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Abstract— A generalized Hamiltonian method (GHM) was re-
cently proposed for hybrid descriptor systems [1]. This paper ex-
tends the GHM theory to its S-parameter counterpart. Based on
the S-parameter GHM, a passivity test flow is proposed, which is
capable of detecting nonpassive regions of descriptor-form phys-
ical models. The proposed method is applicable toS-parameter
and hybrid systems either in the standard state-space or descrip-
tor forms. Experimental results confirm the effectiveness andac-
curacy of the proposed method.

I. I NTRODUCTION

In this paper we consider the linear time-invariant (LTI) de-
scriptor system (DS) described by the state-space equations

E
dx

dt
= Ax+Bu,

y = Cx+Du.
(1)

HereE,A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n, D ∈ R

m×m,
x ∈ R

n represents state variables. In this DS, the matrix pencil
(A,E) is assumed to be regular, i.e.,det(A − sE) 6= 0 for
somes on the complex plane. Note thatrank(E) ≤ n, and (1)
describes a regular system ifE is invertible.

In circuit simulations, the original models obtained by mod-
ified nodal analysis (MNA) are in the descriptor form [2–4].
DSs also appear in full-wave simulations of 3-D structures,RF
components and electromagnetic devices [5–7]. These original
large-scale DS models are normally approximated by model
order reduction (MOR) techniques to speed up computer-aided
design (CAD) and simulations [2–8]. Meanwhile, compact
models can also be built from measured frequency-dependent
admittance, impedance or scattering response data by vector
fitting [9]. In high-frequency simulations where the port excita-
tions are wave-like,S-parameter representations are frequently
adopted.

In VLSI CAD, these models are required to be passive to
guarantee stable global simulations. Normally they are tested
by passivity assessments and then processed by passivity en-
forcement techniques if necessary [10]. For standard state-
space models, various passivity test techniques have been pro-
posed, among which frequency sweeping and Hamiltonian
method are most widely used [10, 11]. Compared with sweep-
ing routines, Hamiltonian method is frequency-independent
and thus much more accurate [10]. Recently, a generalized

Hamiltonian method (GHM) has been proposed for hybrid
(i.e., impedance or admittance) DSs [1]. As a superset of the
Hamiltonian method, GHM test enjoys much cheaper com-
putations than existing algebraic DS passivity tests, e.g., lin-
ear matrix inequality (LMI) test and some decompose-and-test
flows [12–14]. GHM test is also much more accurate than DS
frequency sweeping method [15].

However, little work has been reported for the passivity
test of S-parameter DSs. Although extended bounded-real
lemma [16] and GARE-based method [4] have been proposed
for passivity check ofS-parameter DSs, no reliable technique
exists for their passive/nonpassive region identification. This
is what motivates this work. In this paper, we extend the
GHM theory toS-parameter DS models. Analogous to its hy-
brid counterpart, theS-parameter GHM method can accurately
identify the possible nonpassive frequency regions of bothde-
scriptor and regular models, without restrictions on the matrix
D. Furthermore, we also show that our proposed method can
test the passivity of hybrid descriptor systems.

Throughout this paper, we use the superscriptsT and ∗ to
denote transpose and conjugate transpose (Hermitian), respec-
tively. For a general matrixX, σ(X) represents the set of sin-
gular values ofX. We useλ(X) or λ(X,Y ) to denote the
eigenvalues ofX or the generalized eigenvalues of the matrix
pencil(X,Y ) (i.e.,det(X−aY ) = 0 if a ∈ λ(X,Y )), respec-
tively.

II. T HEORETICAL BACKGROUND

A. Passivity Check ofS-Parameter Models

In the case of scattering representation, (strict) passivity is
equivalent to the (strict) bounded realness of the transfermatrix
S(s). A transfer matrixS(s) ∈ C

m×m is bounded real iff [17]:
1. S(s) is analytical on the right half planeRe(s) ≥ 0;
2. I − S∗(jω)S(jω) ≥ 0 (> corresponds to strict bounded

realness) for allω ∈ R, which is equivalent to

σi(jω) ≤ 1 , ∀σi(jω) ∈ σ(S(jω)) , ∀ω ∈ R. (2)

Condition 2 can be checked by frequency sweeping techniques
at a set of sampling points along the imaginary axiss =
jω [11, 15]. However, erroneous results may be produced be-
cause nonpassive regions between sampling points are some-
times missed. For standard state-space models (withE = I in



(1)), the following2n×2n Hamiltonian matrix

ΠS =

[

A−BDT Ŝ−1C −BR̂−1BT

CT Ŝ−1C CTDR̂−1BT −AT

]

(3)

is used for accurate passivity test [10]. HereŜ = (DDT − I)
andR̂ = (DTD− I). Any purely imaginary eigenvalue ofΠS

jω̂ corresponds to a crossover frequency pointω̂ (in rad/sec)
of passivity violations. Due to its frequency-independentna-
ture, Hamiltonian method is much more accurate than fre-
quency sweeping test and thus preferred in passivity enforce-
ments where accurate passivity assessment is required. How-
ever, there still exist some problems for Hamiltonian method.
Firstly, it is only applicable to standard state-space models.
Secondly, as shown in (3),I − DTD is required to be non-
singular for passivity test.

B. GHM Test for Hybrid Descriptor Systems

Ref. [1] has proposed the GHM for DSs with admit-
tance/impedance transfer matrix. In GHM test, the possible
impulsive part is tested in advance by a preprocess called ImPT
without system decomposition [1]. The proper part is checked
by a matrix pencil(J,K):

J =

[

A−B(D +DT )−1C −B(D +DT )−1BT

CT (D +DT )−1C CT (D +DT )−1BT −AT

]

,

K =

[

E
ET

]

.

