
Coded Computing Meets Quantum Circuit
Simulation: Coded Parallel Tensor Network

Contraction Algorithm
Jin Lee Sofía González-García

University of California, Santa Barbara University of California, Santa Barbara
hojin@ucsb.edu sofiagonzalezgarcia@ucsb.edu

Zheng Zhang Haewon Jeong
University of California, Santa Barbara University of California, Santa Barbara

zhengzhang@ece.ucsb.edu haewon@ucsb.edu

Abstract—Parallel tensor network contraction algorithms have
emerged as the pivotal benchmarks for assessing the classical
limits of computation, exemplified by Google’s demonstration of
quantum supremacy through random circuit sampling. However,
the massive parallelization of the algorithm makes it vulnerable to
computer node failures. In this work, we apply coded computing to
a practical parallel tensor network contraction algorithm. To the
best of our knowledge, this is the first attempt to code tensor
network contractions. Inspired by matrix multiplication codes,
we provide two coding schemes: 2-node code for practicality in
quantum simulation and hyperedge code for generality. Our 2-
node code successfully achieves significant gain for f -resilient
number compared to naive replication, proportional to both the
number of node failures and the dimension product of sliced
indices. Our hyperedge code can cover tensor networks out of
the scope of quantum, with degraded gain in the exchange of its
generality.

I. INTRODUCTION

The search for quantum advantage hinges on the fact that
the dynamics of quantum computers are hard to simulate with
classical resources [1]–[3], given the exponential growth of
the state space with the number of qubits. Tensor networks
are arguably the most important classical tool for simulating
quantum circuits. Algorithms such as tensor network con-
tractions [4]–[13], together with contraction order optimiza-
tion [14] and parallelization by tensor index slicing [12] lie
at the heart of determining a beyond-classical threshold in
quantum computer experiments. Google’s quantum supremacy
work relied on this classical benchmark [15], [16]. However,
the scope of tensor network applications extends far beyond
quantum circuit simulation. They are widely used as ansätze
for many-body wavefunctions: Matrix Product States (MPS)
for one-dimensional (1d) systems [17], [18], and their higher
dimensional generalization in the form of Projected Entangled
Pair States (PEPS) [19]. Moreover, tensor networks have found
potential applications in machine learning [20]–[23], quantum
chemistry [24]–[26] and other optimization problems [27], [28].

Despite all the great success and extensive recognition how-
ever, tensor network simulation faces reliability challenges
due to the massive parallelization for efficiency. To effec-
tively simulate state-of-the-art quantum circuits, tensor network
contraction algorithms must be distributed across millions of
classical machines. Distributing workloads to billions of threads
inevitably increases the rate of errors. At the same time,
as we are incorporating more diverse devices with different
computational capacities (e.g., computation-specific accelera-
tors, quantum processors), the variance in node response time
significantly increases. Managing such uncertainties entirely at

the operating systems (OS) level puts too much strain on the
already overloaded OS.

In this paper, we propose a node failure tolerant scheme
applied at the algorithm level by applying coded computing
to tensor network contraction. Coded computing, also known
as algorithm-based fault tolerance (ABFT), has proposed inno-
vative ways to add redundancy in the computation using error-
correcting codes. Coded computing strategies were developed
for essential numerical algorithms such as matrix multiplica-
tion [29]–[34], FFT [35], [36], and matrix factorization [37],
[38]. Matrix multiplication, in particular, has been a focal point
of extensive research as it is an important backbone of scientific
and machine learning applications.

Our contributions of this paper are for both tensor network
and coded computing community. For the tensor network com-
munity, we provide a first work on parallel tensor network
contraction algorithm that can be resilient to stragglers and
failures. For the coded computing community, we provide
elegant generalization of matrix multiplication codes, to the
extremely expressive high-dimensional linear algebraic frame-
work of tensor network.

II. BACKGROUND AND NOTATIONS

In this section, we provide a concise overview of tensor
network contraction and its parallel algorithms, as well as the
notations employed throughout the paper. For a more extensive
review of this subject, refer to [39]–[42].

A. Tensor Networks and contraction

Tensors are multidimensional arrays that extend the concepts
of one-dimensional vectors and two-dimensional matrices to
higher dimensions, and the tensor network formalism represents
linear operations between tensors using graph structures. A
tensor network consists of nodes and edges, where each node
represents a tensor, and each edge connected to the node
represents the index of the tensor. Diagrammatic representations
of one-dimensional tensor Ai, two-dimensional tensor Bi,j ,
and three-dimensional tensor Ci,j,k are shown in Fig 1. We
use bold text with its index labels given in subscript for tensors.
E.g., Bi,j is a two-dimensional tensor with indices labeled as
i and j; note that this is not a scalar entry B[i, j]. Ci,j,k is a
three-dimensional tensor and C1,j,k is a two-dimensional tensor
when the first index is fixed to i = 1.

An edge connecting two nodes in a tensor network represents
a contraction operation, which generalizes an inner product of
the dimension—pairwise multiplication followed by summa-
tion. For instance, matrix multiplication can be represented as

ar
X

iv
:2

40
5.

13
94

6v
1

 [
cs

.I
T

]
 2

2
M

ay
 2

02
4

a b c

Ai B
i j

C

i

j k

Figure 1: Diagrammatic representation and corresponding array for
(a) one dimensional tensor Ai (b) two dimensional tensor Bi,j (c)
three dimensional tensor Ci,j,k

A

B C

j

a

cb

T c

a

b

A

B C

k j

l

a

cb

T c

a

b

A Bi j k Ci ka

b c

Figure 2: Diagrammatic representation of tensor network con-
traction for (a)

∑
j Ai,jBj,k (b)

∑
k,j,l Aa,j,kBb,k,lCc,l,j (c)∑

j Aj,aBb,jCj,c

Fig. 2(a), where two nodes A and B are connected through the
edge j, representing C[i, k] =

∑
j A[i, j]B[j, k]. With a slight

abuse of notations, we will also write it in a tensor form as
Ci,k =

∑
j Ai,jBj,k. In Fig. 2(b), we illustrate contracting

three edges (indices j, k, l) between three tensors A,B,C,
resulting in a tensor T a,b,c =

∑
j,k,l Aa,j,kBb,k,lCc,l,j . The

edges j, k, l are called closed edges and a, b, c are called
open edges. Note that the indices of closed edges disappear
after the contraction and the final tensors are indexed only by
open edges. With another slight abuse of notation, we use the
terms edge and index interchangeably in this paper. In tensor
networks, there can also be hyperedges that connect more than
two nodes as shown in Fig. 2(c). We call an index shared by
m tensors as an m-node index. Based on this diagrammatic
representation, we refer an index shared by more than two
tensors as a hyperedge.

When there are multiple closed edges like in Fig. 2(b),
contraction is done sequentially, and the order of contraction
does not affect the final outcome. However, the order of con-
traction can significantly change the computational complexity,
and choosing an optimal contraction order is a NP-complete
problem [4]. Markov and Shi [4] proved that the computational
complexity of the optimal contraction order for a tensor network
is decided by its graph theoretical property. Hence, the topology
of a tensor network decides its computational cost.

