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Abstract: In this paper, we develop an efficient statistical simulation technique based on
stochastic collocation for silicon photonics process variations with non-Gaussian correlated
random parameters. Our algorithm has achieved 57-times speedup compared with standard
Monte-Carlo simulation.
OCIS codes: 220.4241, 130.3120.

1. Introduction

Silicon photonics has attracted lots of attention in recent years thanks to its ability to achieve higher bandwidth, lower
power dissipation compared to electrical interconnects and its compatibility and easy integration with CMOS process
[1]. However, because of the high contrast of the refractive index between silicon and silica, silicon-based optical
devices are very sensitive to manufacturing process variations; for example, the geometric variations in silicon width
and thickness can result in a fluctuation of the effective phase index (neff), leading not only to degraded performance
in devices such as directional couplers and ring resonators but also to serious failures at the system level [2–4].

Despite some results for nanometer integrated circuits (IC) [5,6], there is still a lack of efficient uncertainty quantifi-
cation techniques for silicon photonics. Monte Carlo (MC) [7] has been the mainstream statistical simulation technique
in commercial design software. However, it suffers from a slow convergence rate and long simulation time. Recently,
fast stochastic spectral methods have been developed based on generalized polynomial chaos expansions [8] to effi-
ciently approximate a stochastic solution. However, one of the major assumptions in the existing publications [9,10] is
that the input parameters describing the process variations are mutually independent, which is not always necessarily
true. In this paper, we aim at quantifying the effects of silicon photonic process variations using a stochastic collocation
(SC) scheme [11] . The geometric parameters of the silicon waveguide are assumed to be non-Gaussian correlated,
which is reasonable because of the wafer thickness variations and imperfect lithography in practice. Since the silicon
width depend on the wafer thickness, they are actually correlated. Based on the orthogonal basis construction [12], in
Section 2 we show that the quantity of interest, such as neff, can be efficiently estimated. The simulation results of a
silicon waveguide under process variations are shown in Section 3.

2. Non-Gaussian Correlated parameters

In this section, we first use a Gaussian mixture to model the parameters of the process variations, and then we demon-
strate the orthogonal basis construction flow. Lastly, the idea of computing a stochastic solution dependent on the
correlated non-Gaussian random variables is explained.

2.1. Gaussian Mixture

A Gaussian mixture for N variables with M mixed terms is a weighted sum of M multivariate Gaussian densities. For
the simplicity of mathematical derivation, we set N = M = 2, but it is straightforward to extend our technique to the
general cases where N does not necessarily equal M. With a Gaussian mixture, the process variations can be described
by the following distribution[

ξ1
ξ2

]
∼ a ·N (⃗µA,ΣA)+b ·N (⃗µB,ΣB) with a+b = 1, 0 ≤ a,b ≤ 1 (1)

and

µA =

[
µA1
µA2

]
, ΣA =

[
σ2
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Fig. 1. (a) The cross section of a Silicon waveguide with width W , height H, and refractive indices
nSi = 3.48,nSiO2 = 1.445. (b) The simulated pdf of neff(λ ,W,H) with λ = 1.55 µm. The solid line
is the stochastic collocation result, whereas Monte Carlo result is dash line.

where ξ⃗ = [ξ1;ξ2] can be geometric parameters such as the width, height, and length of a silicon device.

2.2. Basis Functions

Let u(x, ξ⃗ ) be the quantity of interest smoothly dependent on the process variations ξ⃗ . In order to investigate the
process variations of a silicon waveguide, u(x, ξ⃗ ) can be, for example, neff; ξ⃗ can be a parameter vector containing the
width and height of the waveguide; and x can be the operating wavelength that affects neff. Given a joint probability
density function(pdf) of ξ⃗ , which in our case is assumed to be a Gaussian mixture, we can use a set of N-dimensional
orthogonal basis functions Ψα⃗ (⃗ξ ) to approximate the quantity of interest [12] :

u(x, ξ⃗ )≈ ∑⃗
α

Cα⃗(x)Ψα⃗(ξ1, · · · ,ξN) (2)

where Cα⃗(x) is the corresponding coefficient with a multivariable index α⃗ = (α1, · · · ,αN) ∈ NN . In order to construct
such orthogonal bases {Ψα⃗}, we first employ the three term recurrence relations [13] to construct some orthogonal
polynomials with the marginal pdf of ξi for each parameter ξi. Subsequently, we use tensor product and the reshaping
scheme in [12] to obtain {Ψα⃗} that are orthogonal for the joint pdf.

2.3. Stochastic Collocation

The coefficients Cα⃗(x) in (2) can be computed as

Cα⃗(x) =
⟨u(x, ξ⃗ ),Ψα⃗ (⃗ξ )⟩pξ⃗

⟨Ψα⃗ (⃗ξ ),Ψα⃗ (⃗ξ )⟩pξ⃗

(3)

since {Ψα⃗} is an orthogonal set for the measure pξ⃗ (i.e., the joint pdf of ξ⃗ ). The denominator can be obtained as a
by-product when constructing Ψα⃗ in Section 2.2. The numerator of Cα⃗(x) can be approximated based on a SC scheme.
Specifically, we first use an electromagnetic finite difference mode solver to simulate the device at a small number of
Gauss quadrature points computed according to the marginal pdf of each parameter. Then, the denominator can be
computed by a N-dimensional Gauss quadrature rule.

3. Silicon Waveguide example

In this section, the computational flow in Section 2 is applied to estimate neff of the silicon waveguide shown in
Fig. 1(a). We consider the uncertainties of the width W and thickness H, and approximate neff(λ ,W,H) as the linear
combination of several orthogonal functions {Ψα⃗(W,H)}, where λ is the wavelength. Since W depends on H in pro-
cess variation, they are actually correlated. The calculation of Cα⃗(λ ) involves calling a deterministic finite difference
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mode solver at some N-dimensional Gauss-Hermite quadrature points [which are given as some samples of (W,H,λ )].
In our numerical experiments, we set the nominal width W as 0.4 µm, the nominal height H as 0.22 µm. The refrac-
tive index of silicon and silica are 3.48 and 1.445, respectively. The wavelength of interest is 1.55 µm. The Gaussian
mixture of W and H used in our simulation is[

W
H

]
∼ 0.8 ·N (⃗µA,ΣA)+0.2 ·N (⃗µB,ΣB)

with

µA =

[
400
220

]
nm, ΣA =

[
400 0.1
0.1 100

]
nm2, µB =

[
420
230

]
nm, ΣB =

[
300 0.1
0.1 150

]
nm2

All simulations are performed using a core i7-4700 CPU and RAM 8GB laptop. Fig. 1(b) shows the simulated neff
of the silicon waveguide. The solid line is the pdf of the simulated neff by our SC method whereas the dashed line is the
standard MC with 5000 samples. Our result matches the MC result quite well. The total number of quadrature points
and basis functions used in our algorithm are both 49. Therefore, our solver is about 57× faster than standard MC. In
practice, a 49-quadrature-points SC is adequate to provide highly accurate results, at the CPU time of 180 seconds.

4. Conclusions

In this paper, we proposed a SC scheme to simulate non-Gaussian correlated parameters. The numerical procedures of
the basis functions construction and basis coefficient computation are briefly presented. Our computational technique
is applied to analyze the process variations of a silicon photonics waveguide. The simulated neff of our numerical
method is consistent with that from MC. Compared with standard MC, our algorithm has achieved 57× speedup.
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