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Abstract

Various parameter-efficient fine-tuning (PEFT)
techniques have been proposed to enable com-
putationally efficient fine-tuning while main-
taining model performance. However, existing
PEFT methods are still limited by the grow-
ing number of trainable parameters with the
rapid deployment of Large Language Models
(LLMs). To address this challenge, we present
LoRETTA, an ultra-parameter-efficient frame-
work that significantly reduces trainable pa-
rameters through tensor-train decomposition.
Specifically, we propose two methods, named
LoRETTAadp and LoRETTArep. The for-
mer employs tensorized adapters, offering a
high-performance yet lightweight approach for
the fine-tuning of LLMs. The latter empha-
sizes fine-tuning via weight reparameterization
with a set of small tensor factors. LoRETTA
achieves comparable or better performance
than most widely used PEFT methods with up
to 100× fewer parameters on the LLaMA-2-7B
models. Furthermore, empirical results demon-
strate that the proposed methods exhibit re-
markable anti-overfitting capability, effectively
improve training efficiency, and enjoy better
multi-task learning performance. Plug-and-
play loretta library built upon the Huggingface
framework and PEFT library are provided.‡

1 Introduction

The BERT and LLaMA families (Devlin et al.,
2018; Touvron et al., 2023; Floridi and Chiriatti,
2020), representing the prevailing paradigm
of Large Language Models (LLMs), showcase
remarkable task generalization capabilities in
diverse applications, from dialogue systems to
question-answering, summarization and translation.
While LLMs exhibit proficiency in following
instructions and learning task solutions with
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Figure 1: The performance vs. trainable parameters
on the DeBERTa-Base, showcasing the relationship be-
tween parameter efficiency and performance across var-
ious GLUE tasks.

minimal contextual input, their accuracy can be
further enhanced through fine-tuning techniques.

Since full-model fine-tuning becomes infea-
sible as the model size of LLMs grows rapidly,
there has been increased interest in parameter-
efficient fine-tuning (PEFT) (Hu et al., 2023).
PEFT methods fine-tune LLMs by modifying
only a subset of parameters. The concept was
initially explored in (Houlsby et al., 2019), which
proposes the Adapters method to inject trainable
modules into the transformer encoders. Based on
this concept, the LoRA approach (Hu et al., 2021)
adds low-rank updating matrices on the weights
of linear projection layers in the self-attention
blocks. These two types of methods achieve
similar or even better performance than full-model
fine-tuning, but still incur a large number of
trainable parameters. Taking the LLaMA-2-70B
model as an example, LoRA needs to update over
16 million parameters, which is even more than the
total parameters of some BERT models. Moreover,
we observe that both the Adapters and LoRA
approaches experience significant overfitting
problems, detrimentally affecting their overall
performance.

https://github.com/yifanycc/loretta
https://github.com/yifanycc/loretta


In contrast, other methods like prefix tun-
ing (Li and Liang, 2021) and prompt tuning (Lester
et al., 2021) introduce trainable tokens to the input
or hidden layers of the base model, significantly
reducing trainable parameters but potentially
sacrificing accuracy, especially in few-shot
learning scenarios (Mao et al., 2022). Furthermore,
(Aghajanyan et al., 2020) achieves approximately
90% of the full fine-tuning performance with only
200∼800 parameters on a RoBERTa model by
exploring the intrinsic dimension, which is far
less than the 0.3 million parameters needed in the
LoRA method (Hu et al., 2021). Despite LoRA’s
ability to outperform full-model fine-tuning, its
number of trainable parameters is still too high,
motivating our exploration of more economic and
efficient high-performance PEFT approaches. This
raises the question: Is there a PEFT approach with
ultra-low trainable parameters that still performs
on-par or better than full-model fine-tuning?

In this paper, we present Low-Rank Economic
Tensor-Train Adaptation (LoRETTA), which is
tailored for efficient fine-tuning of variously scaled
LLMs with minimal trainable parameters. Our
approach leverages the tensor-train (TT) format
to represent large weight matrices. LoRETTA
encompasses two variants: LoRETTAadp and
LoRETTArep . The LoRETTAadp variant embeds
tensorized adapters in encoder/decoder layers
and performs better than all PEFT methods
under equivalent trainable parameter sizes. The
LoRETTArep variant, our ultra-efficient innovation,
requires substantially fewer trainable parameters,
occupies less than 1MB of storage, and maintains
comparable performance. Our contributions are
threefold:

• LoRETTA is proposed that utilizes tensor-
train format to effectively fine-tune LLMs
with up to 100× fewer trainable parameters
than widely used PEFT methods like Adapters
and LoRA on the LLaMA-2 model.

• Our proposed framework demonstrates better
performance to other widely used PEFT meth-
ods across various scales of models, tasks,
and setups, particularly excelling in genera-
tion tasks with large-scale models.

• Comprehensive studies are conducted
against other PEFT methods regarding stor-
age/computation efficiency, anti-overfitting

ability, forgetting risks for multi-task learning,
and performance under different setups.

2 Background

2.1 Parameter-Efficient Fine-Tuning

Except for the aforementioned Adapters, LoRA,
and prompt-based approach, there exist various
PEFT-related works (Li and Liang, 2021; Lester
et al., 2021; Hyeon-Woo et al., 2021; Liu et al.,
2023; Tian et al., 2023), including the BitFit
method (Zaken et al., 2022) that tries to further
reduce trainable parameters by only fine-tuning the
bias term. However, it is observed that BitFit suf-
fers from a considerable performance drop, which
is also shown in our experiments. Furthermore,
there are large-scale models like LLaMA that do
not employ any bias terms in the model structure,
which makes the utilization of the BitFit method
restricted. Compared with these previous methods,
the proposed LoRETTA is efficient and versatile,
making it applicable to any kind of language model,
offering a seamless and lightweight plug-and-play
solution for fine-tuning.