B. Parallel tensor network contraction

In a nutshell, a tensor network is an extremely expressive
formalism that represents a series of arbitrary product sum
operations for high-dimensional tensors. As the tensor network
becomes more complex and the sizes of tensors become large,
tensor network contraction can be very computationally expen-
sive. To scale up the computation, researchers have proposed
parallel tensor network algorithms [12] and showed break-
throughs in quantum circuit simulation [6], [7], [43].

In this paper, we build up on the work by Chen and
Zhang [12], that decomposed tensor network contraction into an
highly parallel algorithm. To explain the parallelization scheme,
we will use an example network given in Figure 3:

T f,g =
∑

i,j,k,l,m,n

AiBi,j,kCj,lDk,lEk,mF l,n,fGm,n,g

A B

C

E

D

F

G

i
j l

k

m
n

f

g

A BL

C

EL

DL

F

G

i
j l

m

n

f

g

σL

A B2

C

E2

D2

F

G

i
j l

m

n

f

g

σ2

A B1

C

E1

D1

F

G

i
j l

m

n

f

g

σ1

…….

…….

slice by k

Figure 3: Parallelization scheme by slicing index k for the sample
tensor network given in II-B.

=
∑

i,j,l,m,n

(AiBi,j,1Cj,lD1,lE1,mF l,n,fGm,n,g)

+
∑

i,j,l,m,n

(AiBi,j,2Cj,lD2,lE2,mF l,n,fGm,n,g)

...

+
∑

i,j,l,m,n

(AiBi,j,LCj,lDL,lEL,mF l,n,fGm,n,g)

= σ1 + σ2 + . . .+ σL = σfinal, (1)

where σk̃ for k̃ ∈ {1, 2, · · · , L} is given as:

σk̃ =
∑

i,j,l,m,n

AiBi,j,k̃Cj,lDk̃,lEk̃,mF l,n,fGm,n,g. (2)

We say that the tensor network is sliced by the index k, and
each σk̃ is a sliced partition of the original tensor network.
Chen and Zhang [12] proposed an algorithm that distributed
the computation of each sliced partition to a separate compute
node and summing them up at the end to obtain σfinal. For
computing the sliced partition σk̃, no inter-node communication
is required, which makes the algorithm embarrassingly parallel.
In Figure 3, we show the diagrammatic representation of
slicing: the corresponding edge for the slicing index k is erased
and the connected tensors Bi,j,k, Dk,l, Ek,m are replaced with
sliced subtensors (e.g., Bi,j,1, D1,l, E1,m)).

For the rest of the paper ,we further simplify the notations by
abstracting out all parts not related to the slicing operation as
T−, where ‘−′ denotes all indices other than the slicing index.
E.g., (2) can be written as:

σk̃ =
∑
−

(Bk̃,−Dk̃,−Ek̃,−)T−. (3)

Tensors A,C, F,G that are not connected to the edge k are
all abstracted into a big tensor T−. Finally, we say two edges
are adjacent if they are connected with the same node and non-
adjacent if they do not share a node.

III. SYSTEM MODEL AND PROBLEM STATEMENT

The goal of this paper is to develop coded computing
strategies for parallel tensor network contraction for a given
tensor network G(V,E). For parallel tensor network contrac-
tion, we adopt Chen & Zhang’s algorithm [12] described in
Section II-B.We assume a computing model similar to [29],
[30] which consists of a master compute node (master) that
distributes computation inputs and assign tasks to worker
compute nodes (workers). Workers then perform the assigned
computation job and report the result back to the master. With
Chen & Zhang’s algorithm [12], each worker will compute a
sliced tensor network σk and the master node will aggregate
the outputs to obtain σfinal =

∑
k σk as shown in Fig. 4.

An important distinction from the model given in [29] is that
for high-dimensional tensor contraction, it is often compute-
bound rather than storage-bound. Thus, instead of a storage
constraint, we impose that each worker in the coded computing

A B

C

E

D

F

G

i
j l

k

m

n

f

g

A Bx

C

Ex

Dx

F

G

i
j l

m

n

f

g

A Bx

C

Ex

Dx

F

G

i
j l

m

n

f

g

A Bx

C

Ex

Dx

F

G

i
j l

m

n

f

g

. . .

. . .

Worker 1

Worker 2

Worker n

Master

Sliced Network 1

Sliced Network 2

Sliced Network n

Original Network failure

summation

A B

C

E

D

F

G

i
j l

k

m

n

f

g

A Bx

C

Ex

Dx

F

G

i
j l

m

n

f

g

A Bx

C

Ex

Dx

F

G

i
j l

m

n

f

g

A Bx

C

Ex

Dx

F

G

i
j l

m

n

f

g

. . .

. . .

Worker 1

Worker 2

Worker m

Master

Sliced Network 1

Sliced Network 2

Sliced Network m

Original Network

A Bx

C

Ex

Dx

F

G

i
j l

m

n

f

g

A Bx

C

Ex

Dx

F

G

i
j l

m

n

f

g

A Bx

C

Ex

Dx

F

G

i
j l

m

n

f

g
. . .

Encoded Network 1

Encoded Network 1

Encoded Network 1

Polynomial
interpolation

success

a

b

2

encoding

encoding

encoding

assign

assign

assign

assign

assign

assign

Figure 4: (a) System model for distributed parallel tensor network contraction without coding. Failure on any computational node will result
as a failure of entire system (b) System model for distributed coded parallel tensor network contraction. Even with some node failures, as long
as the number of successful computational nodes is over f -resilient number, desired final outcome will always be retrieved.

scheme cannot have computational costs exceeding the original
uncoded algorithm, i.e., when a worker performs coded com-
putation on encoded tensor network σ̃k, it should satisfy the
following:

comp. complexity(σ̃k) ≤ comp. complexity(σk). (4)

Computation and memory requirements in tensor network con-
traction is fully determined by the network topology1, and thus
having the same topology with same tensor dimensions implies
the same computation cost.

We assume that in the uncoded algorithm, the tensor network
G is sliced multiple times at n edges, each of which is a mi-
node edge with its index dimension Li (i = 1, 2, . . . , n). This
produces N =

∏n
i=1 Li sliced tensor networks and each of

them will be distributed to individual workers. After all N
workers complete their computation, the master aggregates and
obtains σfinal. We further make an assumption that all sliced
edges are non-adjacent to each other.

We assume that there can be f worker failures and we cannot
recover any partial result from the failed worker. We define f -
resilient number as the number of total workers required in the
system to retrieve σfinal in case of arbitrary f node failures.
We will compare our coding strategy with a naive replication
strategy, which has a f -resilient number of N(f + 1), as we
need at least (f + 1) replicas of each worker. We now define
our problem below.

