
Variational Bayesian Inference for Robust
Streaming Tensor Factorization and Completion

Cole Hawkins
Department of Mathematics, UC Santa Barbara

colehawkins@math.ucsb.edu

Zheng Zhang
Department of ECE, UC Santa Barbara

zhengzhang@ece.ucsb.edu

Abstract—Streaming tensor factorization is a powerful tool
for processing high-volume and multi-way temporal data in
Internet networks, recommender systems and image/video data
analysis. Existing streaming tensor factorization algorithms rely
on least-squares data fitting and they do not possess a mechanism
for tensor rank determination. This leaves them susceptible to
outliers and vulnerable to over-fitting. This paper presents a
Bayesian robust streaming tensor factorization model to identify
sparse outliers, automatically determine the underlying tensor
rank and accurately fit low-rank structure. We implement our
model in Matlab and compare it with existing algorithms on
tensor datasets generated from dynamic MRI and Internet traffic.

I. INTRODUCTION

Multi-way data arrays (i.e., tensors) are collected in vari-
ous application domains including recommender systems [1],
computer vision [2], and uncertainty quantification [3]. How
to process, analyze and utilize such high-volume tensor data
is a fundamental problem in machine learning and signal
processing [4]. Effective numerical techniques, such as CAN-
DECOMP/PARAFAC (CP) [5], [6] factorizations, have been
proposed to compress full tensors and to obtain low-rank rep-
resentations. Extensive optimization and statistical techniques
have been developed to obtain low-rank factors and to predict
the full tensor from an incomplete (and possibly noisy) multi-
way data array [7]–[9].

Streaming tensors appear sequentially in the time domain.
Incorporating temporal relationships in tensor data analysis
can give significant advantages in anomaly detection [10],
discussion tracking [11] and context-aware recommender sys-
tems [12]. In the past decade, streaming tensor factorization
has been studied under several low-rank tensor models, such
as the Tucker model in [13] and the CP decomposition in
[14]–[17]. Most approaches use similar objective functions,
but differ in choosing specific numerical optimization solvers.
All existing streaming tensor factorizations assume a fixed
rank, and no existing techniques can capture the sparse outliers
in a streaming tensor. Several low-rank plus sparse techniques
have been proposed for non-streaming tensor data [18]–[20].

Paper Contributions. This paper proposes a method for
the robust factorization and completion of streaming tensors.
We model the whole temporal tensor as the sum of a low-
rank streaming tensor and a time-varying sparse component.
In order to capture these two different components, we present

a Bayesian statistical model to enforce low rank and spar-
sity. The posterior probability density function (PDF) of the
hidden factors is then computed by the variational Bayesian
method [21]. Our work can can be regarded as an extension
of [19], [20], [22] to streaming tensors with sparse outliers.

II. PRELIMINARIES AND NOTATIONS

We use a bold lowercase letter (e.g., a) to represent a vector,
a bold uppercase letter (e.g., A) to represent a matrix, and
a bold calligraphic letter (e.g., A) to represent a tensor. An
order-N tensor is an N -way data array A ∈ RI1×I2×···×IN ,
where Ik is the size of mode k. Given integer ik ∈ [1, Ik] for
k = 1, . . . , N , an entry of the tensor A is denoted as ai1,··· ,iN .

Definition II.1. Let A and B be two tensors of the same
dimensions. Their inner product is defined as

〈A,B〉 =

I1∑
i1=1

· · ·
IN∑
iN=1

ai1,...,iN bi1,...,iN .

The Frobenius norm of tensor A is further defined as

||A||F = 〈A,A〉1/2. (1)

Definition II.2. An N -way tensor T ∈ RI1×···×IN is rank-1
if it can be written as a single outer product of N vectors

T = a(1) ◦ · · · ◦ a(N), with a(k) ∈ RIk for k = 1, · · · , N.

