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Abstract— A generalized Hamiltonian method (GHM) was re- Hamiltonian method (GHM) has been proposed for hybrid
cently proposed for hybrid descriptor systems [1]. This paper ex (i.e., impedance or admittance) DSs [1]. As a superset of the
tends the GHM theory to its S-parameter counterpart. Based on  Hamiltonian method, GHM test enjoys much cheaper com-
the S-parameter GHM, a passivity test flow is proposed, which is putations than existing algebraic DS passivity tests, érg.
capable of detecting nonpassive regions of descriptor-form ptsy ~ ear matrix inequality (LMI) test and some decompose-ast-te
ical models. The proposed method is applicable t&-parameter  flows [12—-14]. GHM test is also much more accurate than DS
and hybrid systems either in the standard state-space or descrip frequency sweeping method [15].
tor forms. Experimental results confirm the effectiveness andc- However, little work has been reported for the passivity
curacy of the proposed method. test of S-parameter DSs. Although extended bounded-real
lemma [16] and GARE-based method [4] have been proposed
for passivity check of5-parameter DSs, no reliable technique
exists for their passive/nonpassive region identificatidhis

In this paper we consider the linear time-invariant (LTI} delS What motivates this work. In this paper, we extend the

scriptor system (DS) described by the state-space eqsation GHM theory toS-parameter DS models. Analogous to its hy-
brid counterpart, thé-parameter GHM method can accurately

|l. INTRODUCTION

Ed—l — Az + Bu identify the possible nonpassive frequency regions of beth
dt ’ (1) scriptor and regular models, without restrictions on therixa
y = Cx + Du. D. Furthermore, we also show that our proposed method can
test the passivity of hybrid descriptor systems.
HereE, A ¢ R™*™" B € R*"™*™ C ¢ R™" D ¢ R™*™, Throughout this paper, we use the superscrp@nd * to

x € R" represents state variables. In this DS, the matrix penaienote transpose and conjugate transpose (Hermitiapgaes

(A, E) is assumed to be regular, i.@lgt(A — sE) # 0 for tively. For a general matri¥(, o(X) represents the set of sin-

somes on the complex plane. Note theink(E) < n,and (1) gular values ofX. We useA(X) or A\(X,Y) to denote the

describes a regular systemifis invertible. eigenvalues of{ or the generalized eigenvalues of the matrix
In circuit simulations, the original models obtained by modpencil (X, Y) (i.e.,det(X —aY) = 0if a € A\(X,Y)), respec-

ified nodal analysis (MNA) are in the descriptor form [2—4].tively.

DSs also appear in full-wave simulations of 3-D structurds,

components and electromagnetic devices [5—7]. Thesenatigi

large-scale DS models are normally approximated by model Il. THEORETICAL BACKGROUND

order reduction (MOR) techniques to speed up computedaide

design (CAD) and simulations [2-8]. Meanwhile, compacf\'

models can also be built from measured frequency—dependen!n the case of Scattering representation' (Strict) pagsng|
admittance, impedance or scattering response data byrvecguivalent to the (strict) bounded realness of the tramséerix
fitting [9]. In high-frequency simulations where the portea-  §(s). A transfer matrixS(s) € C™*™ is bounded real iff [17]:
tions are wave-like-parameter representations are frequently 1. 5(s) is analytical on the right half plange(s) > 0;
adopted. 2. I — S*(jw)S(jw) > 0 (> corresponds to strict bounded

In VLSI CAD, these models are required to be passive tgpalness) for ally € R, which is equivalent to
guarantee stable global simulations. Normally they aretes
by passivity assessments and then processed by passivity en  o;(jw) <1 , Vo,;(jw) € 0(S(jw)) , Yw € R. )
forcement techniques if necessary [10]. For standard-state
space models, various passivity test techniques have lseen pCondition 2 can be checked by frequency sweeping techniques
posed, among which frequency sweeping and Hamiltoniaat a set of sampling points along the imaginary axis=
method are most widely used [10,11]. Compared with sweepw [11, 15]. However, erroneous results may be produced be-
ing routines, Hamiltonian method is frequency-independerause nonpassive regions between sampling points are some-
and thus much more accurate [10]. Recently, a generalizéithes missed. For standard state-space models @with I in