Problem Statement. For a tensor network contraction par-
allelized by slicing n non-adjacent indices, each of which is
mi-node and Li-dimensional (i = 1, 2, . . . , n), our aim is
to design a coded computing strategy that can be resilient
to any f failures while maintaining the same computational

1This is assuming that the algorithm does not optimize for any sparsity in
the tensor data.

complexity per worker and achieve a f -resilient number smaller
than N(f + 1) where N =

∏n
i=1 Li.

Remark 1. The assumption that all sliced indices are non-
adjacent to each other makes our problem more tractable and
has practical justification. In [6], the authors suggested a step-
dependent iterative heuristics to find indices to slice by choosing
an index that reduces the computational complexity the most
(approximately) at each iteration. With this algorithm, indices
connected to tensors already sliced in previous steps are not
likely to be chosen. Nonetheless, developing a coding scheme
for tensor networks allowing adjacent sliced indices is an
interesting open question.

IV. MAIN RESULTS

Coded computing strategies we propose in this paper are
based on polynomials, similar to polynomial codes [30] and
MatDot/PolyDot codes [29] for distributed matrix multiplica-
tion. I.e., inputs are encoded with polynomials, and after a
set of multilinear computations, output will be encoded in a
polynomial of a higher degree. The f -resilient number of the
code is determined by the degree of the resulting polynomial. If
the resulting output polynomial is of d-th order, then with any
(d+ 1) successful workers, all its coefficients can be retrieved
by an efficient polynomial interpolation algorithm [30], [44].
For f worker failures, the f -resilient number is (d + f + 1),
and the gain compared to naive replication is

∆ = N(f + 1)− (d+ f + 1) = (N − 1)(f + 1)− d, (5)

where N =
∏n

i=1 Li. Hence, the goal of code design is to
minimize the output polynomial degree while ensuring that all
terms relevant to the tensor network contraction are retrievable
from the polynomial coefficients.

In the following subsections, we provide two coding schemes
and their f -resilient numbers. The first code is for tensor

networks commonly used in quantum simulation, which are
the main interest of contemporary tensor network studies. The
second code is for general tensor networks, applicable for any
tensor network as long as sliced indices are non-adjacent to
each other, which is also a practical assumption.

A. 2-node Code for Quantum Simulation

While m-node hyperedges can represent general tensor oper-
ations, in many practical applications, most edges are conven-
tional 2-node edges. For instance, tensor networks for quantum
simulation often follow the Projected Entangled-Pair States
(PEPS) structure [19], which form a 2D-grid graph that require
only 2-node edges. PEPS is also commonly used in condensed
matter physics [45]–[50]. We thus first develop a coding scheme
specifically designed for slicing 2-node indices, which we refer
to as the 2-node code.

Theorem 1. For a tensor network contraction parallelized by
slicing at n non-adjacent indices, each of which is 2-node
and Li-dimensional (i = 1, 2, . . . , n), f -resilient number of
following is achievable:

f + 2

n∏
i=1

Li − 1. (6)

The gain compared to replication for f failures is:

∆ = (

n∏
i=1

Li − 1)(f − 1). (7)

Proof. We define template polynomials for i = 1, · · · , n:

p
(1)
i (x) = 1 + x+ x2 + . . .+ xLi−1,

p
(2)
i (x) = xLi−1 + xLi−2 + xLi−3 + . . .+ 1,

and then encoding polynomials for index i are p
(1)
i (x

∏i−1
k=1 Lk)

with each coefficient substituted with the sliced tensors. E.g.,
for i = 2, let us call the two tensors connected to this index as
B(1) and B(2). Then, the encoded tensor polynomials are:

B̃
(1)

− (x) = B
(1)
1,− +B

(1)
2,−x

L1 + · · ·+B
(1)
L2,−x

L1(L2−1),

B̃
(2)

− (x) = B
(2)
1,−x

L1(L2−1) +B
(2)
2,−x

L1(L2−2) + · · ·+B
(2)
L2,−.

Note that all of the desired terms of the product
B̃

(1)

− (x)B̃
(2)

− (x) are aligned in the coefficient of xL1(L2−1).
Likewise, the product of encoded tensors of index i is a

polynomial of 2(Li−1)
∏i−1

k=1 Lk order which all desired terms
are confined in (Li−1)

∏i−1
k=1 Lk order term. Hence, product of

all encoded tensors is a polynomial of 2((
∏n

i=1 Li)− 1) order
which all desired terms are confined in ((

∏n
i=1 Li)− 1) order

term. With any successful (2(
∏n

i=1 Li)−2+1) encoded tensor
networks each using different arbitrary constant x, coefficient
of ((

∏n
i=1 Li) − 1) order term can be retrieved, which is the

final outcome of the original tensor network. Please refer to
Appendix A for further details on the proof.

Additionally, PEPS-structure tensor networks typically con-
sist of uniform dimensions for all closed edges. Hence, we
provide a following corollary for this special case.

Corollary 1. When mi = 2, Li = L > 2 for all i, the following
f -resilient number is achievable:

f + 2Ln − 1. (8)

The gain compared to replication for f failures is:

∆ = (Ln − 1)(f − 1). (9)

Example 1 (2-node code). We provide an example for 2-node
code given in Theorem 1 when we have two sliced edges with
m1 = 2, L1 = 4 and m2 = 2, L2 = 3. The contraction equation
can be written as:

σa,b =
∑
−

(A
(1)
a,−A

(2)
a,−B

(1)
b,−B

(2)
b,−)T−, (10)

where a ∈ {1, 2, 3, 4} and b ∈ {1, 2, 3} represent sliced indices.
We encode the sliced tensors as follows:

Ã
(1)

− = A
(1)
1,− +A

(1)
2,−x+A

(1)
3,−x

2 +A
(1)
4,−x

3,

Ã
(2)

− = A
(2)
1,−x

3 +A
(2)
2,−x

2 +A
(2)
3,−x+A

(2)
4,−,

B̃
(1)

− = B
(1)
1,− +B

(1)
2,−x

4 +B
(1)
3,−(x

4)2,

B̃
(2)

− = B
(2)
1,−(x

4)2 +B
(2)
2,−x

4 +B
(2)
3,−,

where x can be substituted with a distinct evaluation point at
each worker. After the local contraction operation, the result at
each worker is:

σ̃ =
∑
−

(Ã
(1)

− Ã
(2)

− B̃
(1)

− B̃
(2)

−)T−

= (σ1,1 + σ2,1 + σ3,1 + ...+ σ4,3)x
11 + . . .

= σfinalx
11 + . . . = poly(x22).

Hence, with any (22 + 1) successful workers with distinct
evaluation points, we can perform polynomial interpolation to
retrieve σfinal. The gain compared to naive replication is

∆ = 12(f + 1)− (22 + f + 1) = 11(f − 1) (workers),

which is consistent with Theorem 1.

B. Hyperedge Code for General Case

The tensor network framework is increasingly gaining recog-
nition across various communities outside of the quantum field,
and tensor network structures that incorporate hyperedges may
find more use in the future. We thus provide a more general
coding scheme beyond the 2-node code, suitable for any tensor
network, which we refer to as the hyperedge code. We establish
an achievable scheme for hyperedge codes in Theorem 2. The
provided code works for any tensor network as long as two
sliced edges are not adjacent to each other.