Definition II.3. The CP factorization [5], [6] expresses an
N -way tensor A as the sum of multiple rank-1 tensors:

A =

R∑
r=1

sra
(1)
r ◦ · · · ◦ a(N)

r , with a(k)
r ∈ RIk . (2)

The minimal integer R that ensures the equality is called the
CP rank of A. We can also express the CP factorization as

A =

R∑
r=1

sra
(1)
r ◦ · · · ◦ a(N)

r = [[A(1), . . . ,A(N); s]],

where the mode-k factors form the columns of matrix A(k).

It is convenient to express A(k) both column-wise and row-
wise, so we include two means of expressing a factor matrix

A(k) = [a
(k)
1 , . . . ,a

(k)
R] = [â

(k)
1 ; . . . ; â

(k)
Ik

] ∈ RIk×R.

Here a
(k)
j and â

(k)
ik

denote the j-th column and ik-th row of
A(k), respectively.

Definition II.4. The generalized inner product of N vectors
of the same dimension I is defined as

〈a(1), . . . ,a(N)〉 =

I∑
i=1

N∏
k=1

a
(k)
i .

With a generalized inner product, the entries of a low-rank
tensor A as in Definition II.3 can be written as:

ai1,...,iN = 〈â(1)
i1
, . . . , â

(N)
iN
〉.

The Khatri-Rao product of two matrices A ∈ RI×R and
B ∈ RJ×R is the columnwise Kronecker product:

A�B = [a1 ⊗ b1, . . . ,aR ⊗ bR] ∈ RIJ×R.

We will use the product notation to denote the Khatri-Rao
product of N matrices in reverse order:⊙

n

A(n) = A(N) �A(N−1) � · · · �A(1).

If we exclude the k-th factor matrix, the Khatri-Rao product
can be written as⊙

n 6=k

A(n) = A(N) � · · · �A(k+1) �A(k−1) �A(1).

III. REVIEW OF STREAMING TENSOR FACTORIZATION

Let {Xt} be a temporal sequence of N -way tensors, where
t ∈ N is the time index and the tensor Xt of size I1×· · ·×IN is
a slice of this multi-way stream. Streaming tensor factorization
aims to extract the latent CP factors evolving with time.

The standard streaming tensor factorization is [16]:

min
{A(k)}N+1

k=1

T∑
t=i

µT−t‖Xt − [[A(1), . . . ,A(N); â
(N+1)
t−i+1]]‖2F . (3)

The parameter µ ∈ (0, 1) is a forgetting factor that controls the
weight of the past data; {A(i)} are the discovered CP factors.
Please note that â

(N+1)
t−i+1 denotes one row of the temporal factor

matrix A(N+1). The sliding window size T − i + 1 can be
specified by the user.

In many applications, only partial data Xt,Ωt
is observed

at each time point. Here Ωt denotes the index set of the
partially observed entries. For a general N -way tensor X and
a sampling set Ω, we have

XΩ =

{
xi1,··· ,iN if (i1, i2, · · · , iN) ∈ Ω

0 otherwise.

In such cases, the underlying hidden factors can be computed
by solving the following streaming tensor completion problem:

min
{A(k)}N+1

k=1

T∑
t=i

µT−t‖
(
Xt − [[A(1), . . . ,A(N); â

(N+1)
t−i+1]]

)
Ωt

‖2F.

(4)
Existing streaming factorization and completion frame-

works [15]–[17] solve (3) and (4) as follows: at each time

step one updates the N non-temporal factor matrices A(j) ∈
RIj×R and {â(N+1)

t−i+1 }. By fixing the past time factors, these
approaches provide an efficient updating scheme to solve the
above non-convex problems.

IV. BAYESIAN MODEL FOR ROBUST STREAMING TENSOR
FACTORIZATION & COMPLETION

In this section, we present a Bayesian method for the robust
factorization and completion of streaming tensors {Xt}.