Passivity Check of -Parameter Models



(1)), the following2nx 2n Hamiltonian matrix For real matrix-valued systems we ha¥v&(jw) = ST (—jw),
therefore,
Qe [ A- BDTS-'C ~BR'BT 3
S = OTsvflO CTDRleT _ AT ( ) S(]w) = BT(waT + AT)_l(—CT) + DT. (7)
Assumey € o(S(jw)) andvy ¢ o(D), then there exist
non-zerov andw as the corresponding left-singular and right-
singular vectors, respectively, such that

is used for accurate passivity test [10]. Héfe= (DDT — 1)
andR = (DT D — I). Any purely imaginary eigenvalue of
jw corresponds to a crossover frequency pairfin rad/sec)
of passivity violations. Due to its frequency-independeat
ture, Hamiltonian method is much more accurate than fre-

quency sweeping test and thus preferred in passivity eforcsubstituting (6) and (7) into the above equation, we rew#je
ments where accurate passivity assessment is required- Hew

S(jw)u = v, S*(jw)v =u. (8)

ever, there still exist some problems for Hamiltonian mdtho C -1 B U
Firstly, it is only applicable to standard state-space nwde BT “ -CT v
Secondly, as shown in (3), — DT D is required to be non- D Al u ©)
singular for passivity test. = [ ~I  —DT } { v } )
) ) where
B. GHM Test for Hybrid Descriptor Systems 0 JwE — A (10)
w JwET + AT |-

Ref. [1] has proposed the GHM for DSs with admit-
tance/impedance transfer matrix. In GHM test, the possibfeor simplicity, we further denote
impulsive part is tested in advance by a preprocess called Im
without system decomposition [1]. The proper part is chdcke 2= Q7! [ B . } { u } ) (11)
by a matrix pencil J, K): —C v

a non-zero vector. From (9) and (11), it is straightforward t

. { A—B(D+DT)"'C  —B(D+DT)"'BT
get

ct(D+DT)~tc C¥(D+ D7) BT — AT

E

K{ ET} o[ B D 4 ] [cC _
4) —cT ~vI —-DT BT |*=~*

Since every purely imaginary generalized eigenvalug/ok’) (12)

corresponds to a crossover point, system passivity candilg eaPre-multiplying both sides of (12) by, yields

checked and the possible nonpassive regions can be adgurate

located. The main computation of GHM test is thén?) gen- Mz = jwNz. (13)

eralized eigenvalue solution. Due to its flexibility, higbca-

racy and explicit implementation, GHM method is generally The converse also holds. To prove this, we first define

superior over previous DS passivity tests [1]. 1
, -D A C
Z = T T |z (14)
-D B

~I

} Because the right-hand side of (9) is non-zershould also be

I1l. GHM T HEORY FORS-PARAMETER DSs . o
and then we can return to (9) and (8) via multiplying by

Since the passivity of-parameter models are characterized —D  ~I e, on both sides of (12)
by o(S(jw)), we consider the connections of the operation fre; vI  —D7T BT '
quency with the singular values 81jw). To this end, we have extended the GHM theory o

Theorem: For the DS defined in (1) withiw ¢ A(A,E) parameter DSs.
andy ¢ o(D) , we havey € o(S(jw)) iff jw € A(M,N)
ith
W IV. PAssIvITY TEST OFDSs

Tq—1 —-1pT
M = { A ; C?TDS*?C ¢ B AszBCI; Dg,l BT ] The passivity of scattering DSs are assessed by the bounded
(5) realness of its transfer matrix. For hybrid DSs, the passisi
N = { E . } tested based on the positive realness conditions. In thits pa
E ’ we show the application &f-parameter GHM in passivity test
of both scattering and hybrid DSs.
whereS = DD? —~2I, R = DTD — ~42I. SinceD” S~ =
(RT)~1DT, M is a Hamiltonian matrix.
With the assumption of(A4, F) being regular, theS-
parameter transfer matrix of the DS in (1) can be writtenas ~ The GHM theory proposed in Section Il has revealed a close
relationship between the singular valyef a DS transfer ma-

S(jw) = C(jwE — A)"'B + D. (6) trix and its operation frequency. We are interested in the case