Theorem 2. For a tensor network contraction parallelized by
slicing at n non-adjacent indices, each of which is mi-node
and Li-dimensional (i = 1, 2, . . . , n), f -resilient number of
following is achievable:

f +

n∏
i=1

(mLi
i − 1)

(mi − 1)
. (11)

The corresponding gain compared to naive replication is

∆ = (

n∏
i=1

Li − 1)(f + 1)−
n∏

i=1

(mLi
i − 1)

(mi − 1)
+ 1. (12)

Proof. We define template polynomial for i = 1, · · · , n:

pi(x) = 1 + x+ x1+mi + x1+mi+m2
i + . . .+ x1+···+m

Li−2

i ,

and then the encoding polynomial for index i is

pi(x
∏i−1

j=1

m
Lj
j

−1

mj−1) with each coefficient substituted with
the sliced tensors. E.g., for i = 2, let us call the m2 tensors

connected to this index as B(j) where j = 1, . . . ,m2. Then,
the encoded tensor polynomials are:

B̃
(j)

− (x) =B
(j)
1,− +B

(j)
2,−x

m
L1
1 −1

m1−1 + · · ·

+B
(j)
L2,−(x

m
L1
1 −1

m1−1)1+...+m
L2−2
2 ,

Note that every desired term of the product
∏m2

j=1 B̃
(j)

− (x) is
each confined in different order term only by itself, and the
resulting polynomial is m

L1
1 −1

m1−1 · m
L2
2 −m2

m2−1 order. Likewise, the

product of encoded tensors of index i is a polynomial of m
L1
1 −1

m1−1 ·
m

L2
2 −1

m2−1 · m
L3
3 −1

m3−1 · ... · m
Li
i −mi

mi−1 order which each desired term is
confined in different order term only by itself. Hence, product

of all encoded tensors is a polynomial of (
∏n

j=1

m
Lj
j −1

mj−1) − 1
order which each desired term is confined in different order
term only by itself. With any successful

∏n
j=1

m
Lj
j −1

mj−1 encoded
tensor networks each using different arbitrary constant x, all the
desired outcomes of sliced tensor networks can be retrieved
and the final outcome of the original tensor network can be
acquired by their summation. Please refer to Appendix B for
further details on the proof.

Example 2 (Hyperedge code). We provide an example for
hyperedge code given in Theorem 2 when we have two sliced
edges with m1 = 3, L1 = 2 and m2 = 4, L2 = 2. The
contraction equation can be written as:

σa,b =
∑
−

(A
(1)
a,−A

(2)
a,−A

(3)
a,−B

(1)
b,−B

(2)
b,−B

(3)
b,−B

(4)
b,−)T−,

where a ∈ {1, 2} and b ∈ {1, 2} represent sliced indices. We
encode the sliced tensors as

Ã
(i)

− = A
(i)
1,− +A

(i)
2,−x

B̃
(j)

− = B
(j)
1,− +B

(j)
2,−x

1+3

where i = 1, 2, 3 and j = 1, 2, 3, 4. x can be substituted
with a distinct evaluation point at each worker. After the local
contraction operation, the result at each worker is:

σ̃ =
∑
−

(Ã
(1)

− Ã
(2)

− Ã
(3)

− B̃
(1)

− B̃
(2)

− B̃
(3)

− B̃
(4)

−)T−

= σ1,1 + σ2,1x
3 + σ1,2x

4 + σ2,2x
19 + . . . = poly(x19).

Hence, with any (19 + 1) successful workers with distinct
evaluation points, we can perform polynomial interpolation to
retrieve σfinal. The gain compared to naive replication is

∆ = 4(f + 1)− (f + 20) = 3f − 16 (workers),

which is consistent with Theorem 2.

Remark 2. Negative product term of mi in (12) of Theorem 2
degrades the gain of the hyperedge code. Intuitively, that is
because hyperedge code confines all desired terms each in
different order terms hence resulting polynomial requires higher
degree for larger {mi}. On the contrary, 2-node code confines
all desired terms in a single term of the resulting polynomial,
therefore its gain (7) does not suffer such loss. However, we
emphasize that our codes and their upper bounds of f -resilient
number are not proven to be optimal nor tight.

C. Master Node Complexity

Lastly, we show that encoding and decoding costs are neg-
ligible compared to computation-intensive tensor contraction.
We will make an informal argument with as simple setting
where all edges are m-node and L-dimensional, and all nodes

have a degree k. The computation cost of tensor contraction
is determined by the most expensive edge contraction [4]. In
our simplified setting, all edge contraction has the same cost.
Contracting any index will result in an intermediate tensor with
m(k− 1) open edges, as there are m tensors with each (k− 1)
edges not being contracted. The computational complexity for
this is O(L(k−1)m · L). On the other hand, encoding sliced
tensors is equivalent to taking a linear combination of L sliced
tensors each of which has k − 1 open edges. Hence, the cost
of encoding is O(Lk−1 · L), assuming m is not exponentially
large compared to L. Compared to contraction complexity of
O(L(k−1)m+1), encoding complexity of O(Lk) is negligible.
For example, for a typical PEPS tensor network with k = 4
and m = 2, contraction cost for an edge is O(L7) and encoding
cost is O(L4). For decoding complexity, the final outcome of
tensor network contraction in most quantum applications is a
scalar or a vector, and thus decoding is minimal [30], [44].

D. Existing matrix codes under our framework

slice slice slice

A B A B
a b

Figure 5: Diagrammatic representation of (a) polynomial code and
(b) MatDot code in tensor network formalism.

As the tensor network formalism is a general linear algebraic
framework that also encompasses matrix multiplication, our
work can be thought of as a generalized expansion of precedent
matrix multiplication coding schemes. For instance, in the
tensor network formalism, MatDot codes [29] slice a 2-node
index between A and B (see Fig. 5), which corresponds to the
case of n = 1, m1 = 2, and N = L1 for Theorem 1. In the
formalism of our work, f -resilient number of the 2-node code is
f +2L1−1, which is consistent with the f -resilient number of
MatDot codes [29]. On the other hand, polynomial code [30]
corresponds to slicing through open edges in tensor network
formalism (see Fig. 5). This is a case we did not discuss in
our work as open edges are not to be sliced as they do not
reduce the complexity of the tensor network. Finally, n-matrix
multiplication codes described in [29] correspond to a chain in
tensor network formalism and slicing through all edges (with
alternating index dimension of s and t). While this gave a rise
to high f -resilient number in the original work [29], our work
shines a new light on this problem that in practical algorithms,
coding overhead can be much lower than n-matrix codes as we
only slice through a select few edges instead of all edges [12].