A. An Optimization Perspective

In order to simultaneously capture the sparse outliers and
the underlying low-rank structure of a streaming tensor, we
assume that each tensor slice Xt can be fit by

Xt = X̃t + St + Et. (5)

Here X̃t is low-rank, St contains sparse outliers, and Et
denotes dense noise with small magnitudes. Assume that each
slice Xt is partially observed according to a sampling index
set Ωt. Based on the partial observations {Xt,Ωt}, we will
find reasonable low-rank factors for {X̃t} in the specified
time window t ∈ [T − i + 1, T] as well as the sparse
component St. This problem simplifies to robust streaming
tensor factorization if Ωt includes all possible indices.

In order to enforce the low-rank property of X̃t, we assume
the following CP representation for t ∈ [T − i+ 1, T]:

X̃t = [[A(1), . . . ,A(N); â
(N+1)
t−i+1]].

The sparsity of St can be enforced by adding an L1 regularizer
and modifying (4) as follows:

min
{A(j)},SΩT

T−1∑
t=i

µT−t‖
(
D̃t − [[A(1), . . . ,A(N); â

(N+1)
t−i+1]]

)
Ωt

‖2F

+‖YΩT
− SΩT

−
(

[[A(1), . . . ,A(N); â
(N+1)
T−i+1]]

)
ΩT

‖2F
+α‖SΩT

‖1. (6)

Here YΩT
= XT,ΩT

is the observation of current slice, SΩT

is its outliers, and {D̃t,Ωt
}T−1
t=i are the observed past slices

with their sparse errors removed. Based on the results of of
all previous slices, D̃t is obtained as D̃t = Xt − St.

It is challenging to determine the rank R in (6). It is also
non-trivial to select a proper regularization parameter α. In
order to fix these issues, we develop a Bayesian model.

B. Probabilistic Model for (5)

Likelihood: We first define a likelihood function for the
data YΩT

and {D̃t,Ωt}T−1
t=i based on (5) and (6). We discount

the past observations outside of the time window, and use the
forgetting factor µ < 1 to exponentially weight the variance
terms of past observations. This permits long-past observations
to deviate significantly from the current CP factors with little
impact on the current CP factors. Therefore, at time point t,
we assume that the Gaussian noise has a 0 mean and variance
(µT−tτ)−1. This leads to the likelihood function in (7). In

p
(
YΩT

, {D̃t,Ωt}
∣∣∣{A(n)}N+1

n=1 ,SΩT
, τ
)

=
∏

(i1,...,in)∈ΩT

N
(
Yi1...iN

∣∣∣〈â
(1)
i1
, · · · , â(N)

iN
, â

(N+1)
T−i+1

〉
+ Si1...iN , τ−1

)
×

T−1∏
t=i

∏
(i1,...,in)∈Ωt

N
(
D̃t,i1...iN

∣∣∣〈â
(1)
i1
, · · · , â(N)

iN
, â

(N+1)
t−i+1 ,

〉
, (τµT−t)−1

)
. (7)

p
(

Θ
∣∣∣YΩT

, {D̃t,Ωt}
)

=

p
(
YΩT

, {D̃t,Ωt
}
∣∣∣ {A(n)}N+1

n=1 ,SΩT
, τ
){(N+1)∏

n=1
p
(
A(n)

∣∣λ)} p(λ)p(SΩT
|γ)p(γ)p(τ)

p(YΩT
, {D̃t,Ωt

})
. (10)

this likelihood function, τ specifies the noise precision, â
(n)
in

denotes the in-th row of A(n), and SΩT
only has values

corresponding to observed locations. In order to infer the
unknown factors, we also specify their prior distributions.

Prior Distribution of {A(n)}: We assume that each row
of A(n) obeys a Gaussian distribution and that different rows
are independent to each other. Similar to [19], we define the
prior distribution of each factor matrix as

p
(
A(n)

∣∣λ) =

In∏
in=1

N
(
â

(n)
in

∣∣0,Λ−1
)
, ∀n ∈ [1, N + 1] (8)

where Λ = diag(λ) ∈ RR×R denotes the precision matrix.
All factor matrices share the same covariance matrix. The
r-th column of all factor matrices share the same precision
parameter λr, and a large λr will make the r-th rank-1 term
more likely to have a small magnitude. Therefore, the hyper
parameters λ ∈ RR can tune the rank of our CP model.