A. Passivity Test of-Parameter DSs



of v = 1, which represents the boundary of passivity violationsonversion is to construct a new D®(jw) = C'(jwE' —

of a S-parameter model. A~IB’ + D’ such thatS’(jw) = S(jw) with D'D'T — T be-
Sety = 1, then we get a passivity test matrix penciling invertible. S’(jw) can be constructed in different ways. In
(M, N) = (My, Ny) for scattering DSs with this paper, we construét’ (jw) as follows:
My =1lg, Ny = N. (15) E/[E } A/{A ] B/{B}
Herellg is the Hamiltonian matrix defined in (3). If the matrix 0]’ Iy I

pencil (M, Ny) has a purely imaginary generalized eigenvalue ( — [ C -D ] ., D'=0.
jw, thenw is a crossover frequency point where passivity vio- (18)
lation happens. Therefore, via the generalized eigenwallie  After equivalent model conversion, one can test the pagsivi
tion of the above matrix pencil, the possible nonpassiv®rey of S(jw) by performing GHM onS’(jw). We remark that
can be acc'ur.ately !ocated. . the equivalent model conversion on standard state-spade mo
WhenFE is invertible, the DS in (1) reduces to a regular sysels yields DS models, which can not be tested by Hamiltonian
tem which can be converted to a standard state-space moggithod but can be tackled by GHM.
with £ = I. In such case, the generalized eigenvalue solution The whole passivity test flow can be summarized as follows.
in the test pencil of Mo, No) can be replaced by the standard  step 1: Perform Moebius transform to get a “scattering” DS
eigenvalue problem af/, = ITs. This is in fact the traditional if the original DS is a hybrid one, and then proceed to Step 2.
Hamiltonian method in (3), which is widely applied in pas-if the original DS is a scattering DS, proceed to Step 2 diyect
sivity test and compensations of standard state-spacelsnode Step 2: Check if £ andI — DT D are both nonsingular. If
(see [10] and references therein). Therefore, the HanBlton yes convert the DS to a standard state-space model and check
method in (3) is a special case (or subset) of the proposed GH\stem passivity by (3), and then go to Step 5; otherwis@iéeit

theory. E orI — DT Dis singular), proceed to Step 3.

Step 3: Form the matrix pencil in (15), with equivalent

B. Passivity Test of Hybrid DSs model conversion in advance in cake- DT D is singular. Go
A LTI system with hybrid (admittance or impedance) transt0 Step 4.

fer matrix is (strictly) passive if and only if its transferatnix Step 4: Compute the generalized eigenvalues fy, No)

being (strictly) positive real. Given transfer matt%(s) € in(15). Goto Step 5.

C™*™ it is positive real if and only if [12]: Step 5: Identify the possible nonpassive regions as follows.
1. H(s) has no poles iRe(s) > 0; Step 5.1: If no crossover points are found, we check
2. H(s) is real for all positive reas; S(jwo) at an arbitrarily selected frequency poiant. If
3. H(s) + H*(s) > 0for all Re(s) > 0. [|S(jwo)]| < 1, the DS is passive at any frequency point. Oth-
Given a square transfer matdk(s) with det(/ + H(s)) # 0  erwise, the DS is consistently nonpassive .

forall Re(s) > 0, a Moebius transformation df (s) is defined Step 5.2: If p increasingly ordered crossover points

as [4] w1, Ws, ..., wp are obtained, we selegt 1 sampling pointsvy,

G(s)=(I—H(s))(I+H(s)™ " (16) (k = L,2,..,p + 1) such that, € ¢ wherel; =(0,w),
The system matrices @#(s) can be constructed as b :_(wifl’wi) for i = 2,..pandfy, =(w,00). If
[|S(jwk)|| < 1, then the DS is passive in the interval other-

Es=FE, As=A-B(I+D)"'C, wise nonpassive if;.

Bg = —\/§B(I YD), O = \/5(1 + D)o, A7) Analogous to the hybrid GHM test,. the main computgtion of
. the proposeds-parameter GHM test is th@(n?) generalized
Ds = (I =D)(I+ D). eigenvalue computation.
Since D usually has a much lower dimension th&nhand A,
the above transformation is of very low computational cdtst.
is worth noting thatH (s) itself is also a Moebius-transformed

transf(_ar function of+(s). : L We demonstrate the validity and effectiveness of GHM test
An important property of Moebius transformation is that

. " ; o . with some practical examples. The Matlab functiaig' is
5}12'; chE?)tl\i/se ggﬁLge?jn?ezglnEZ].lf Iﬁvgﬂgzgzj:) t;znsfgégfd used as the generalized/standard eigenvalue solver.
tering system, thei (s) is passive if and only it7(s) is pas-
sive. Therefore, the passivity df(s) can be tested via the A. An S-parameter Three-Terminal Filter
S-parameter GHM test 06'(s).