2.2 Tensor-based Model Compression

Over the past decade, tensor compression has
emerged as a promising technique for reducing
model size and both inference and training
times (Lebedev et al., 2015; Kim et al., 2015).
For example, (Novikov et al., 2015) proposed the
idea of the TT format by representing the weight
matrix with a series of tensor factors. (Hawkins
et al., 2022; Hawkins and Zhang, 2021) presented
an end-to-end compressed training approach
with automatic rank determination for various
tensor formats. Despite these advancements, the
application of the tensorized approach to the
fine-tuning of LLMs is limited, primarily due to the
complex, high-rank structure of pretrained weights.

An exception to this trend is the work of (Liu et al.,
2021), which proposed a tensorized fine-tuning
approach by only updating parts of the tensor
factors. Nevertheless, it still requires over 10%
of the model parameters for effective fine-tuning.
Researchers in (Jie and Deng, 2023), instead,
tried to stack all weight matrices of the Vision
Transformer (ViT) into a single weight tensor and
create a tensorized updating tensor following the
idea of LoRA. However, its applicability to LLMs
is hindered by the extremely large stacked tensor,
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Figure 2: Architecture of LoRETTAadp for the trans-
former encoders or decoders. ∗ the tensorized classifier
is optional for different tasks. For classification tasks,
we set this part to be trainable and we freeze this part
during language modeling tasks.

which, for the LLaMA-2-7B model, reaches 7
billion parameters for this single variable.

3 LoRETTA Method

PEFT methods can be broadly categorized into
three types, the adapters, the reparameterization
method, and the prompt-based method (Hu et al.,
2023). Among them, the reparameterization-based
and adapter-based methods are notable for incor-
porating new structures within the model architec-
ture, thereby introducing a large number of addi-
tional trainable parameters. To reduce the size of
the injected modules, we introduce our LoRETTA
framework, which contains the adapter-based ap-
proach LoRETTAadp and the reparameterization-
based approach LoRETTArep . Subsequent sec-
tions will delve into the intricacies of the tensorized
layer, followed by an in-depth exploration of the
LoRETTAadp and LoRETTArep structures.

3.1 Tensorized TT Layer

We devise the modules in LoRETTAadp and
LoRETTArep based on tensorized layers, where
we first reshape the weight matrix in the linear
layer into a tensor and then employ the TT
format to reduce the number of model parameters.
Specifically, TT (Oseledets, 2011) decomposes
a large tensor into a set of small tensor factors.
Unlike traditional linear layers that involve training
large weight matrices, we only store and train the
small TT factors during the fine-tuning process.
Consequently, considering a fully connected layer
with an input vector of x ∈ RN , the forward

pass can be expressed as y = Wx + b, where
W ∈ RM×N is the weight matrix, and b is the
bias vector.

In a tensorized layer, the matrix W is first
reshaped into a tensor W ∈ Rk1×···×kd , where∏d

i=1 ki = M ×N . Then, the reshaped weight ten-
sor W can be effectively represented by TT-format
using a set of tensor factors G1, · · · ,Gi, · · · ,Gd

with the shape of Gi ∈ Rri−1×ki×ri , i ∈ [1, d].
Then, for the d dimension tensor W and a sequence
of value (a1, · · · , ad) for each dimension, the
element W(a1, · · · , ad) can be calculated with a
given set of TT rank [r0, · · · , rd]:

W(a1, · · · , ad) = Ga1
1 · · ·Gai

i · · ·Gad
d (1)

where Gai
i := Gi(:, ai, :) ∈ Rri−1×ri is a slice

of each tensor factors with the same shape of
ri−1 × ri. By setting the first and last TT-ranks
as r0 = rd = 1, we can obtain the value for an
element in W by doing the matrix multiplication
among the slice of each tensor factor.

Since the matrices Gai
i are stacked into the

tensor factor Gi, the original weight matrix W can
also be written by the TT representation, which
reshapes the product of all the tensor factors:

TT(W ) :=
d∏

i=1

Gi[ri−1, ki, ri], (2)

where Gi[ri−1, ki, ri] means for the i-th tensor
factor Gi with the size of ri−1 × ki × ri.

As we can see, the tensorized layer substan-
tially reduces the parameter count for the
weight matrix W from the original M × N to∑d

i=1 ri−1kiri. Thus, the compression ratio is
closely linked to the choice of TT ranks. For
simplicity, we fix all ranks ri, ∀i ∈ [1, d− 1] to be
the constant. However, adaptive rank adjustments
during training, as discussed in (Hawkins et al.,
2022), may further enhance the performance of
the LoRETTA framework. In the following, we
elaborate on how to utilize this tensorized layer in
the LoRETTAadp and LoRETTArep methods.

3.2 Lightweight Tensorized Adapters

LoRETTAadp is inspired by the ultra-low “intrinsic
dimension” of the language models (Aghajanyan
et al., 2020). This idea has been utilized in the



previous Adapters and LoRA methods by using
the bottleneck approach. However, there still
exists a large gap between trainable parameters
of the current PEFT methods and the "intrinsic
dimension" explored in (Aghajanyan et al., 2020).
This motivates us to push this idea further. In our
method, we first fine-tune the LLMs by injecting
tensorized adapters, demonstrating superior
performance with ultra-low trainable parameters.

The general workflow of LoRETTAadp is il-
lustrated in Fig. 3. Different from the traditional
Adapters method that utilizes the bottleneck
structure to reduce the trainable parameters,
our tensorized adapters achieve a much larger
compression ratio by including two tensorized
linear layers and an activation function. For
example, set the hidden size of the models as
768, and the bottleneck size as 64, compared
to the Adapters method with the number of
trainable parameters of 2 · 768 · 64 ≈ 98K
for weight matrices, LoRETTAadp adds only∑6

i=1(5
2 · 8) = 1.2K parameters, assuming tensor

shapes of [8, 8, 8, 8, 8, 8] and a constant TT rank
of 5. Inspired by the idea presented in (Houlsby
et al., 2019), we incorporate trainable tensorized
adapters following each attention and feed-forward
sub-layer within the self-attention blocks.