Prior Distribution of SΩT
: We also place a Gaussian prior

distribution over the component SΩT
:

p(SΩT
|γ) =

∏
(i1,...,iN)∈ΩT

N (Si1...iN |0, γ−1
i1...iN

), (9)

where γ is the sparsity precision matrix. If γi1...iN is very
large, then the associated element in SΩT

is likely to have a
very small magnitude. By controlling the value of γ−1

i1...iN
, we

can control the sparsity of SΩT
.

C. Prior Distribution of Hyper Parameters

We still have to specify three groups of hyper parameters:
τ controlling the noise term, λ controlling the CP rank, and
{γi1...iN } controlling the sparsity of SΩT

. We treat them as
random variables and assign them Gamma prior distributions:

p(τ) = Ga(τ | aτ0 , bτ0), p(λ) =

R∏
r=1

Ga(λr|c0, d0),

p(γ) =
∏

(i1,...,iN)∈ΩT

Ga(γi1...iN |a
γ
0 , b

γ
0).

(11)

The Gamma distribution provides a good model for our
hyper parameters due to its non-negativity and its long tail.
The mean value and variance of the above Gamma distribution
are a/b and a/b2, respectively.

aγ0 bγ0 cλ0 dλ0

γ λ aτ0 bτ0

S A(1) . . . A(N+1) τ

YΩT
{D̃t,Ωt

}

Fig. 1. The probabilistic graphical model for our Bayesian robust streaming
tensor completion.

These hyper parameters control {A(n)} and S. For instance,
the noise term tends to have a very small magnitude if τ has a
large mean value and a small variance; if λr has a large mean
value, then the r-th rank-1 term in the CP factorization tends
to vanish, leading to rank reduction.

D. Posterior Distribution of Model Parameters

Now we can present a graphical model describing our
Bayesian formulation in Fig. 1. Our goal is to infer all hidden
parameters based on partially observed data. For convenience,
we denote all unknown hidden parameters in a compact form:

Θ =
{
{A(n)}N+1

n=1 ,SΩT
, τ,λ,γ

}
.

With the likelihood function (7), prior distribution for low-
rank factors and sparse components in (8) and (9), and prior
distribution of the hyper-parameters in (11), we can obtain the
posterior distribution in (10) using Bayes theorem.

The main challenge is how to estimate the resulting poste-
rior distribution (10). We address this issue in Section V.

V. VARIATIONAL BAYESIAN SOLVER FOR MODEL
PARAMETER ESTIMATION

It is hard to obtain the exact posterior distribution (10)
because the marginal density p(YΩT

, {D̃t,Ωt}) is unknown
and is expensive to compute. Therefore, we employ variational

Algorithm 1 Variational Bayesian Updating Scheme for
Streaming Tensor Completion

while Not Converged do
Update the variance matrices via Equations (15,17)
Update the factor matrices by Equations (16,18, 19)
Update the rank prior λ by Equation (20)
Update the sparse term SΩT

by Equation (22)
Update the sparsity prior γ by Equation (24)
Update the precision τ by Equation (25)

end while

Bayesian inference [21] to obtain a closed-form approximation
of the posterior density (10). The variational Bayesian method
was previously employed for matrix completion [22] and non-
streaming tensor completion [19], [20], and it is a popular
inference technique in many domains. We use a similar
procedure to [19], [22] to derive our iteration steps, but the
details are quite different since we solve a streaming problem
and we approximate an entirely different posterior distribution.

Due to the complexity of our analysis and the page space
limitation, we provide only the main idea and key results of
our solver. The algorithm flow is summarized in Alg. 1, and
the complete derivations are available in [23].