V. EXAMPLES

We use the standard state-space model to illustrate the va-
lidity of GHM and its connection with traditional Hamilto-
nian method. The frequency-dependent scattering parasnete

A bottleneck of Hamiltonian method is the requirement ofire measured at 1601 sampling points ranging fi0MHz to
DDT — I being nonsingular. This problem limits the applica-6GHz. We first build an order-120 standard state-space model
tions of Hamiltonian method. Fortunately, GHM remains ap{A, B, C, D), which is approximated by vector fitting with
plicable after a small modification process called the exjuiv40 common poles. The traditional Hamiltonian method [10]
lent model conversion [1]. The basic idea of equivalent nhodshows that this system contaifisrossover points. Based on

C. Implementation Issues
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Fig. 2. GHM test results on the Moebius-transformed transfer fonotif the
TABLE | order-53 admittance reduced model.
EXPERIMENTAL RESULTS OF DIFFERENT PASSIVITY TESTS FOR THE
3-TERMINAL FILTER MODEL.

Hamiltonian method: GHM: imaginary TABLE I
. . GHM TEST RESULTS FOR THE ADMITTANCE REDUCED MODEI(ON THE
imaginary results oA(Ils) | results ofA(My, No) MOEBIUS- TRANSFORMED SYSTEN).
6.9e-10 £5112253 2.17e-7 £5112253
2.6e-10 +542988.4 2.58e-8 +542988.4 GHM: imaginary Crossover
1.3e-10 +538173.7 1.06e-8 +538173.7 results ofA (Mg, No) points
2.2e-11 £534551.3 2.93e8 £534551.3 1.309e-11 £50.505080 | 0.505080
4.0e-12 £53109.22 2.80e-6 +;3109.22 1.307e-11 +50.505082 | 0.505082
2.1e-12 £51631.07 6.02e-7 £51631.07 1.127e-13 +£51.234402 | 1.234402
3.0e-10 £515871.8 1.85e-8 +515871.8 3.650e-13 £52.465012 | 2.465012
8.7e-11 £59879.71 5.17e-7 £59879.71 3.169e-13 £52.560446 | 2.560446
8.5e-11 +£;59895.29 5.20e-7 £59895.29 7.587e-13 £54.074095 | 4.074095

) ) B. An Admittance PEEC Reduced Model
the obtained standard state-space model, we also build a DS

model H,(jw) described by E,, Ay, B, Cq, D), with The original admittance SISO model is an order-480 DS. We
get an order-53 reduced model via PRIMA [3], which is non-
passive in the low-frequency band. We construct the system

Ey = { I120 } , Ay = { A } matrices of the corresponding Moebius transformed functio
0 I3 (19) G(s), and then test the bounded realnes&/¢§) by GHM af-

B, B o — [ c _D ] D/ —0 ter equivalent model conversion. Computed crossover point

d I |0 7 » d are listed in Table Il. Fig. 2 shows the magnitude of the

Moebius-transformed transfer function equals unity atthra-
ERuted crossover points. We also plot the real part of theraig
admittance transfer functiofi(jw) in Fig. 3, which shows the
proposed GHM method can accurately locate the nonpassive

Note that the DS model can also be built directly by DS-form
vector fitting. GHM test onH,(jw) also reports 9 crossover
points. The experimental reSl_JIts of bpth mgthpds p_mpdnet t regions of hybrid DSs.
same boundary frequency points, which coincide with the sin

gular value curves of the transfer matrix demonstratedgnFi

We also list the numerical results in Table I. There are some
numerical noise in the real parts of GHM and Hamiltonian test
results, which can be eliminated by setting a small numkrica We have extended the generalized Hamiltonian methéd to

tolerance [1]. parameter DSs. By virtue of the proposed method, the passiv-

V1. CONCLUSIONS
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