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Abstract—Electricity planning, requires considering several
load-changing scenarios. This is due to the fact that loads are
becoming more and more unpredictable, as a result of the
adoption of new technologies, such as vehicles charging or air
conditioning equipment, and of storage systems, like renewable
energy sources, that impact on the capacity to deliver power and
new services. The purpose of this work is to illustrate an effective
methodology to simulate load uncertainty and thus to predict the
effect that such variations may have on network electrical quality.
To this aim, a low voltage network is considered that is terminated
with 1-phase loads. Such an arrangement can introduce voltage
unbalance and variations that can stress the network and take
it far from the standard limits. We thus describe a flexible
uncertainty-aware simulation framework of the power network
with conventional loads (residential and commercial ones).

I. INTRODUCTION

Analysis and planning of distribution network are important
topics due to the widespread diffusion of new electrical
technology (as storage systems, Electrical Vehicles, etc.). In
most cases, such new electrical appliances can coexist with
conventional ones. New technologies, if considered in com-
bination with traditional ones, can change the loads on the
single node. It is possible to imagine that this load variation
can be modeled by scaling the nominal power profiles or,
alternatively, by means of on/off events that produce sharp
steps in the power demand. By considering for example the
charging of an electrical vehicle, this is a random event that
can introduce a significant load variation in the considered
point of charge. At the same time the introduction of a new
appliance, such as heating of air conditioning, can be modeled
by means of shift of the load profile. These variations can
critically affect the voltage and current capabilities of the lines.
[1]–[3]. All this requires an effective new approach to grid
management, making full use of “smart grids” and “smart grid
technologies”. Implementing and incorporating innovations at
every level, from generation to consumer appliances, smart
grid aims to minimize environmental impact, enhance markets,
improve reliability and service, reduce costs and improve
efficiency.
Anyhow, in order to accomplish the aforementioned opportu-
nities, it is essential to build reliable models able to depict and
analyze various scenarios and their feasibility. It becomes thus
necessary developing suitable sets of models, in order to obtain

an integrated simulation framework for the analysis of inter-
actions among different load variations, that in most cases are
unpredictable or uncertain. For this reason the computational
tools should be able to deal with the uncertainty of power
loads and the trends of variation [4]–[6]. The main idea is to
see what happens if all of the network loads or a portion of
them, varies statistically in a certain range of uncertainty, that
is to adopt a perturb and observe method. In practice, this can
be achieved with different techniques. One popular method is
to use Monte Carlo Analysis by generating randomly such load
variations and thus performing a great number of simulations.
Another approach consists in defining a N-dimensional grid in
the loads space where the deterministic relationship between
load values and node voltages is determined. In this work, we
build on such existing methods in order to provide an enhanced
simulation framework. In our approach, the voltages-versus-
load relationship is approximated with a Response Surface
Method (RSM) based on generalized Polynomial Chaos (gPC)
while the loads space is sampled with a Stochastic Testing
(ST) method [7], [8]. The proposed method provides a basic
framework for simulating power networks terminated with
conventional loads (residential and commercial). However,
the proposed method is flexible in that it can be modified
and integrated with other load models for different kinds of
analysis. The method is implemented in Matlab and interfaced
with the deterministic load flow solver OpenDSS [9]. In the
paper the proposed load variation strategy will be discussed
and the result applied to the case of a low voltage distribution
network.

II. LOW VOLTAGE NETWORK AND MOTIVATION OF THE
WORK

In this paper the focus is on the Low Voltage (LV) networks,
but can be easily extended to other kind of electrical systems.
The IEEE European low voltage test feeder [10] (shown in
Fig. 1) , has been used for the analysis without lossing the
generality of the method. The test feeder is a radial distribution
feeder with a base frequency of 50 Hz, at 230 V (phase
voltage)/416 V (line to line voltage)
The medium voltage system supplying the substation is

modeled as a voltage source with an impedance (Thevenin
equivalent). The impedance is specified by short circuit cur-



Fig. 1. Topology of the IEEE LV European test feeder. Nodes and regions
are monitored in order to determine the effect of the load variation

TABLE I
MEDIUM VOLTAGE SOURCE FEATURES

Line to line voltage [V] 11000
3φ short circuit current [A] 3000
1φ short circuit current [A] 1500