A. Variational Bayesian

We intend to find a distribution q(Θ) that approximates the
true posterior distribution p(Θ|YΩT

, {D̃t,Ωt}) by minimizing
the following KL divergence:

KL
(
q(Θ)

∣∣∣∣p(Θ|YΩT
, {D̃t,Ωt

})
)

= ln p(YΩT
, {D̃t,Ωt

})− L(q),

where L(q) =

∫
q(Θ) ln

(
p(YΩT

, {D̃t,Ωt
},Θ)

q(Θ)

)
dΘ.

(12)

The quantity ln p(YΩT
, {D̃t,Ωt}) denotes model evidence

and is a constant. Therefore, minimizing the KL divergence
is equivalent to maximizing L(q). To do so we apply mean
field variational approximation. That is, we assume that the
posterior can be factorized as a product of the individual
marginal distributions:

q (Θ) =

{
N+1∏
n=1

q
(
A(n)

)}
q(SΩT

)q(λ)q(γ)q(τ). (13)

This assumption allows us to maximize L(q) by applying the
following update rule

ln q(Θi) ∝ max
Θi

EΘj 6=i
ln(p(YΩT

, {D̃t,Ωt
},Θ)), (14)

where the subscript Θj 6=i denotes the expectation with respect
to all latent factors except Θi. In the following we will provide
the closed-form expressions of these alternating updates.

B. Factor Matrix Updates

The posterior distribution of an individual factor matrix is

q
(
A(n)) =

In∏
in=1

N
(
â

(n)
in

∣∣ā(n)
in
,V

(n)
in

)
.

Therefore, we must update the posterior mean ā
(n)
in

and co-
variance V

(n)
in

for each row of A(n).
Update non-temporal factors. All non-time factors are

updated by Equations (15) and (16) for n ∈ [1, . . . , N]:

V
(n)
in

=

(
Eq[τ]

T∑
t=i

µT−iEq

[
A

(\n)T
in

A
(\n)
in

]
Ωt

+ Eq[Λ]

)−1

,

(15)

ā
(n)
in

= Eq[τ]V
(n)
in

(
Eq
[
A

(\n)T
in

]
ΩT

vec (YΩT
− Eq[SΩT

])

+

T−1∑
t=i

µT−tEq
[
A

(\n)T
in

]
Ωt

vec
(
D̃t,Ωt

))
. (16)

The notation Eq
[
A

(\n)
in

]
Ωt

represents a sampled expectation
of the excluded Khatri-Rao product:

Eq
[
A

(\n)
in

]
Ωt

=

Eq

⊙
j 6=n

A(j)

Iin

.

The matrix A
(\n)
in

is
∏
j 6=n Ij × R and the indicator function

Iin samples the row (i1, . . . , in−1, in+1, . . . , iN+1) if the entry
(i1, . . . , in−1, in, in+1, . . . , iN+1) is in Ωt and sets the row
to zero if not. The expression Eq[·] denotes the posterior
expectation with respect to all variables involved.

Update temporal factors. The temporal factor AN+1

requires a different update because the factors corresponding
to different time slices do not interact with each other. For all
time factors the variance is updated according to

V
(N+1)
t−i+1 =

(
Eq[τ]µT−tEq

[
A

(\(N+1))T
t−i+1 A

(\(N+1))
t−i+1

]
Ωt

+ Eq[Λ]

)−1

.

(17)

The rows of the time factor matrix are updated differently
depending on their corresponding time indices. Since we
assume that past observations have had their sparse errors
removed, the time factors of all past slices (so t < T) can
be updated by

ā
(N+1)
t−i+1 = Eq[τ]V

(N+1)
t−i+1

(
µT−tEq

[
A

(\N+1)T
t−i+1

]
Ωt

vec
(
D̃t,Ωt

))
.

(18)

The factors corresponding to time slice T depend on the sparse
errors in the current step. The update is therefore given by

ā
(N+1)
T−i+1 = Eq[τ]V

(N+1)
T−i+1

(
Eq

[
A

(\N+1)T
T−i+1

]
ΩT

vec (YΩT − Eq [SΩT])

)
.