Optimizable modules: Further to fine-tuning the
tensorized adapters modules, we also investigate
making the layer normalization and the last layer
of networks trainable. From our observations in
the Appendix B, it is obvious that fine-tuning the
last layer of the models is crucial for classification
tasks. However, it is a common challenge to
fine-tune the last layer due to its large number of
parameters in models like RoBERTa and DeBERTa.
To tackle this, we employ the tensorized last layer
for classification tasks in our methods, thereby
achieving a significant reduction in trainable
parameters while maintaining effectiveness, as
evidenced in our experiments. Note that we choose
to freeze the last layer for language model tasks
since the parameters of the language model head
are inherited from the pre-trained weight.

3.3 TT Reparameterization

Next, we propose a more compact PEFT approach
by reparameterizing the weight matrix with ten-
sor factors, dubbed LoRETTArep . The idea of
the reparameterization also appeared in LoRA (Hu

et al., 2021), which updates the weight with two
low-rank matrices in a linear layer as follows:

y = W0x+∆Wx = W0x+BAx (3)

where x and y denote the input and output of a
linear layer. Setting h as the hidden size of the
model, W0 ∈ Rh×l is a pre-trained weight matrix,
B ∈ Rh×r and A ∈ Rr×l are low-rank matrices
representing the update matrix ∆W , with r ≪
min(h, l) as the LoRA rank parameter. In the
original LoRA, A is initialized from a Gaussian
distribution whereas B is zero, ensuring that the
update part BA = 0 at the beginning.

However, as mentioned in the introduction,
the reparameterization of weights through matrix
factorization may not fully exploit the intrinsic
dimension. Here, we propose a more compact
way to represent the updating matrix with two
tensorized layers (without bias terms) introduced
in Section 3.1, whose general idea is depicted
in Fig. 3. In our method, we also employ the
bottleneck structure to first reduce the large
updating matrix into two small matrices. Then,
we reshape the two updating matrices ∆Wup and
∆Wdown into tensors ∆Wup and ∆Wdown with
the shape of k1 × · · · × kd and j1 × · · · × jd. Here,
both ∆Wup and ∆Wdown are cast into TT factors.
The tensorized update process of a full-connected
layer with linear transformation to an input x can
be expressed as:

y = W0x+ TT(∆Wup) · TT(∆Wdown)x

= W0x+
d∏

i=1

Gi

d∏
i=1

Qix (4)

where W0 represent the pre-trained weight, ∆Wup

and ∆Wdown are represented as the TT layers
following the TT representation in eq. (2) with
tensor factors (G1, · · · ,Gd) and (Q1, · · · ,Qd) in
the TT layers. In our implementation, we use the
tensorized layer mentioned ahead, but without
the bias term to perform the tensorized linear
transformation in the second term of eq. (4). In
this manner, our approach reduces the parameters
from 12K to 1K for a single reparameterization
adapter compared with the LoRA method with the
LoRA rank of 8, when the hidden size is 768 and
the tensor rank is 5 for the LoRETTArep method.

Initialization: As noted before, LoRA starts
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Figure 3: Architecture of the LoRETTArep method for a single transformer encoder.

with B = 0, making the initial model outputs
identical to pre-reparameterization. However,
our proposed method requires optimizing each
tensor factor. Compared with the LoRA method,
which only contains two factors for each weight
matrix, assigning a value of zero to one of the
numerous tensor factors can more readily lead to
optimization challenges due to zero gradient issues.
To overcome this issue, we initiate the process
with a tensor reconstruction (Kolda and Bader,
2009) step at the beginning of the training process.
This step involves converting the list of tensor
factors back into a matrix form. Following this,
we compute the mean of the reconstructed matrix
to evaluate the noise introduced by Gaussian
initialization, and subsequently mitigate the noise
from the pre-trained weight.

4 Experiment

We conduct comprehensive experiments for the
performance of LoRETTA on the downstream task
for the LLMs with different scales. Specifically,
we present the results on both BERT-family
(RoBERTa-base (Liu et al., 2019) and DeBERTa-
base (He et al., 2020)) models and the large-scale
LLaMA-2 models (Touvron et al., 2023). We
first show that LoRETTA frameworks perform
on par or better than other PEFT methods (like
BitFit, LoRA, Adapters, and Prefix tuning, etc.)
with fewer trainable parameters across different
model types, sizes, and tasks, especially on
the LLaMA-2 models. Then, we discuss some
observations of the strong ability of LoRETTA
in multi-task learning and addressing overfitting
issues. Further experiments demonstrate that
the LoRETTA method can help to reduce the
memory storage, training FLOPs, and improve the
memory copy efficiency. Finally, we also carry
out the tensor rank analysis of our approach to

show the applicability of LoRETTA with even
fewer trainable parameters. All experiments utilize
the AdamW optimizer (Loshchilov and Hutter,
2018), and similar learning rate and batch size
set up for different methods (See Appendix A for
details). We use NVIDIA Tesla V100-16GB and
A100-40GB for experiments.

Compared Methods. Our exploration cov-
ers both full-model fine-tuning (FT) and PEFT
methods like Adapters (Ding et al., 2023), BitFit
(Zaken et al., 2022), LoRA (Hu et al., 2021),
Prefix-tuning(Li and Liang, 2021), Prompt-tuning
(Lester et al., 2021), P-tuning (Liu et al., 2022b)
and IA3 (Liu et al., 2022a). To ensure a fair and
easier comparison, we implemented most PEFT
methods with the Huggingface PEFT library (Man-
grulkar et al., 2022) and evaluated most methods
with the same learning rate, batch size, and training
epochs. Furthermore, we primarily adhered to the
default settings for other hyperparameters of the
baseline methods, upholding consistency across all
tasks for generalizability.