V. DISCUSSION AND FUTURE WORKS

This work is the first attempt at applying coded computing
for reliable tensor network contraction on large-scale parallel
machines. There are many more exciting future directions to
explore. While we provide a coding scheme that works only
for non-adjacent edges with some practical justification, making
it more general to include both adjacent and non-adjacent
edge slicing would be an interesting problem. Another crucial
research question is a lower bound on the f -resilient number
of coded tensor network algorithms. While we provide two
different achievable schemes in Theorem 1 and Theorem 2,
we do not know if the proposed approach is optimal or how
far from optimality it is. Finally, as we are inspired by very
practical applications, it would be valuable to implement the
proposed coded computing strategies and perform an empirical
evaluation on real-world high-performance computing systems.

REFERENCES

[1] M. J. Bremner, R. Jozsa, and D. J. Shepherd, “Classical simulation of
commuting quantum computations implies collapse of the polynomial
hierarchy,” Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 467, no. 2126, p. 459–472, Aug. 2010.
[Online]. Available: http://dx.doi.org/10.1098/rspa.2010.0301

[2] S. Aaronson and A. Arkhipov, “The computational complexity of linear
optics,” 2010.

[3] M. J. Bremner, A. Montanaro, and D. J. Shepherd, “Average-case
complexity versus approximate simulation of commuting quantum
computations,” Physical Review Letters, vol. 117, no. 8, Aug. 2016.
[Online]. Available: http://dx.doi.org/10.1103/PhysRevLett.117.080501

[4] I. L. Markov and Y. Shi, “Simulating quantum computation by contracting
tensor networks,” SIAM Journal on Computing, vol. 38, no. 3, pp. 963–
981, 2008.

[5] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, and H. Neven, “Simulation
of low-depth quantum circuits as complex undirected graphical models,”
arXiv preprint arXiv:1712.05384, 2017.

[6] D. Lykov, R. Schutski, A. Galda, V. Vinokur, and Y. Alexeev, “Tensor
network quantum simulator with step-dependent parallelization,” in 2022
IEEE International Conference on Quantum Computing and Engineering
(QCE), 2022, pp. 582–593.

[7] T. Vincent, L. J. O’Riordan, M. Andrenkov, J. Brown, N. Killoran, H. Qi,
and I. Dhand, “Jet: Fast quantum circuit simulations with parallel task-
based tensor-network contraction,” Quantum, vol. 6, p. 709, 2022.

[8] Y. Liu, Y. Chen et al., “Verifying quantum advantage experiments
with multiple amplitude tensor network contraction,” Physical Review
Letters, vol. 132, no. 3, Jan. 2024. [Online]. Available: http:
//dx.doi.org/10.1103/PhysRevLett.132.030601

[9] C. Huang, F. Zhang, M. Newman, J. Cai, X. Gao, Z. Tian, J. Wu, H. Xu,
H. Yu, B. Yuan, M. Szegedy, Y. Shi, and J. Chen, “Classical simulation
of quantum supremacy circuits,” 2020.

[10] F. Pan, K. Chen, and P. Zhang, “Solving the sampling problem of the
sycamore quantum circuits,” Physical Review Letters, vol. 129, no. 9,
2022.

[11] G. Kalachev, P. Panteleev, P. Zhou, and M.-H. Yung, “Classical sampling
of random quantum circuits with bounded fidelity,” 2021.

[12] J. Chen, F. Zhang, C. Huang, M. Newman, and Y. Shi, “Classi-
cal simulation of intermediate-size quantum circuits,” arXiv preprint
arXiv:1805.01450, 2018.

[13] B. Villalonga, S. Boixo, B. Nelson, C. Henze, E. Rieffel, R. Biswas,
and S. Mandrà, “A flexible high-performance simulator for verifying
and benchmarking quantum circuits implemented on real hardware,” npj
Quantum Information, vol. 5, no. 1, Oct. 2019. [Online]. Available:
http://dx.doi.org/10.1038/s41534-019-0196-1

[14] J. Gray and S. Kourtis, “Hyper-optimized tensor network contraction,”
Quantum, vol. 5, p. 410, Mar. 2021. [Online]. Available: http:
//dx.doi.org/10.22331/q-2021-03-15-410

[15] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell et al., “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505–510, 2019.

[16] A. Morvan, B. Villalonga, X. Mi, S. Mandrà et al., “Phase transition in
random circuit sampling,” 2023.

[17] S. R. White, “Density matrix formulation for quantum renormalization
groups,” Phys. Rev. Lett., vol. 69, pp. 2863–2866, Nov 1992. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.69.2863

[18] M. Fannes, B. Nachtergaele, and R. F. Werner, “Finitely correlated states
on quantum spin chains,” Communications in mathematical physics, vol.
144, pp. 443–490, 1992.

[19] F. Verstraete and J. I. Cirac, “Renormalization algorithms for quantum-
many body systems in two and higher dimensions,” 2004.

[20] E. M. Stoudenmire and D. J. Schwab, “Supervised learning with quantum-
inspired tensor networks,” 2017.

[21] W. Huggins, P. Patil, B. Mitchell, K. B. Whaley, and E. M. Stoudenmire,
“Towards quantum machine learning with tensor networks,” Quantum
Science and Technology, vol. 4, no. 2, p. 024001, Jan. 2019. [Online].
Available: http://dx.doi.org/10.1088/2058-9565/aaea94

[22] I. Glasser, N. Pancotti, and J. I. Cirac, “From probabilistic graphical
models to generalized tensor networks for supervised learning,” 2019.

[23] S. Cheng, L. Wang, and P. Zhang, “Supervised learning with projected
entangled pair states,” Physical Review B, vol. 103, no. 12, p. 125117,
2021.

[24] D.-T. Chen, P. Helms, A. R. Hale, M. Lee, C. Li, J. Gray, G. Christou,
V. S. Zapf, G. K.-L. Chan, and H.-P. Cheng, “Using hyper-optimized
tensor networks and first-principles electronic structure to simulate ex-
perimental properties of the giant Mn84 torus,” 2022.

[25] K. H. Marti and M. Reiher, “The density matrix renormalization
group algorithm in quantum chemistry,” Zeitschrift für Physikalische
Chemie, vol. 224, no. 3-4, pp. 583–599, 2010. [Online]. Available:
https://doi.org/10.1524/zpch.2010.6125

[26] S. Lee, J. Lee, H. Zhai, Y. Tong, A. M. Dalzell, A. Kumar, P. Helms,
J. Gray, Z.-H. Cui, W. Liu, M. Kastoryano, R. Babbush, J. Preskill, D. R.
Reichman, E. T. Campbell, E. F. Valeev, L. Lin, and G. K.-L. Chan,

“Evaluating the evidence for exponential quantum advantage in ground-
state quantum chemistry,” Nature Communications, vol. 14, no. 1, Apr.
2023. [Online]. Available: http://dx.doi.org/10.1038/s41467-023-37587-6

[27] S. Kourtis, C. Chamon, E. Mucciolo, and A. Ruckenstein, “Fast counting
with tensor networks,” SciPost Physics, vol. 7, no. 5, Nov. 2019.
[Online]. Available: http://dx.doi.org/10.21468/SciPostPhys.7.5.060

[28] J.-G. Liu, X. Gao, M. Cain, M. D. Lukin, and S.-T. Wang, “Computing
solution space properties of combinatorial optimization problems via
generic tensor networks,” SIAM Journal on Scientific Computing,
vol. 45, no. 3, p. A1239–A1270, Jun. 2023. [Online]. Available:
http://dx.doi.org/10.1137/22M1501787

[29] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover,
“On the optimal recovery threshold of coded matrix multiplication,” IEEE
Transactions on Information Theory, vol. 66, no. 1, pp. 278–301, 2020.