(19)

C. Posterior Distribution of Hyperparameters λ

The posteriors of the parameters λr are independent Gamma
distributions. Therefore the joint distribution takes the form

q(λ) =

R∏
r=1

Ga(λr|crM , drM)

where crM , drM denote the posterior parameters learned from
the previous M iterations. The updates to λ are given below.

crM = c0 + 1 +
1

2

N∑
n=1

In, drM = d0 +
1

2

N+1∑
n=1

Eq
[
a(n)T
r a(n)

r

]
(20)

The expectation of each rank-sparsity parameter can then
be computed as

Eq[Λ] = diag([c1M/d
1
M , . . . , c

R
M/d

R
M]).

D. Posterior Distribution of Sparse tensor S
The posterior approximation of SΩT

is given by

q(SΩT
) =

∏
(i1,...,iN)∈ΩT

N
(
Si1...iN

∣∣S̄i1...iN , σ2
i1...iN

)
, (21)

where the posterior parameters can be updated by

S̄i1...iN =σ2
i1...iNEq[τ]

(
Yi1...iN−

Eq
[〈

â
(1)
i1
, . . . , â

(N)
iN

; â
(N+1)
T−i+1

〉])
σ2
i1...iN =(Eq[γi1...iN] + Eq[τ])−1.

(22)

E. Posterior Distribution of Hyperparameters γ

The posterior of γ is also factorized into entry-wise inde-
pendent distributions

q(γ) =
∏

(i1,...,iN)∈ΩT

Ga(γi1...iN |a
γi1...iN

M , b
γi1...iN

M), (23)

whose posterior parameters can be updated by

a
γi1...iN

M = aγ0 +
1

2
, b

γi1...iN

M = bγ0 +
1

2
(S̄2
i1...iN + σ2

i1...iN).

(24)

F. Posterior Distribution of Parameter τ

The posterior PDF of the noise precision is again a Gamma
distribution. The posterior parameters can be updated by

aτM =
1

2
|ΩT |+ aτ0 ,

bτM =
1

2
Eq
[
‖
(
Y − S − [[A(1), . . . ,A(N); â

(N+1)
T−i+1]]

)
ΩT

‖2F
]

+ bτ0 .
(25)

VI. NUMERICAL RESULTS

Our algorithm is implemented in Matlab and is com-
pared with several existing streaming tensor factorization and
completion methods. These include Online-CP [15], Online-
SGD [16] and OLSTEC [17]. Both Online-CP and OLSTEC
solve essentially the same optimization problem, but Online-
CP does not support incomplete tensors. Therefore, our al-
gorithm is only compared with OLSTEC and Online-SGD
for the completion task. Our Matlab codes to reproduce all
figures and results can be downloaded from https://github.com/
colehawkins. We provide more extensive numerical results,
including results on surveillance video and automatic rank
determination, in [23].

Ground Truth Sampled Entries Online-SGD OLSTEC Proposed

Fig. 2. MRI reconstruction via streaming tensor completion.

A. Dynamic Cardiac MRI

We consider a dynamic cardiac MRI dataset from [24] and
obtained via https://statweb.stanford.edu/∼candes/SURE/data.
html. Each slice of this streaming tensor dataset is a 128×128
matrix. In clinical applications, it is highly desirable to reduce
the number of MRI scans. Therefore, we are interested in using
streaming tensor completion to reconstruct the whole sequence
of medical images based on a few sampled entries.

In all methods we set the maximum rank to 15. For our
algorithm we set the forgetting factor to µ = 0.98 and the the
sliding window size to 20. In OLSTEC we set the forgetting
factor to the suggested default of 0.7 and the sliding window
size to 20. The available implementation of Online-SGD does
not admit a sliding window, but instead computes with the
full (non-streamed) tensor. While this may limit its ability
to work with large streamed data in practice, we include it
in comparison for completeness. With 15% random samples,
the reconstruction results are shown in Fig. 2. The ability
of our model to capture both small-magnitude measurement
noise and sparse large-magnitude deviations renders it more
effective than OLSTEC and Online-SGD for this dynamic
MRI reconstruction task.