4.1 GLUE Experiments on the BERT Family

We initially conducted experiments on the General-
ized Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2018), encompassing var-
ious natural language understanding tasks. Table 1
summarizes the downstream task performance
comparison between LoRETTA framework and
other baseline methods. We utilize the whole
training dataset for each task, collect the best
validation results in every 200 training steps, and
reach the following conclusions.

LoRETTA performs on-par or better than
other PEFT methods. Both LoRETTAadp and
LoRETTArep consistently achieve higher average



Table 1: Comparative analysis of various PEFT methods on the BERT family models (including RoBERTa-base and
DeBERTa-base models). We specifically bold the PEFT method that achieves the best results among methods with
similar parameter sizes. ∗ represents results shown in previous works (Valipour et al., 2022; Zaken et al., 2022).
Different from the LoRA paper (Hu et al., 2021), we use the F1 score for the MRPC and QQP tasks.

Model & Method
# Train.
Param.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

DeBERTa-Base (FT) 139.19M 88.67 94.61 91.98 59.32 93.04 91.42 68.23 91.10 84.79
DeBERTa-Base (Adaptersr=8) 0.94M 87.69 94.72 88.88 54.19 92.95 85.52 59.20 89.68 81.60
DeBERTa-Base (LoRAr=8) 0.30M 87.30 94.95 92.84 60.56 93.35 85.19 80.14 90.13 85.56
DeBERTa-Base (P-Tuning) 0.23M 56.25 91.39 79.93 43.31 86.30 78.43 55.95 78.38 71.24
DeBERTa-Base (LoRAr=4) 0.15M 87.69 94.49 91.10 62.57 92.60 87.30 69.67 91.12 84.54
DeBERTa-Base (Prompt) 0.01M 77.63 92.43 81.90 32.99 80.30 78.15 62.81 56.71 70.36
DeBERTa-Base (Prefix) 0.15M 60.32 88.87 81.22 45.82 83.28 82.22 59.57 84.99 73.28
DeBERTa-Base (BitFit) 0.10M 84.63 95.41 91.42 64.06 93.20 84.15 66.79 90.23 83.75
DeBERTa-Base (LoRETTAadp) 0.10M 85.93 95.30 93.53 60.84 92.99 84.08 75.50 91.32 84.96
DeBERTa-Base (LoRETTArep) 0.05M 86.80 95.53 88.73 59.69 93.25 89.20 75.81 90.66 84.95
RoBERTa-Base (BitFit)∗ 0.10M 85.30 94.80 92.33 62.70 91.30 68.10 73.60 88.50 82.08
RoBERTa-Base (LoRAr=8)∗ 0.63M 86.82 94.01 91.48 62.08 92.39 85.71 74.51 90.48 84.69
RoBERTa-Base (LoRETTAadp) 0.10M 85.61 94.38 91.08 62.70 92.12 87.22 78.70 90.26 85.26
RoBERTa-Base (LoRETTArep) 0.07M 84.40 94.28 90.63 61.72 92.40 85.23 74.42 89.24 84.04

scores on the GLUE tasks versus PEFT methods
with lower than 0.2M trainable parameters, like
LoRA, Prefix/Prompt tuning, P-tuning, and BitFit
methods. Compared to LoRA with 3× more
trainable parameters, LoRETTAadp outperforms
across 4 of 8 tasks and attains a similar average
performance (with nearly 0.5% difference).
Similarly, LoRETTArep reduces parameters by 6×
with just an average score gap within 0.6%.

LoRETTA performs well across different
BERT models. For fair comparison, we also
include LoRA and BitFit results on the RoBERTa-
base model reported in (Valipour et al., 2022;
Zaken et al., 2022), which sets the last layer to be
trainable. We observe that LoRETTAadp outper-
forms LoRA, with a substantial 7× reduction in
trainable parameters. The results also highlight
LoRETTA performs much better than the BitFit on
the RoBERTa-base model, showing our advantages
over other PEFT methods across various models,
alongside its robust generalization capabilities.

4.2 Large-Scale Language Models

Building upon the encouraging results achieved
with DeBERTa/RoBERTa models, we expanded
the application of LoRETTA to the LLaMA-2
models. The results are summarized in Table 2 and
Table 3. To raise the difficulty of experiments, we
use low data resource settings for both SuperGLUE
tasks (Wang et al., 2019) and generation tasks
about question answering (SQuAD (Rajpurkar
et al., 2016), DROP (Dua et al., 2019)). For each

Figure 4: Evaluation loss comparison across various
PEFT methods on the DeBERTa-base model. The loss
is smoothed with a window size of 20 and the shallow
means the standard deviation boundaries.

task, we randomly selected 1000, 500, and 1000
examples for training, validation, and testing. All
classification tasks in the SuperGLUE benchmark
have been transferred to language modeling tasks
following the prompt-based fine-tuning strategy
used in (Malladi et al., 2023). Our observations are
summarized as follows.

LoRETTA performs better or on-par compared
with other widely used PEFT methods with
up to 100× trainable parameters reduction.
LoRETTAadp shows superior performance across
most tasks compared to all parameter-efficient
fine-tuning methods. Compared with LoRA or the
Adapter methods, LoRETTAadp achieves better
performance in up to 7 tasks with nearly 5× and
56× reduction of trainable parameters. Even
compared with full model fine-tuning, our method
still outperforms in 5 of 7 tasks. Furthermore,



Table 2: Performance Comparison on LLaMA-2-7B with low data resource setting (1000 examples). LoRETTAadp

outperforms other widely used PEFT methods among most tasks.