[30] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an optimal
design for high-dimensional coded matrix multiplication,” Advances in
Neural Information Processing Systems, vol. 30, 2017.

[31] S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,” in
International Conference on Machine Learning (ICML), 2018, pp. 5139–
5147.

[32] A. Severinson, A. G. i Amat, and E. Rosnes, “Block-Diagonal and
LT Codes for Distributed Computing With Straggling Servers,” IEEE
Transactions on Communications, vol. 67, no. 3, pp. 1739–1753, 2019.

[33] A. Mallick, M. Chaudhari, and G. Joshi, “Fast and efficient distributed
matrix-vector multiplication using rateless fountain codes,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2019, pp. 8192–8196.

[34] H. Jeong, A. Devulapalli, V. R. Cadambe, and F. P. Calmon, “e-
approximate coded matrix multiplication is nearly twice as efficient as
exact multiplication,” IEEE Journal on Selected Areas in Information
Theory, vol. 2, no. 3, pp. 845–854, 2021.

[35] H. Jeong, T. M. Low, and P. Grover, “Masterless Coded Computing:
A Fully-Distributed Coded FFT Algorithm,” in IEEE Communication,
Control, and Computing (Allerton), 2018, pp. 887–894.

[36] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded fourier
transform,” in 2017 55th Annual Allerton Conference on Communication,
Control, and Computing (Allerton). IEEE, 2017, pp. 494–501.

[37] Q. M. Nguyen, H. Jeong, and P. Grover, “Coded QR Decomposition,” in
IEEE International Symposium on Information Theory (ISIT), 2020.

[38] Q. M. Nguyen, I. Weissburg, and H. Jeong, “Coded computing for fault-
tolerant parallel qr decomposition,” 2023.

[39] G. Evenbly, “A practical guide to the numerical implementation of tensor
networks i: Contractions, decompositions, and gauge freedom,” Frontiers
in Applied Mathematics and Statistics, vol. 8, p. 806549, 2022.

[40] J. Biamonte and V. Bergholm, “Tensor networks in a nutshell,” arXiv
preprint arXiv:1708.00006, 2017.

[41] R. Orús, “Tensor networks for complex quantum systems,” Nature Re-
views Physics, vol. 1, no. 9, pp. 538–550, 2019.

[42] S. Montangero, E. Montangero, and Evenson, Introduction to tensor
network methods. Springer, 2018.

[43] C. Huang, F. Zhang, M. Newman, X. Ni, D. Ding, J. Cai, X. Gao, T. Wang,
F. Wu, G. Zhang et al., “Efficient parallelization of tensor network
contraction for simulating quantum computation,” Nature Computational
Science, vol. 1, no. 9, pp. 578–587, 2021.

[44] K. S. Kedlaya and C. Umans, “Fast polynomial factorization and modular
composition,” SIAM Journal on Computing, vol. 40, no. 6, pp. 1767–1802,
2011.

[45] P. Corboz and F. Mila, “Crystals of bound states in the magnetization
plateaus of the shastry-sutherland model,” Physical Review Letters, vol.
112, no. 14, Apr. 2014. [Online]. Available: http://dx.doi.org/10.1103/
PhysRevLett.112.147203

[46] P. Corboz, T. M. Rice, and M. Troyer, “Competing states in the t-j model:
Uniform d-wave state versus stripe state,” Physical review letters, vol. 113,
no. 4, p. 046402, 2014.

[47] I. Niesen and P. Corboz, “A tensor network study of the complete ground
state phase diagram of the spin-1 bilinear-biquadratic Heisenberg model
on the square lattice,” SciPost Phys., vol. 3, p. 030, 2017. [Online].
Available: https://scipost.org/10.21468/SciPostPhys.3.4.030

[48] B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P. Qin, R. M.
Noack, H. Shi, S. R. White, S. Zhang, and G. K.-L. Chan, “Stripe
order in the underdoped region of the two-dimensional hubbard model,”
Science, vol. 358, no. 6367, p. 1155–1160, Dec. 2017. [Online].
Available: http://dx.doi.org/10.1126/science.aam7127

[49] B. Ponsioen, S. S. Chung, and P. Corboz, “Period 4 stripe in the extended
two-dimensional hubbard model,” Physical Review B, vol. 100, no. 19,
Nov. 2019. [Online]. Available: http://dx.doi.org/10.1103/PhysRevB.100.
195141

[50] J.-Y. Chen, S. Capponi, A. Wietek, M. Mambrini, N. Schuch, and
D. Poilblanc, “Su (3) 1 chiral spin liquid on the square lattice: A view
from symmetric projected entangled pair states,” Physical Review Letters,
vol. 125, no. 1, p. 017201, 2020.

http://dx.doi.org/10.1098/rspa.2010.0301
http://dx.doi.org/10.1103/PhysRevLett.117.080501
http://dx.doi.org/10.1103/PhysRevLett.132.030601
http://dx.doi.org/10.1103/PhysRevLett.132.030601
http://dx.doi.org/10.1038/s41534-019-0196-1
http://dx.doi.org/10.22331/q-2021-03-15-410
http://dx.doi.org/10.22331/q-2021-03-15-410
https://link.aps.org/doi/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1088/2058-9565/aaea94
https://doi.org/10.1524/zpch.2010.6125
http://dx.doi.org/10.1038/s41467-023-37587-6
http://dx.doi.org/10.21468/SciPostPhys.7.5.060
http://dx.doi.org/10.1137/22M1501787
http://dx.doi.org/10.1103/PhysRevLett.112.147203
http://dx.doi.org/10.1103/PhysRevLett.112.147203
https://scipost.org/10.21468/SciPostPhys.3.4.030
http://dx.doi.org/10.1126/science.aam7127
http://dx.doi.org/10.1103/PhysRevB.100.195141
http://dx.doi.org/10.1103/PhysRevB.100.195141

APPENDIX A
PROOF OF THEOREM 1

Let us refer to the sliced indices by number i = 1, 2, . . . , n.
Each index i is Li dimensional and shared by 2 tensors.
For convenience, let us denote the tensors sharing index 1

as (A
(1)
− ,A

(2)
−), the tensors sharing index 2 as (B

(1)
− ,B

(2)
−),

an the tensors sharing index n as (Z
(1)
− ,Z

(2)
−). Each of the

tensors is sliced by the selected index, for instance, A
(1)
− is

sliced as A
(1)
s1,− for fixed value s1 ∈ {1, 2, . . . , L1} of index

1. Then for fixed value si for each index i, which span by
si ∈ {1, 2, . . . , Li}, equation for each sliced tensor network
corresponding to the string s1s2...sn is

σs1s2...sn =
∑
−

(A
(1)
s1,−A

(2)
s1,−B

(1)
s2,−B

(2)
s2,−...Z

(1)
sn,−Z

(2)
sn,−)T−,

where each index i spans by si ∈ {1, 2, . . . , Li}. Hence, there
are (N =

∏n
i=1 Li) terms in the summation we need to retrieve.