B. Network Traffic

Our next example is the Abilene network traffic dataset [25].
This dataset consists of aggregate Internet traffic between 11
nodes, measured at five-minute intervals. On this dataset we
test our algorithm for both reconstruction and completion.
The goal is to identify abnormally evolving network traffic
patterns between nodes. If one captures the underlying low-
rank structure, one can identify anomalies for further inspec-
tion. Anomalies can range from malicious distributed denial
of service (DDoS) attacks to non-threatening network traffic
spikes related to online entertainment releases. In order to
classify abnormal behavior one must first fit the existing data.
We evaluate the accuracy of the models under comparison by
calculating the relative prediction error at each time slice:

‖Xt − [[A(1), . . . ,A(N), â
(N+1)
t]]− St‖F/‖Xt‖F.

Fig. 3 compares different methods on the full dataset with a

https://github.com/colehawkins
https://github.com/colehawkins
https://statweb.stanford.edu/~candes/SURE/data.html
https://statweb.stanford.edu/~candes/SURE/data.html

10 20 30 40 50 60 70 80 90 100

Data Stream Index

10
-2

10
-1

10
0

N
o
rm

al
iz

ed
 R

es
id

u
al

 E
rr

o
r

Online-SGD

OLSTEC

Proposed

Fig. 3. Factorization error of network traffic from complete samples.

10 20 30 40 50 60 70 80 90 100

Data Stream Index

10
-2

10
-1

10
0

10
1

10
2

N
o
rm

al
iz

ed
 R

es
id

u
al

 E
rr

o
r

Online-SGD

OLSTEC

Proposed

Fig. 4. Reconstruction error of network traffic with 50% of data missing.

“burn-in” time of 10 frames, after which the error patterns are
stable. Our algorithm significantly outperforms OLSTEC and
Online-SGD in factoring the whole data set. Then we remove
50% of the entries from the the Abilene tensor and attempt to
reconstruct the whole network traffic. Our results are shown
in Fig. 4. Again we use a “burn-in” time of 10 frames.

VII. CONCLUSION

We have proposed a Bayesian formulation to the problem
of robust streaming tensor completion and factorization. The
main advantages of our algorithm are automatic rank deter-
mination and robustness to outliers. We have demonstrated
the benefits of robustness on MRI and network flow data.
Due to the automatic rank determination and the robustness
to outliers, our algorithm has achieved higher accuracy than
existing approaches on all tested streaming tensor examples.

VIII. ACKNOWLEDGEMENTS

We thank the anonymous referees for their helpful com-
ments. A special thanks to Chunfeng Cui for many suggestions
to improve this manuscript. This work was partially supported
by NSF CCF Award No. 1817037.

REFERENCES

[1] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, “Multiverse
recommendation: n-dimensional tensor factorization for context-aware
collaborative filtering,” in Proc. ACM Conf. Recommender systems,
2010, pp. 79–86.

[2] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 35, no. 1, pp. 208–220, 2013.

[3] Z. Zhang, T.-W. Weng, and L. Daniel, “Big-data tensor recovery for
high-dimensional uncertainty quantification of process variations,” IEEE
Trans. Components, Packaging and Manufacturing Technology, vol. 7,
no. 5, pp. 687–697, 2017.

[4] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[5] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an N-way generalization of eckart-young
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[6] R. A. Harshman, “Foundations of the PARAFAC procedure: Models and
conditions for an “explanatory” multimodal factor analysis,” 1970.

[7] J. Zhou, A. Bhattacharya, A. H. Herring, and D. B. Dunson, “Bayesian
factorizations of big sparse tensors,” Journal of the American Statistical
Association, vol. 110, no. 512, pp. 1562–1576, 2015.

