5 5.9× 104 N/A N/A N/A N/A 0.21 18 291 25722 21.7 1854 6 18

Table 6.3: CPU times (sec) of 1000-point backward Euler time-domain simulation via
ROMs obtained by multi-point projection.

as unit impulse signals. For fairness, 6 moments are matched in all MOR schemes.

EKS’s size-6 ROM has very low accuracy. Then we construct a larger EKS ROM by

matching 306 moments of the response, which costs 36sec for ckt1. However, the size-

306 EKS ROM is still very inaccurate. This is not surprising, because the EKS ROM

under a specific excitation is not reusable for new input patterns. Fig. 6.5 plots the

relative errors of these MOR schemes. PRIMA and BDSM has very high accuracy

(relative error < 10−6 for ω < 1010rad/sec), due to their exact moment matching

properties. The error of SVDMOR ROM is several orders larger over those of BDSM

and PRIMA, due to the error-prone terminal reduction.

6.6.2 Time-Domain Performance

We continue to compare the behaviors of different ROMs in time-domain transient

simulation. Since practical signals are usually distributed in wide frequency bands,

rational Krylov-subspace [106] projection is employed to improve numerical accuracy.

In all MORs, l moments are matched at each expansion point, so totally ltot = lk

moments would be matched if k points are used. For simplicity, pulse waveforms

are added to all active ports as excitations. The CPU times of 1000-step transient

simulation (denoted by “stime”) are listed in Table 6.3. Because PRIMA and

SVDMOR generate large dense matrices, the numerical efficiency of their ROMs

degrades remarkably in large multi-port systems, and solving the dense ROMs can
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Figure 6.6: The voltage waveforms of node-37 in ckt3.

be even more expensive than simulating the original networks (as shown by ckt2).

Thanks to the sparse block-diagonal structure, BDSM ROMs can be simulated very

fast even when the ROM size reaches above 20k for many-terminal models (cf. ckt5).

Furthermore, with consideration of clock gating, EROM could further speedup the

time-domain simulation (which is around 10× in our tested cases). Although EKS is

very fast in the subsequent simulation, EKS ROMs need to be rebuilt for repeated

simulation. On the other hand, EKS is not comparable to other MOR schemes in

terms of accuracy. To show this, Fig. 6.6 plots the voltage waveforms at 37th node of

ckt3, where 5 expansion points are utilized in all projection schemes. Clearly, EKS

ROM’s waveform could not capture the behavior of ckt3 with acceptable accuracy

(even when the ROM size is increased to 3060, whose simulation cost is about 2 ×
103sec). The waveforms from ROMs of BDSM, PRIMA and SVDMOR are close

to the original one. Among them, the result from BDSM can not be distinguished

from the original one, and the error is below 10−5. The parallel acceleration is not

implemented here, as its speedup factor has been analytically derived.
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6.7 Summary

This chapter has proposed a novel model reduction scheme, BDSM, for multi-port

systems such as power grid networks. BDSM has similar accuracy to PRIMA due to

the same number of matched moments; it is faster and more memory-efficient over

PRIMA (and SVDMOR in many-terminal cases) in model generation, since lots of

long-vector orthonormalizations are skipped; unlike EKS and TBS, because BDSM

is input-independent, the obtained ROMs are reusable for time/frequency-domain

analysis under varying input patterns; more importantly, BDSM ROMs have block-

diagonal structures which in turn allow for very fast subsequent simulation. Some

acceleration techniques in the subsequent simulation, including problem size scaling

and parallel computation, have also been presented. Additional issues such as row-by-

row moment matching and passivity issue are discussed. The efficiency and accuracy

of BDSM in both model extraction as well as subsequent time-domain simulation

have been verified by industrial benchmarks.



Chapter 7

Thesis Conclusion

This thesis is centered on some theoretical and numerical problems on linear time-

invariant descriptor systems (LTI DSs), with emphasis on their passivity assessment

and model order reduction (MOR). We focus on the LTI cases, rather than linear

time-variant (LTV) or nonlinear cases, because: 1) there exist many open questions

for LTI DSs; 2) as the fundamentals of LTV and nonlinear cases, the advancements

on LTI DS studies would be applied to analyze more complex circuit systems.