Model & Method Train. Classfication Multiple Choice Generation
Param. CB BoolQ WSC COPA ReCoRD SQuAD DROP

LLaMA2-7B (FT) 6738.42M 66.07 84.6 63.46 86 81.1 90.71 51.38
LLaMA2-7B (Adapter) 50.33M 66.07 71.8 62.50 84 78.8 88.45 49.14
LLaMA2-7B (LoRAr=8) 4.19M 67.86 84.8 62.50 81 79.4 90.56 45.96
LLaMA2-7B (Prefix) 1.31M 51.78 78.6 61.53 83 81.0 90.56 45.95
LLaMA2-7B (IA3) 0.60M 64.29 72.3 36.53 80 81.5 89.41 39.37
LLaMA2-7B (LoRETTArep) 0.51M 55.35 78.1 57.61 86 80.3 88.47 42.71
LLaMA2-7B (LoRETTAadp) 0.88M 66.07 87.0 63.46 87 80.0 90.17 51.60

Table 3: Performance Comparison on LLaMA-2-13B and LLaMA-2-70B. We compare our proposed method with
LoRA, which is one of the most widely used high-performance PEFT methods.

Model & Method LLaMA-2-13B LLaMA-2-70B
Param. COPA ReCoRD SQuAD DROP Param. SQuAD DROP

Adapters 79.05M 90 83.8 93.37 57.41 252.97M 93.37 68.12
LoRAr=8 6.55M 90 83.4 92.71 59.13 16.38M 93.78 72.99
IA3 0.96M 85 84.2 91.81 51.48 2.45M 92.85 71.48
LoRETTArep 0.77M 86 84.4 90.87 53.19 1.99M 90.18 68.83
LoRETTAadp 1.67M 90 83.9 92.67 59.41 4.79M 94.33 74.50

LoRETTArep achieves comparable performance
with up to 100× fewer trainable parameters
compared to the Adapters.

LoRETTA is working even better on 13B
and 70B models. We compare the performance
of our proposed method with the most widely
used LoRA method over the LLaMA-2 13B and
70B models. Due to the limited computation
resources, we only give the results on the more
important reasoning (COPA and ReCoRD) and
generation tasks (SQuAD and DROP). The results
are summarized in Table 3. We can observe
that our LoRETTAadp method outperforms the
LoRA method across 5 of 6 tasks on both 13B
and 70B models. In particular, the LoRETTAadp

method achieves a reduction of nearly 12 million
trainable parameters on the 70B model with over
1% accuracy improvement.

The tensorized method shows robust per-
formance across various tasks. Beyond the
classification and multi-choice tasks, we also
included language generation tasks such as
SQuAD and DROP, which are more intricate.
It can be seen that LoRETTAadp continues to
yield excellent results with much lower trainable
parameters, especially on the large-scale LLaMA-2
13B and 70B models.

Table 4: Performance of anti-forgetting in MTL tests.
The three training sets are fed sequentially during the
training process and we test the validation loss for each
task after the training is finished.

Model & Method SST-2 MRPC QNLI Average

DeBERTa-Base(Adapters) 51.83 27.21 90.21 56.42
DeBERTa-Base(LoRA) 49.20 20.15 87.74 55.70
DeBERTa-Base(LoRETTAadp ) 52.29 39.22 91.52 61.01
DeBERTa-Base(LoRETTArep ) 51.26 52.94 92.15 65.45

4.3 Over-fitting and Multi-Task Learning

LoRETTA method uniquely addresses overfitting
and promotes multi-task learning (MTL) by
reducing trainable parameters. We further explore
its anti-overfitting and MTL capabilities.
Adapters and LoRA exhibit overfitting during
training. We follow the experiments of SST-2
and QNLI tasks in Section 4.1 and record the
curve of evaluation loss by testing the validation
dataset every 200 steps. The corresponding results
are in Fig. 4. It is evident from the figure that
the evaluation loss for both LoRA and Adapters
escalates rapidly beyond a certain point, indicating
a significant over-fitting. In contrast, LoRETTAadp

and LoRETTArep show markedly improved
handling of overfitting and a much more stable
learning curve with less variance. That is attributed
to their much fewer trainable parameters, which
better retain the information captured by the
pre-trained weights.
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Figure 5: Comparison of memory storage for trainable
parameters across different models and methods.

LoRETTA excels in MTL tasks. MTL op-
timizes multiple tasks using shared model
parameters (Ruder, 2017). We utilize the
DeBERTa-Base model and train our model with
SST-2, MRPC, and QNLI training set in the GLUE
benchmark sequentially. We test the accuracy with
the validation set after the training of all three
datasets, which can show the degree of forgetting.

The results, presented in Table 4, demonstrate that
LoRETTAadp and LoRETTArep achieve higher
average test accuracy. This shows our method
performs better in retaining the information in
the previous training, highlighting our method
as a potentially better foundational approach for
fine-tuning in MTL setup. Future work could
include integrating more comprehensive MTL
strategies with LoRETTA , such as task clustering
or task relation learning (Zhang and Yang, 2021)
to achieve better performance.

4.4 Memory Performance

In Figure 5, we compare LoRETTA with prominent
fine-tuning approaches, including LoRA and
adapters on two types of LLMs to show that our
proposed method enjoys the following key features.

Ultra-low memory storage for trainable
parameters. LoRETTArep , our most compact
PEFT method, requires only around 1MB storage
for its trainable parameters, outperforming
its counterparts. On DeBERTa-Base, both
LoRETTArep and LoRETTAadp (0.852MB vs
3.5MB) outperform classical baselines, reducing
the trainable parameter storage by a factor
of 9.6× and 2.7×, respectively, compared to
LoRA and Adapters. Ditto for LLaMA-2, where
LoRETTArep and LoRETTAadp similarly reduce
the trainable parameter storage by a factor of
57.4× and 9.8×, respectively. Such an economic

Table 5: Memory profiling and FLOPs analysis.

Model & Method Memcpy (us) FLOPS (Reduction)
LLaMA2-7B(Adapter) 10590 6.18E+15(Baseline)
LLaMA2-7B(LoRA) 45674 6.145E+15(-4.2+E13)
LLaMA2-7B(LoRETTAadp ) 9879 6.141E+15(-4.6+E13)

Table 6: Tensor rank analysis on SST-2 and QNLI.