For index i, we define two template polynomials:

p
(1)
i (x) = 1 + x+ x2 + . . .+ xLi−1

p
(2)
i (x) = xLi−1 + xLi−2 + xLi−3 + . . .+ 1.

We encode for index 1 with encoding polynomial p
(1)
1 (x)

and p
(2)
2 (x) by putting each sliced tensors of A(1)

− and A
(2)
− to

the coefficients of p(1)1 (x) and p
(2)
2 (x) respectively as below:

Ã
(1)

− = A
(1)
1,− + xA

(1)
2,− + . . .+ xL1−1A

(1)
L1,− =

L1∑
k=1

xk−1A
(1)
k,−

Ã
(2)

− = xL1−1A
(2)
1,−+xL1−2A

(2)
2,−+..+A

(2)
L1,− =

L1∑
k=1

xL1−kA
(2)
k,−.

Then, product of encoded tensors Ã
(1)

− Ã
(2)

− is:

Ã
(1)

− Ã
(2)

− = (

L1∑
k=1

xk−1A
(1)
k,−)(

L1∑
k=1

xL1−kA
(2)
k,−)

= xL1−1(A
(1)
1,−A

(2)
1,− +A

(1)
2,−A

(2)
2,− + . . .+A

(1)
L1,−A

(2)
L1,−)

+(other order terms) = poly(x2(L1−1)).

All the desired terms of A
(1)
s1,−A

(2)
s1,−(s1 ∈ {1, 2, ..., L1}) are

confined in one coefficient of (L1 − 1) order term.
For index 2, we use encoding polynomial p

(1)
2 (xL1) and

p
(2)
2 (xL1):

B̃
(1)

− = B
(1)
1,− + . . .+ xL1(L2−1)B

(1)
L2,− =

L2∑
k=1

xL1(k−1)B
(1)
k,−

B̃
(2)

− = xL1(L2−1)B
(2)
1,− + . . .+B

(2)
L2,− =

L2∑
k=1

xL1(L2−k)B
(2)
k,−.

B̃
(1)

− B̃
(2)

− = (

L2∑
k=1

xL1(k−1)B
(1)
k,−)(

L2∑
k=1

xL1(L2−k)B
(2)
k,−)

= xL1(L2−1)(B
(1)
1,−B

(2)
1,− +B

(1)
2,−B

(2)
2,− + . . .+B

(1)
L2,−B

(2)
L2,−)

+(other order terms) = poly(x2L1(L2−1)).

Likewise, all the desired terms of B
(1)
s2,−B

(2)
s2,−(s2 ∈

{1, 2, ..., L2}) are confined in one coefficient of L1(L2 − 1)
order term.

Furthermore, polynomial resulting from the product
(Ã

(1)

− Ã
(2)

− B̃
(1)

− B̃
(2)

−) is:

Ã
(1)

− Ã
(2)

− B̃
(1)

− B̃
(2)

− = xL1L2−1(
∑
s1,s2

A
(1)
s1,−A

(2)
s1,−B

(1)
s2−B

(2)
s2,−)

+(other order terms) = poly(x2(L1L2−1)).

All desired terms of (A
(1)
s1,−A

(2)
s1,−B

(1)
s2−B

(2)
s2,−) for s1 ∈

{1, 2, .., L1} s2 ∈ {1, 2, .., L2} are confined in one coefficient
of (L1L2 − 1) order term.

For index 3, encoding polynomials are p
(1)
3 (xL1L2)

and p
(2)
3 (xL1L2). For index i, encoding polynomials are

p
(1)
i (x

∏i−1
j=1 Lj) and p

(2)
i (x

∏i−1
j=1 Lj). For the last index n, en-

coded tensors are

Z̃
(1)

− =

Ln∑
k=1

x(k−1)
∏n−1

j=1 LjZ
(1)
k,−

Z̃
(2)

− =

Ln∑
k=1

x(Ln−k)
∏n−1

j=1 LjZ
(2)
k,−.

And their product is

Z̃
(1)

− Z̃
(2)

− = x(Ln−1)
∏n−1

j=1 Lj (Z
(1)
1,−Z

(2)
1,−+. . .+Z

(1)
Ln,−Z

(2)
Ln,−).

As a result, an encoded tensor network produces a poly-
nomial at the end of the contraction, which confines all de-
sired outcome of sliced tensor networks in one coefficient of
((
∏n

i=1 Li)− 1) order term.

σ̃ =
∑
−

(Ã
(1)

− Ã
(2)

− B̃
(1)

− B̃
(2)

− ...Z̃
(1)

− Z̃
(2)

−)T−

=
∑
−

[(
∑

s1,s2,..,sn

A
(1)
s1,−A

(2)
s1,−B

(1)
s2,−..Z

(2)
sn,−)x

(
∏n

i=1 Li)−1+..]T−

= (
∑

s1,s2,..,sn

σs1s2...sn)x
(
∏n

i=1 Li)−1 + (other order terms)

= σfinalx
(
∏n

i=1 Li)−1+(other order terms) = poly(x2(
∏n

i=1 Li)−2).

Hence, with any successful (2(
∏n

i=1 Li)−2+1) encoded tensor
networks each using different arbitrary constant x, coefficient
of ((

∏n
i=1 Li)− 1) order term in the resulting polynomial can

be retrieved, which is the final outcome of the original tensor
network.

Therefore, for f node failures, f -resilient number is

f + 2

n∏
i=1

Li − 1

for 2-node code.

APPENDIX B
PROOF OF THEOREM 2

Let us refer to the sliced indices by number i = 1, 2, . . . , n.
Each index i is Li dimensional and shared by mi tensors.
For convenience, let us denote the tensors sharing index 1

as (A
(1)
− ,A

(2)
− , . . . ,A

(m1)
−), and tensors sharing index 2 as

(B
(1)
− ,B

(2)
− , . . . ,B

(m2)
−). We will denote tensors sharing index

n as (Z
(1)
− ,Z

(2)
− , . . . ,Z

(mn)
−). Each of the tensors is sliced by

the selected index, for instance, A
(1)
− is sliced as A

(1)
s1,− for

fixed value s1 ∈ {1, 2, . . . , L1} of index 1. Then, for fixed
value si for each index i, the equation for each sliced tensor
network corresponding to the string s1s2...sn is

σs1s2...sn =
∑
−

(

m1∏
j=1

A
(j)
s1,−

m2∏
k=1

B
(k)
s2,−...

mn∏
l=1

Z
(l)
sn,−)T−,

where each index i spans by si ∈ {1, 2, . . . , Li}. Hence, there
are (N =

∏n
i=1 Li) product terms in the summation we need

to retrieve.
For an index i, we define a template polynomial pi(x) to

encode tensors sharing the corresponding index as

pi(x) = 1+ x+ x1+mi + x1+mi+m2
i + . . .+ x1+mi+···+m

Li−2

i

=

Li∑
j=1

x
m

j−1
i

−1

mi−1 .