7.1 Part 1: DS Passivity Assessments

Specifically, in the first part (Chapters 2 to 4), we focus on the passivity assessments

of LTI DSs, including both admittance/impedance systems and scattering systems.

Works in this part include:

1. A generalized Hamiltonian method (GHM) and its half-size version (HGHM)

have been developed, including theoretical derivation and numerical realization.

The most significant advantage of GHM/HGHM passivity test is that they are

purely algebraic routines, and therefore the test results are very accurate. Not

only they can tell a LTI DS is passive or not, but they also accurately locate

152
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the possible nonpassive regions, and thereby provide a versatile tool for DS

passivity enforcement (if necessary).

2. Based on the work of Chapter 2, we have further presented a projector-based

passivity test for large-size LTI DS models which can not be tackled by GHM.

It is the first time that we use spectral projectors, based on a novel fast con-

struction, to efficiently decompose a large DS model to its proper and improper

subsystems. After the projector-based system decomposition, the proper part

is tested by GHM based on a fast numerical implementation. The fast GHM

implementation only computes a small part of the generalized eigenvalues that

are close to the imaginary axis, using a multi-shift Arnoldi algorithms. Since

this method is based on Krylov iteration, the algorithm is CPU-friendly and is

applicable to very large circuit models.

3. We notice that in high-frequency applications, S-parameters are more frequently

used. Motivated by this, Chapter 4 has developed the S-parameter generalized

Hamiltonian method (S-GHM) and its half-size algorithm (S-HGHM). Similar

to GHM and HGHM, S-GHM and S-HGHM can locate all possible nonpassive

regions with high numerical accuracy. Furthermore, we have also proposed a

passivity test flow for admittance/impedance DSs, based on S-GHM and S-

HGHM. It is realized by two steps. First, the admittance/impedance model

is converted to a “scattering” DS via Moebious transform. After that, the

Moebious-transformed system is tested by S-GHM or S-HGHM to find the pos-

sible nonpassive frequency intervals.

An interesting observation about the (S-parameter) generalized Hamiltonian meth-

ods is that, they are the superset of standard Hamiltonian methods and therefore
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applicable to either DS or standard state-space models. Besides that, based on equiv-

alent model conversion, they can be applied to more general DSs or standard state-

space LTI models, without restrictions on system matrices as required by traditional

approaches.

7.2 Part 2: DS Model-Order Reduction

The second part of this thesis aims to solve two issues about DS MOR:

1. Passivity and improper part preserving MOR;

2. Efficient MOR for multi-port LTI DSs that allows for fast subsequent circuit

simulation.

Chapter 5 focuses on the first issue. The improper part of a DS is preserved

by additive system decomposition based on fast spectral projector technique. After

additive decomposition, the improper part remains unchanged, and the proper part is

reduced via DS-format positive-real balanced truncation (DS-PRBT). Since the main

bottleneck of DS-PRBT is in solving the dual generalized algebraic Riccati equations

(GAREs), we have developed a generalized quadratic alternate implicit (GQADI)

algorithm to efficiently compute the positive-real Gramians. The proposed GARE

solver is faster than the most advanced solver (e.g., Newton’s iteration based on

LR-ADI). Detailed algorithmic description, including convergence and well posedness

have been presented. To further speed up the matrix solver, a low-rank version (LR-

GQADI) has also been devised, which reduces the complexity from O(n3) to O(n2).

Finally, we aimed to construct “good” macromodels for multi-port LTI DS, such

as power grid models. Due to the large number of ports, existing MOR techniques

are not efficient for power grids. Some fast algorithms have been developed at the

expense of model accuracy. To overcome this problem, we have developed a MOR
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routine based on input matrix splitting, called BDSM. The BDSM ROM is as accurate

as standard Krylov-subspace based moment-matching MORs; its resulting ROMs are

block-diagonal structured, and thereby are cheap to solve and easy to compute in a

parallel fashion; a very interesting result about BDSM is that, when used in power

grid simulation, the ROM size can be further significantly scaled down if power gating

is considered; finally and most importantly, the resulting ROM is reusable, so it could

be used under various input wave patterns.
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