LoRETTAadp r=2 r=5 r=10 r=20
Train. Param. 0.067 0.098 0.206 0.627

DeBERTa-Base(SST-2) 95.41 95.30 94.84 95.41
DeBERTa-Base(QNLI) 92.04 92.99 93.50 93.34

LoRETTArep r=2 r=5 r=10 r=20
Train. Param. 0.042 0.054 0.094 0.250

DeBERTa-Base(SST-2) 94.61 94.4 94.95 95.07
DeBERTa-Base(QNLI) 92.71 93.25 93.47 93.32

storage space makes our proposed method suitable
for resource-limited hardware (Wu et al., 2023),
suggesting potential applications in quantized
tensor models for future research.

LoRETTA minimizes data movement overhead
and reduces end-to-end training FLOPs.
Considering data movement overhead during
training, our method minimizes memory handling
time, surpassing other PEFT methods. Overall,
with 57.4× less storage consumption, LoRETTA
achieves comparable or superior results in memory
copying time, as shown in Table 5, outperforming
LoRA and Adapters. Additionally, it decreases the
total floating-point operations (FLOPs) required
for the fine-tuning of LLaMA2 on the SST-2 (Stan-
ford Sentiment Treebank) task. This reduction in
computational cost is accompanied by enhanced
accuracy, demonstrating superior computational
efficiency. Note that using some automatic CUDA
optimization techniques (like torch.compile) can
speed up the training of LoRETTA methods to a
great extent due to the existence of a large number
of small tensor multiplications during the training
process.

4.5 Tensor Rank Analysis and Ablation Study

We first investigate the influence of different
tensor ranks on our model’s performance. The
results are summarized in Table 6. We see that
the performance for different ranks of LoRETTA
approach varies across tasks. For the SST-2
task, the performance is not sensitive to the rank
setting for both LoRETTAadp and LoRETTArep

. However, the test accuracy drops when dealing
with the QNLI task with an extra small rank.



Generally, our method performs well even under
smaller ranks in some tasks, which shows the
possible ability to reduce the trainable parameters
under tight hardware constraints.

We also test the influence of activating the
final layer and layernorm on our method. The
tensorized classifier demonstrates comparable
results to the regular one with a notable parameter
reduction and the layernorm is shown to play
a crucial role in some specific tasks. Detailed
analyses are in the Appendix B.

4.6 Configuration of Tensor Shape

In this paper, we use the TT-format to represent
the weight matrices in the tensorized layer. To
represent a weight matrix into a list of tensor
factors with shape Rri−1×ki×ri for the i−th factor
(refer to section 3.1), we design the specific
shapes for models with different hidden sizes
and bottleneck setups. Presently, a standardized
approach to ascertain the precise shapes of tensor
factors ideal for Tensor-Train decomposition re-
mains elusive. This process generally necessitates
experimental efforts to discover the most effective
configuration for the shapes of tensor factors. Here,
we present an illustrative example of fine-tuning
the DeBERTa-Base model with LoRETTAadp ,
highlighting the procedure for selecting tensor
shapes. This process involves the incorporation of
tensorized layers that are characterized by an input
of 768 hidden dimensions and an output size of 64.

We explored three setups [k1, .., ki, ..kd] for
tensor factor shapes. The results are presented
in Table 7, and it’s evident that the shape of
[8, 8, 12, 8, 8] yields the best performance across
the three selected tasks. Notably, the results with
a shape of [4, 4, 4, 12, 4, 4, 4] indicate that an
excessively small dimension size for the tensor
shape may lead to a significant performance drop.
Hence, we chose the shape of [8, 8, 12, 8, 8] in our
paper. We provide detailed tensor shape setup for
most widely used models, refer to Appendix A.4
and the provided code for more detail.

5 Conclusion

We propose an ultra-parameter-efficient fine-tuning
method, named LoRETTA , which outperforms

Table 7: Experiment results for determining the shape
of the TT-format

Tensor Shape Param. SST-2 MRPC QNLI

[8, 8, 12, 8, 8] 0.10M 95.30 93.53 93.25
[64, 12, 64] 0.11M 95.07 93.05 92.92
[4,4,4,12,4,4,4] 0.10M 94.72 90.72 92.86

other PEFT methods with fewer trainable parame-
ters on LLaMA-2 models. Extensive experiments
have verified that having low trainable parameters
can facilitate computation and memory demands,
reduce storage requirements, and enhance the abil-
ity to deal with multi-task learning/overfitting. Our
proposed methods exhibit strong capabilities in
both natural language understanding and genera-
tion tasks. In future work, the computation effi-
ciency of the LoRETTA method can be further im-
proved with other memory-efficient methods, such
as FlashAttention (Dao et al., 2022) and quantiza-
tion (Frantar et al., 2022).
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Limitations

Given the extensive array of Parameter-Efficient
Fine-Tuning (PEFT) methods discussed in this pa-
per, as well as the wide range of models and tasks,
the training process can become quite lengthy. Our
experiments are therefore confined to testing our
methods on DeBERTa, RoBERTa, and LLaMA-
2 models. Notably, in the case of LLaMA-2,
we adopt a low data resource setting to expedite
our experiments. Future research could extend
the application of our proposed method across a
broader spectrum of models and tasks, leverag-
ing the library we have made available on GitHub.
Some related topics like the robustness (Yuan et al.,
2024), and fairness (Li et al., 2023b) issues of the
LoRETTA method can also be studied.

Another area of limitation involves the optimiza-
tion of the training time and memory cost for our
proposed method. At present, we utilize automatic
CUDA optimization via the torch.compile function.
However, a fully customized CUDA graph could
potentially reduce the training duration of our meth-



ods even further. Additionally, there’s scope for
an extension aimed at enhancing the training effi-
ciency and scalability of the Tensor Train (TT) for-
mat, particularly following its adaptation to low-bit
quantization (Zhou et al., 2023; Ran et al., 2023).