Nominal power [VA] 800000
Rated voltages [V] 11000/416

Tap position 1.05
Connections Delta/grounded Wye

Windings resistance [%] 0.4
Windings reactance [%] 4

rent. All the parameters of the medium voltage source and of
substation transformer data are reported in Table I.
The LV test feeder model is composed of 906 low voltage

nodes, connected by 905 branches, with 55 load buses. The
distribution lines line impedance and shunt admittance are
reported in [10]. The test distribution network is a 3-phase
network, with the possibility of assigning the terminal powers
either as 3-phase or 1-phase loads. In this work, we assume
that all of the powers are given as 1-phase loads which are
distributed among the three-phase lines, i.e. The test bench
provides time series for 55 loads, 21 for the phase A, 19 for
the phase B, 15 for the phase C.
The aim of the analysis is to study, in a probabilistic

sense, the fluctuations of the node voltages which are induced
by power loads variation in order to assess the quality of
the network. Network quality is determined by node voltage
variations compared to nominal value and by the voltage
unbalance factor defined in what follows.
In order to better explain these concepts, we present some
preliminary results obtained by simulating the benchmark net-
work in Fig. 1. First, the network is simulated with the nominal
load profiles connected and node voltages are calculated over
a certain time window. Second, the total power demand for
all of the loads connected to phase line B are increased by a
10% factor and node voltages are recalculated. Fig. 2 shows
the nominal and perturbed waveforms for the phase-B voltage
at node 898: the increase in the total power demand on phase-
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Fig. 2. Effect on the phase B of the positive variation of the load in Phase B.
The nominal behavior (solid line) is compared with the effect of load variation
(dashed line)
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Fig. 3. Effect on the phase A of the positive variation of the load in Phase B.
The nominal behavior (solid line) is compared with the effect of load variation
(dashed line)

B line results in a reduction in the phase-B voltage with a
decrease of the peak value and a more pronounced decrease
of the minima. Fig. 3, instead, reports the simulated nominal
and perturbed waveforms for the phase-A voltage at node 898
for the same power perturbation: the increase in total power
demand on phase-B line results in an increase of phase-A
voltage both in peaks and minima. This example shows how, in
general, the power demand variation on a single phase line can
affect the node voltages on all the phase lines with fluctuations
in the peaks and minima that are difficult to be predicted a
priori. The problem is made more complex when the power
demands at different phases can vary independently and in
a random way giving rise to a great number of combination
loads and scenarios.
Furthermore, variations in the 1-phase loads can introduce

some current unbalance at some lines and consequently some
voltage unbalance. This is for example the case of the charging
of electrical vehicle in residential dwelling [11], [12]. An



important figure of merit used to quantify network unbalance
is the voltage unbalance factor VUF defined by the following
expression [13]:

VUF =

√
2

3
(δ2AB + δ2BC + δ2CA) (1)

δAB =
|VAB − VM |

|VM |
(2)

δBC =
|VBC − VM |

|VM |
(3)

δCA =
|VCA − VM |

|VM |
(4)

where VAB , VBC , VCA are the phase-to-phase voltages, while

VM =
|VAB |+ |VBC |+ |VCA|

3
. (5)

There are several approaches to forecast load variation, for
example based on users behavior analysis [14], [15]. The key
point is determining a realistic load variation scenario suitable
for probabilistic analysis. In our approach we employ the load
profiles data-set provided by the IEEE European low voltage
test feeder [10] in order to extract the relevant information
that should be reproduced in simulations. Hence, in order to
model load variations, we adopt the following expression for
the active power at nth node in the network:

Pn(t) = p0n(t) [1 + σp
n ξ

p] (6)

where p0n(t) is original power profile. In (6), ξp is a zero-mean
Gaussian-distributed statistical parameter having unitary vari-
ance. The parameter σp

n is a scaling constant that determines
the degree of variability.
As a consequence, the active power is a stochastic process

whose mean value and standard deviation are given by [16]:

〈Pn(t) 〉 = p0n(t)√
〈 (Pn(t)− p0n(t) )

2 〉 = σp
n p0n(t).

(7)

III. IMPLEMENTATION AND SIMULATION FRAMEWORK

In our implementation, the uncertainty about active power
profiles and power factor are modeled by means of l indepen-
dent Gaussian-distributed random variables ξr. Hence, vari-
ability analysis is performed for a set of node voltages and line
current magnitudes, considered here as the output variables.
This is achieved by interfacing the gPC+ST code developed
at Massachusetts Institute of Technology [8] and written in
Matlab with the Load Flow deterministic solver OpenDSS.
Fig. 4 shows the qualitative flowchart of the implemented
simulation framework.

Fig. 4. Flowchart of the simulation Framework

A. Uncertainty quantification with generalized Polynomial
Chaos

The gPG method consists in adopting generalized polyno-
mial chaos expansions limitedely to the quantities that we want
to monitor: they may be the magnitude of some node voltages
or line currents at a given time or the peak or minimum
value assumed over the time window. In what follows, we
will generically denote as V (�ξ) one of such variable. Under
the mild hypothesis that V (�ξ) has finite variance (i.e. it is a
second-order stochastic process), it can be approximated by
an order-β truncated series [17]

V (�ξ) ≈

Nb∑
i=1

ci Hi(�ξ), (8)

formed by Nb multi-variate basis functions Hi(�ξ) weighted
by unknown polynomial chaos coefficients ci.
Each multi-variate basis function is given by the product