[8] P. Jain and S. Oh, “Provable tensor factorization with missing data,” in
Advances in Neural Information Processing Systems, 2014, pp. 1431–
1439.

[9] D. Kressner, M. Steinlechner, and B. Vandereycken, “Low-rank tensor
completion by Riemannian optimization,” BIT Numerical Mathematics,
vol. 54, no. 2, pp. 447–468, 2014.

[10] H. Fanaee-T and J. Gama, “Tensor-based anomaly detection: An inter-
disciplinary survey,” Knowledge-Based Systems, vol. 98, pp. 130–147,
2016.

[11] B. W. Bader, M. W. Berry, and M. Browne, “Discussion tracking in
enron email using parafac,” in Survey of Text Mining II. Springer,
2008, pp. 147–163.

[12] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, “Multiverse
recommendation: n-dimensional tensor factorization for context-aware
collaborative filtering,” in Proc. ACM Conf. Recommender systems,
2010, pp. 79–86.

[13] J. Sun, D. Tao, and C. Faloutsos, “Beyond streams and graphs: dynamic
tensor analysis,” in Proc. ACM SIGKDD Int. Conf. Knowledge discovery
and data mining, 2006, pp. 374–383.

[14] S. Smith, K. Huang, N. D. Sidiropoulos, and G. Karypis, “Streaming
tensor factorization for infinite data sources,” in Proc. SIAM Int. Confe.
Data Mining, 2018, pp. 81–89.

[15] S. Zhou, N. X. Vinh, J. Bailey, Y. Jia, and I. Davidson, “Accelerating
online CP decompositions for higher order tensors,” in Proc. ACM
SIGKDD Intl. Conf. Knowledge Discovery and Data Mining, 2016, pp.
1375–1384.

[16] M. Mardani, G. Mateos, and G. B. Giannakis, “Subspace learning
and imputation for streaming big data matrices and tensors,” IEEE
Transactions on Signal Processing, vol. 63, no. 10, pp. 2663–2677, 2015.

[17] H. Kasai, “Online low-rank tensor subspace tracking from incomplete
data by CP decomposition using recursive least squares,” in Int. Conf.
Acoustics, Speech and Signal Processing, 2016, pp. 2519–2523.

[18] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, “Robust principal
component analysis: Exact recovery of corrupted low-rank matrices via
convex optimization,” in Advances in neural information processing
systems, 2009, pp. 2080–2088.

[19] Q. Zhao, L. Zhang, and A. Cichocki, “Bayesian CP factorization of
incomplete tensors with automatic rank determination,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 37, no. 9, pp.
1751–1763, 2015.

[20] Q. Zhao, G. Zhou, L. Zhang, A. Cichocki, and S.-I. Amari, “Bayesian
robust tensor factorization for incomplete multiway data,” IEEE trans-
actions on neural networks and learning systems, vol. 27, no. 4, pp.
736–748, 2016.

[21] J. Winn and C. M. Bishop, “Variational message passing,” Journal of
Machine Learning Research, vol. 6, no. Apr, pp. 661–694, 2005.

[22] S. D. Babacan, M. Luessi, R. Molina, and A. K. Katsaggelos, “Sparse
bayesian methods for low-rank matrix estimation,” IEEE Transactions
on Signal Processing, vol. 60, no. 8, pp. 3964–3977, 2012.

[23] C. Hawkins and Z. Zhang, “Robust factorization and completion of
streaming tensor data via variational bayesian inference,” arXiv preprint
arXiv:1809.01265, 2018.

[24] B. Sharif and Y. Bresler, “Physiologically improved NCAT phantom
(PINCAT) enables in-silico study of the effects of beat-to-beat variability
on cardiac MR,” in Proc. ISMRM, Berlin, vol. 3418, 2007.

[25] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk,
and N. Taft, “Structural analysis of network traffic flows,” in ACM
SIGMETRICS Performance evaluation review, vol. 32, no. 1, 2004, pp.
61–72.