Ethics Statement

LoRETTA provides a cost-effective solution that
operates with a minimal memory footprint. This
alleviates the burden on data centers and reduces
CO2 emissions. However, we acknowledge that
prolonged training times, especially with multiple
GPUs, can pose environmental challenges. Con-
sequently, our ongoing research endeavors are fo-
cused on developing more efficient training meth-
ods and preserving computational power with eco-
logical considerations in mind.
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A Experiment setup

A.1 Dataset Setup

We initially conducted experiments on the General-
ized Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2018), encompassing var-
ious natural language understanding tasks. These
tasks include perceptual analysis (SST-2 (Socher
et al., 2013)), language acceptability (CoLA
(Warstadt et al., 2018)), similarity and paraphrase
tasks (MRPC, STS-B, QQP (Dagan et al., 2005)),
and natural language reasoning (MNLI, QNLI,
RTE (Williams et al., 2017; Rajpurkar et al., 2018)).
The metrics we used for the GLUE benchmark are
summarized in Table 8.

Table 8: Metrics that we use to evaluate GLUE Bench-
mark for BERT-based Model.

Task Name Metric

QNLI Accuracy
SST-2 Accuracy
MNLI Matched Acc.
CoLA Matthews corr.
MRPC F1
STS-B Spearman corr.
RTE Accuracy
QQP F1

Subsequently, we selected both SuperGLUE
tasks (Wang et al., 2019), involving classification
(CB, BoolQ, WSC) and multiple-choice (COPA
and ReCoRD), as well as two additional genera-
tion tasks about question answering (SQuAD (Ra-
jpurkar et al., 2016), DROP (Dua et al., 2019)).
For the test with the SuperGLUE and generation
datasets, we increase the difficulty by employing
a low data resource setting. We randomly sam-
ple 1,000 examples for training, 500 examples for
validation, and 1,000 examples for testing. We fol-
low the prompt settings in Appendix D of (Malladi
et al., 2023) to transfer the classification into the
language model tasks and the metrics we used are
summarized in Table 9. All experiments are fin-
ished with the AdamW optimizer (Loshchilov and
Hutter, 2018).

A.2 Baselines

Fine-tuning (FT) is a common approach
for adaptation. In this process, the model is
initialized with pre-trained weights and biases,
and all model parameters undergo gradient updates.

Table 9: Metrics that we use to evaluate SuperGLUE
and generations tasks.

Task Name Metric

CB F1
BoolQ Accuracy
WSC F1
COPA Accuracy

ReCoRD F1
SQuAD F1
DROP F1

Adapters, as proposed by (Houlsby et al.,
2019), insert adapter layers between the self-
attention module (and the MLP module) and
the subsequent residual connection. An adapter
layer consists of two fully connected layers with
biases, separated by a nonlinearity. We conducted
the adapter experiment using various adapter
bottleneck sizes, such as 8 and 64.

LoRA introduces trainable pairs of rank de-
composition matrices in parallel to existing weight
matrices. As mentioned in Sections 3 and 4
(Hu et al., 2021), we primarily apply LoRA to
the query and value layers in most experiments
for simplicity. The number of trainable param-
eters is determined by the LoRA rank and the
shape of the original weights, as shown in Table 12.

Prefix Tuning adds a prefix of m tunable
representations at each layer and freezes the
remaining parts of the model. These represen-
tations serve as new keys and values, providing
additional context during the attention operation.
The tunable representations are initialized by
randomly sampling tokens from the vocabulary and
passing them through the language model to obtain
their keys and values at various attention layers.
In our experiments, we observe that m = 8 can
achieve satisfactory performance across most tasks.

BitFit is a baseline where only the bias vec-
tors are trained while keeping all other parameters
frozen. We only test the BitFit methods with the
BERT-based models since the bias term is not
enabled in the linear layer of the LLaMA models.

Prompt Tuning tuning technique can guide
the behavior of language models by adding text
prompts to the input, wherein we only need to train
a small part of prompt parameters.



IA3 rescales inner activations with learned
vectors on the attention and feed-forward layers.
The method is ultra-parameter efficient, with a
similar parameter size as the proposed LoRETTA
methods. However, the LoRETTA methods shows
better performance in almost all tasks on the
Llama-2 models compared with the IA3 method.

A.3 Hyperparameters

We outline the configuration details for each
comparative experiment. Specifically, for the
DeBERTa/RoBERTa-Base models, the learning
rates and batch sizes of individual methods are
presented in Table 12. For a fair comparison, we
use almost the same learning rate, batch size, and
learning rate setting for different methods in the
same tasks, except for the full model fine-tuning,
which cannot converge under the large learning
rate. In the case of P-tuning, we extended the
prompt length to 768, with a virtual token count
of 20 during fine-tuning. Regarding the prompt
method, we increased the virtual token to 20.
For prefix, we used Prefix-Propagation (Li et al.,
2023a) to experiment. We implement the LoRA,
Adapters, prefix/prompt tuning, and P-tuning
methods with the PEFT library (Mangrulkar et al.,
2022). All GLUE tasks underwent training for 10
to 20 epochs.

Except for the experiments on BERT-based
models, we also compare our proposed method
with the Adapters, LoRA, and prefix tuning
methods. We use the hyperparameters in Table 13
for the experiment on LLaMA-2 models. Note that
even though we run all experiments for 3 epochs,
further learning steps may help to improve the
performance of our proposed methods further.

A.4 Additional Detail of TT-format

The design of the tensor shape [k1, · · · , kd] for
models with other hidden sizes are summarized
in Table 10. Here we only show the tensor shape
used in the DeBERTa/RoBERTa-base and LLaMA-
2-7b models. The hidden sizes used are 768 and
4096 respectively. For other models with different
hidden sizes, the tensor shape needs to be defined
specifically before the training. More detail can be
found in the code we provided, which has included
the most widely used hidden sizes (like 768, 1024,
1536, 4096, 5120, and 8192) in the implementa-
tions, which work for nearly all kinds of widely
used models. For a more detailed setup, please

refer to the source code of the loretta library pro-
vided.