Hi(�ξ) =

l∏
r=1

φir (ξr) (9)

where φir (ξr) is a univariate orthogonal polynomial of degree
ir whose form depends on the density function of the rth
parameter ξr. For instance, φir (ξr) are Hermite polynomials
if ξr is a Gaussian-distributed variable, while φir (ξr) are
Legendre polynomials if ξr is a uniformly distributed variable.
Once the coefficients cj are computed, the mean value

and standard deviation of V (�ξ) can easily be determined [8].
Furthermore, and even more importantly, the gPC expansion
(8) provides a compact model for the V (�ξ) multi-dimensional
dependence. This enables repeated evaluations of V (�ξ) for
large numbers of uncertainty vector realizations �ξk in very
short times (one million of evaluations take a few seconds on



a quad-core computer) and the determination of the detailed
PDF.
In this paper, the determination of the cj expansion coef-

ficients is done with the Stochastic Testing (ST) described in
[8]. According to this method, the Nb unknown coefficients cj
in the series (8) are calculated by properly selecting Ns = Nb

testing points �ξk, for k = 1, . . . , Ns in the stochastic space
where Vk = V (�ξk) is calculated with a deterministic LF
analysis.
At each testing point, the series expansion (8) is enforced

to fit exactly (i.e., the polynomials interpolate the samples) the
values Vk.
Mathematically, this results in the following linear system

M�c = �V , (10)

where �c = [c1, . . . , cNb
]T and �V = [V1, . . . , VNs

]T are the
column vectors collecting the unknown coefficients and node
voltage values respectively.
The Nb × Nb square matrix M = {ak,i} = {Hi(�ξ

k)}
collects the gPC basis functions evaluated at the testing points,
i.e.

M =

⎡
⎢⎣

H1(�ξ
1) . . . HNb

(�ξ1)
...

. . .
...

H1(�ξ
Ns) . . . HNb

(�ξNs)

⎤
⎥⎦ . (11)

The ST method enables handling PLF problems with larger
size and larger number of parameters. iThe selection of the
testing points �ξk in the stochastic space is done so as to ensure
the highest numerical accuracy of the gPC-based interpolation
scheme and of the associated statistical description [8]. To
make problem (10) well posed, a subset formed by Ns = Nb

quadrature nodes has to be selected as testing points.
IV. NUMERICAL RESULTS

Our goal is that of investigating the loads variation effects
on the node voltages. To this aim we use the power model
(6) and we assume that the active powers Pn(t) of all of the
nodes assigned to a given phase line, are scaled by the same
ξp Gaussian statistical parameter, e.g. ξpA. Three statistically
independent parameters ξpA, ξ

p
B and ξ

p
C are simulated and the

probability density functions are plotted. The node numbers
are shown in Fig. 1 and variability degrees are considered
equal and fixed at the value σ

p
A = σ

p
B = σ

p
C = 0.2.

As an example, Figs. 5, 6, and 7 show the statistical
distribution of the peak and minimum value of voltage at node
898 for phase A, B and C respectively. It is seen that the
phase B exhibits the largest variation of the minimum voltage
value, and then it is also possible to observe that the peak-peak
variation is bigger. Our analysis shows as the voltage peak
distribution in phase B (Fig. 6) it is non-Gaussian, highlighting
the effect of the system nonlinearity. Figs. 8, 9, and . 10 show
the variation for node 695 and Figs. 11, 12, and 13, show the
variation for node 246. Comparing them, we observe how the
peak-peak variations in node 246, that is closer to the slack
node, are limited in narrow range.
Another figure of merit is the VUF, that we report for the
considered nodes in the Figs. 14, 15, and 16.
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Fig. 5. Peak value and minimum value distributions of phase A at node 898.
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Fig. 6. Peak value and minimum value distributions of phase B at node 898.

V. CONCLUSION

In this paper, we have proposed a simulation methodology
for the probabilistic analysis of distribution networks sub-
ject to load uncertainty. The approach employes generalized
Polynomial Chaos (gPC) algorithm and Stochastic Testing
(ST) method combined with the deterministic load flow solver
OpenDSS. The method has been applied to the analysis of low
voltage distribution network focusing the simulation on the
variation of the the nodal voltage and voltage unbalance. The
results have been discussed and the advantage of the method
has been clarified.
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Fig. 7. Peak value and minimum value distributions of phase C at node 898.
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Fig. 8. Peak value and minimum value distributions of phase A at node 695.
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Fig. 9. Peak value and minimum value distributions of phase B at node 695.
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Fig. 10. Peak value and minimum value distributions of phase C at node 695.
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Fig. 11. Peak value and minimum value distributions of phase A at node
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Fig. 12. Peak value and minimum value distributions of phase B at node 246.



244 245 246 247 248 249 250 251 252 253 254 255
0

0.5

1

1.5

2

2.5
Minimum

Peak

PD
F

Fig. 13. Peak value and minimum value distributions of phase C at node 246.
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Fig. 14. Distribution of the Average value of the Unbalance at node 898.
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Fig. 15. Distribution of the Mean value of the Unbalance at node 695.
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Fig. 16. Distribution of the Average value of the Unbalance at node 246.