For instance, encoding polynomial for index 1 is p1(x). That
is, we encode each tensor sliced by the index 1 by putting
the sliced tensors on each of the coefficients of encoding
polynomial p1(x):

Ã
(k)

− =

L1∑
j=1

A
(k)
j,−x

m
j−1
1 −1

m1−1 (k = 1, 2, ..,m1)

= A
(k)
1,− +A

(k)
2,−x+A

(k)
3,−x

1+mi + . . .+A
(k)
L1,−x

m
L1−1
1 −1

m1−1 ,

for k ∈ {1, 2, ...,m1}.
Then, the product of the encoded tensors results in a poly-

nomial as below:
m1∏
k=1

Ã
(k)

=

m1∏
k=1

A
(k)
1,− + xm1

m1∏
k=1

A
(k)
2,− + xm2

1+m1

m1∏
k=1

A
(k)
3,−

+xm3
1+m2

1+m1

m1∏
k=1

A
(k)
4,− + . . .+ xm

L1−1
1 +...+m1

m1∏
k=1

A
(k)
L1,−

+(other order terms) = poly(xm
L1−1
1 +...+m1 = x

m
L1
1 −m1
m1−1).

Each term of
∏m1

k=1 A
(k)
s1,− for s1 ∈ {1, 2, . . . , L1} is confined

on different order term only by itself. That is because order of
individual term of the encoding polynomial p1(x) is larger than
×m1 of previous order.

For index 2, we use encoding polynomial p2(x
m

L1
1 −1

m1−1) where

p2(x
m

L1
1 −1

m1−1) = 1+x
m

L1
1 −1

m1−1 +x(1+m2)
m

L1
1 −1

m1−1 +x(1+m2+m2
2)

m
L1
1 −1

m1−1

+ . . .+ x(1+m2+···+m
L2−2
2)

m
L1
1 −1

m1−1 =

L2∑
j=1

x
m

L1
1 −1

m1−1

m
j−1
2 −1

m2−1 .

Same as for index 1, we encode each tensor of index 2 by
putting the sliced tensors on each of the coefficients of encoding

polynomial p2(x
m

L1
1 −1

m1−1):

B̃
(k)

− =

L2∑
j=1

B
(k)
j,−x

m
L1
1 −1

m1−1

m
j−1
2 −1

m2−1 (k = 1, 2, ..,m2)

= B
(k)
1,− +B

(k)
2,−x

m
L1
1 −1

m1−1 +B
(k)
3,−x

(1+m2)
m

L1
1 −1

m1−1

+B
(k)
4,−x

(1+m2+m2
2)

m
L1
1 −1

m1−1 + . . .+B
(k)
L2,−x

m
L1
1 −1

m1−1

m
L2−1
2 −1

m2−1 .

Then the product of the encoded tensors for index 2 results in
a polynomial as below:

m2∏
k=1

B̃
(k)

=

m2∏
k=1

B
(k)
1,− + xm2

m
L1
1 −1

m1−1

m1∏
k=1

B
(k)
2,−

+x(m2
2+m2)

m
L1
1 −1

m1−1

m1∏
k=1

B
(k)
3,− + x(m3

2+m2
2+m2)

m
L1
1 −1

m1−1

m1∏
k=1

B
(k)
4,−

+ . . .+x(m
L2−1
2 +...+m2)

m
L1
1 −1

m1−1

m1∏
k=1

B
(k)
L2,−+(other order terms)

= poly(x
m

L1
1 −1

m1−1

m
L2
2 −m2
m2−1).

Just as the case of index 1, each term of
∏m2

k=1 B
(k)
s2,− for

s2 ∈ {1, 2, . . . , L2} is confined on different order term only
by itself. Likewise, this is because order of individual term of

the encoding polynomial p2(x
m

L1
1 −1

m1−1) is larger than ×m2 of
previous order.

Then, polynomial resulting from (
∏m1

k=1 Ã
(k) ∏m2

k=1 B̃
(k)

)

confines every individual term of (
∏m1

j=1 A
(j)
s1,−

∏m2

k=1 B
(k)
s2,−)

for s1 ∈ {1, 2, . . . , L1}, s2 ∈ {1, 2, . . . , L2} each in different
order term. That is because order of individual terms of

p2(x
m

L1
1 −1

m1−1) is larger than [m2 × (previous order) + m
L1
1 −m1

m1−1].
To generalize, tensors sliced by index i are encoded by

encoding polynomial of

pi(x
∏i−1

j=1

m
Lj
j

−1

mj−1),

by putting the sliced tensors on each of the coefficients of the
encoding polynomial. For instance, encoded tensors for last
index n are as follows:

Z̃
(k)

− =

Ln∑
j=1

Z
(k)
j,−x

∏n−1
j=1

m
Lj
j

−1

mj−1 (k = 1, 2, ..,mn)

As a result, an encoded tensor network results as a polyno-
mial at the end of the contraction, which confines every desired
outcome of sliced tensor networks each in different order term
as below:

σ̃ =
∑
−

(

m1∏
j=1

Ã
(j)

s1,−

m2∏
k=1

B̃
(k)

s2,−...

mn∏
l=1

Z̃
(l)

sn,−)T−

=
∑
−

[

m1∏
j=1

A
(j)
1,−

m2∏
k=1

B
(k)
1,−...

mn∏
l=1

Z
(l)
1,− + . . .

+x
(
∏n

j=1

m
Lj
j

−1

mj−1)−1
A

(j)
L1,−

m2∏
k=1

B
(k)
L2,−...

mn∏
l=1

Z
(l)
Ln,−]T−

= σ11...1 + . . .+ σL1L2...Ln
x
(
∏n

j=1

m
Lj
j

−1

mj−1)−1

= poly(x
(
∏n

j=1

m
Lj
j

−1

mj−1)−1
)

Every coefficient of this resulting polynomial can be retrieved
by polynomial interpolation with (

∏n
i=1

m
Li
i −1

mi−1) different ar-

bitrary constants. Hence, with any successful (
∏n

i=1
m

Li
i −1

mi−1)
encoded tensor networks each using different arbitrary constant
x, all the desired outcomes of sliced tensor networks can be
retrieved and the final outcome of original tensor network can
be acquired by their summation.

Therefore, for f node failures, f -resilient number is

f +

n∏
i=1

mLi
i − 1

mi − 1
.

for hyperedge code.

	Introduction
	Background and Notations
	Tensor Networks and contraction
	Parallel tensor network contraction

	System Model and Problem Statement
	Main Results
	2-node Code for Quantum Simulation
	Hyperedge Code for General Case
	Master Node Complexity
	Existing matrix codes under our framework

	Discussion and future works
	References
	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Theorem 2