Table 10: The shape settings of the TT-format

Modules Matrix Shape Tensor Shape

Tensorized Adapters 768× 64 [8, 8, 12, 8, 8]
4096× 64 [16, 16, 16, 4, 4, 4]
64× 768 [8, 8, 12, 8, 8]
64× 4096 [4, 4, 4, 16, 16, 16]

Tenosrized updating matrix 768× 8 [8, 8, 12, 8]
768× 16 [8, 8, 12, 4, 4]
768× 32 [8, 8, 12, 8, 4]
8× 768 [8, 12, 8, 8]
16× 768 [4, 4, 12, 8, 8]
32× 768 [4, 8, 12, 8, 8]
4096× 8 [8, 8, 8, 8, 8]
4096× 16 [8, 8, 8, 8, 4, 4]
4096× 32 [8, 8, 8, 8, 8, 4]
8× 4096 [8, 8, 8, 8, 8]
16× 4096 [4, 4, 8, 8, 8, 8]
32× 4096 [4, 8, 8, 8, 8, 8]

Tenosrized Classifier(Optional) 768× 768 [12, 8, 8, 8, 8, 12]
768× 768 [8, 8, 8, 8, 8, 8, 8, 8]

B Ablation Study on Classifier and
Layernorm

Here, we examined six scenarios for three tasks
for both LoRETTAadp and LoRETTArep methods,
considering the trainable status of layernorm and
classifiers. The results are shown in Table 11. Our
findings highlight that the tensorized classifier
demonstrates comparable results to the regular
classifier with a notable reduction in parameters.
Furthermore, the layernorm plays a significant role
in our framework.

First, we set the tensorized classifier/adapters to be
trainable and observed the influence of layernorm.
We find that layernorm plays an important role
in our framework. Then, we fix the layernorm to

Table 11: LoRETTA fine-tuning with/without layernorm
and classifier layers.

Method
Train
Param

SST-2 MRPC QNLI
Classfier
& Pooler

Layernorm

LoRETTAadp 0.061M 94.38 92.01 92.98 Tensorized No
LoRETTAadp 0.1M 95.3 92.53 92.99 Tensorized Yes
LoRETTAadp 0.650M 93 91.9 93.15 Regular No
LoRETTAadp 0.688M 94.26 91.09 93.06 Regular Yes
LoRETTAadp 0.058M 93.92 92.11 92.71 No No
LoRETTAadp 0.096M 94.03 91.31 93.46 No Yes

LoRETTArep 0.054M 95.53 88.73 93.25 Tensorized Yes
LoRETTArep 0.016M 93.81 90.78 90.15 Tensorized No
LoRETTArep 0.645M 95.18 91.88 92.99 Regular Yes
LoRETTArep 0.606M 95.41 91.00 92.57 Regular No
LoRETTArep 0.052M 95.41 91.19 92.69 No Yes
LoRETTArep 0.014M 94.83 87.5 91.87 No No



be trainable and observe the tensorized classifier
demonstrates comparable results to the regular
classifier and reduces about 92% of trainable
parameters in the last layer. Furthermore, the
tensorized classifier still helps a lot in improving
the performance of our approach, even if we freeze
the layernorm.

We also test the influence of the tensorized
classifier layer for our LoRETTArep method.
As we can see from the table, optimizing the
classifier layer for the sequence classification task
is important. Our tensorized classifier successfully
reduces the trainable parameters led by the
traditional classifier layer and still maintains high
performance.

Table 12: The hyperparameter grids used for GLUE
experiments. We fine-tune each task for 10 to 20 epochs,
evaluating the validation loss every 500 steps. We record
the best model checkpoint based on the validation loss.

Experiment Hyperparameters Values

FT Batch size [16, 32]
Learning rate 1e− 6

LoRA Batch size [16, 32]
Learning rate [1e− 4, 5e− 4]

Rank 4, 8

Adapters Batch size [16, 32]
Learning rate [1e− 4, 5e− 4]

Bottleneck dimension [8, 64]

Prefix Batch size 8, 64
Learning rate [1e− 4, 5e− 4]
Prefix Tokens 8

Bitfit Batch size [16, 32]
Learning rate [1e− 4, 5e− 4]
Bias Terms All

Prompt Batch size [16, 32]
Learning rate [1e− 4, 5e− 4]

Tokens 10

P-tuning Batch size [16, 32]
Learning rate [1e− 4, 5e− 4]

Tokens 20
Prompt Length [128, 768]

LoRETTAadp Batch size [16, 32]
Learning rate [1e− 4, 5e− 4]

Bottleneck dimension 64
Tensor Rank [2, 5, 10, 20]

LoRETTArep Batch size [16, 32]
Learning rate [1e− 4, 5e− 4]
Tensor Rank [2, 5, 10, 20]



Table 13: The hyperparameter grids used for LLaMA-2
experiments. We evaluate the validation loss every 1000
steps and record the best model checkpoint according
to the validation loss.

Experiment Hyperparameters Values

FT Batch size [1, 2]
Learning rate 5e− 6

LoRA Batch size [1, 2]
Learning rate 1e− 4

Rank 8

Adapters Batch size [1, 2]
Learning rate 1e− 4
Bottleneck r [8, 64]

Prefix Batch size [1, 2]
Learning rate 1e− 4
Prefix Tokens 8

LoRETTAadp Batch size [1, 2]
Learning rate 1e− 4

Bottleneck dimension 64
Tensor Rank [2, 4, 8, 16, 32]

LoRETTArep Batch size [1, 2]
Learning rate 1e− 4
Tensor Rank [2, 4, 8, 16, 32]
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