(4)
Since every purely imaginary generalized eigenvalue of(J,K)
corresponds to a crossover point, system passivity can be easily
checked and the possible nonpassive regions can be accurately
located. The main computation of GHM test is theO(n3) gen-
eralized eigenvalue solution. Due to its flexibility, high accu-
racy and explicit implementation, GHM method is generally
superior over previous DS passivity tests [1].

III. GHM T HEORY FORS-PARAMETER DSS

Since the passivity ofS-parameter models are characterized
byσ(S(jω)), we consider the connections of the operation fre-
quency with the singular values ofS(jω).

Theorem: For the DS defined in (1) withjω /∈ λ(A,E)
andγ /∈ σ(D) , we haveγ ∈ σ(S(jω)) iff jω ∈ λ(M,N)
with

M =

[

A−BDTS−1C −γBR−1BT

γCTS−1C −AT + CTDR−1BT

]

N =

[

E
ET

]

,

(5)

whereS = DDT − γ2I, R = DTD − γ2I. SinceDTS−1 =
(RT )−1DT , M is a Hamiltonian matrix.

With the assumption of(A,E) being regular, theS-
parameter transfer matrix of the DS in (1) can be written as

S(jω) = C(jωE −A)−1B +D. (6)

For real matrix-valued systems we haveS∗(jω) = ST (−jω),
therefore,

S(jω) = BT (jωET +AT )−1(−CT ) +DT . (7)

Assumeγ ∈ σ(S(jω)) and γ /∈ σ(D), then there exist
non-zerov andu as the corresponding left-singular and right-
singular vectors, respectively, such that

S(jω)u = γv, S∗(jω)v = γu. (8)

Substituting (6) and (7) into the above equation, we rewrite(8)
as

[

C
BT

]

Ω−1
ω

[

B
−CT

] [

u
v

]

=

[

−D γI
γI −DT

] [

u
v

]

,

(9)

where

Ωω =

[

jωE −A
jωET +AT

]

. (10)

For simplicity, we further denote

z := Ω−1
ω

[

B
−CT

] [

u
v

]

. (11)

Because the right-hand side of (9) is non-zero,z should also be
a non-zero vector. From (9) and (11), it is straightforward to
get

Ω−1
ω

[

B
−CT

] [

−D γI
γI −DT

]

−1 [

C
BT

]

z = z.

(12)
Pre-multiplying both sides of (12) byΩω yields

Mz = jωNz. (13)

The converse also holds. To prove this, we first define

z′ :=

[

−D γI
γI −DT

]

−1 [

C
BT

]

z, (14)

and then we can return to (9) and (8) via multiplying by
[

−D γI
γI −DT

]

−1 [

C
BT

]

on both sides of (12).

To this end, we have extended the GHM theory toS-
parameter DSs.

IV. PASSIVITY TEST OFDSS

The passivity of scattering DSs are assessed by the bounded
realness of its transfer matrix. For hybrid DSs, the passivity is
tested based on the positive realness conditions. In this part,
we show the application ofS-parameter GHM in passivity test
of both scattering and hybrid DSs.

A. Passivity Test ofS-Parameter DSs

The GHM theory proposed in Section III has revealed a close
relationship between the singular valueγ of a DS transfer ma-
trix and its operation frequencyω. We are interested in the case



of γ = 1, which represents the boundary of passivity violations
of aS-parameter model.

Set γ = 1, then we get a passivity test matrix pencil
(M,N) = (M0, N0) for scattering DSs with

M0 = ΠS , N0 = N. (15)

HereΠS is the Hamiltonian matrix defined in (3). If the matrix
pencil(M0, N0) has a purely imaginary generalized eigenvalue
jω̂, thenω̂ is a crossover frequency point where passivity vio-
lation happens. Therefore, via the generalized eigenvaluesolu-
tion of the above matrix pencil, the possible nonpassive regions
can be accurately located.

WhenE is invertible, the DS in (1) reduces to a regular sys-
tem which can be converted to a standard state-space model
with E = I. In such case, the generalized eigenvalue solution
in the test pencil of(M0, N0) can be replaced by the standard
eigenvalue problem ofM0 = ΠS . This is in fact the traditional
Hamiltonian method in (3), which is widely applied in pas-
sivity test and compensations of standard state-space models
(see [10] and references therein). Therefore, the Hamiltonian
method in (3) is a special case (or subset) of the proposed GHM
theory.

B. Passivity Test of Hybrid DSs

A LTI system with hybrid (admittance or impedance) trans-
fer matrix is (strictly) passive if and only if its transfer matrix
being (strictly) positive real. Given transfer matrixH(s) ∈
C

m×m, it is positive real if and only if [12]:
1. H(s) has no poles inRe(s) > 0;
2. H(s) is real for all positive reals;
3. H(s) +H∗(s) ≥ 0 for all Re(s) > 0.
Given a square transfer matrixH(s) with det(I+H(s)) 6= 0

for all Re(s) > 0, a Moebius transformation ofH(s) is defined
as [4]

G(s) = (I −H(s))(I +H(s))−1. (16)

The system matrices ofG(s) can be constructed as

ES = E, AS = A−B(I +D)−1C,

BS = −
√
2B(I +D)−1, CS =

√
2(I +D)−1C,

DS = (I −D)(I +D)−1.

(17)

SinceD usually has a much lower dimension thanE andA,
the above transformation is of very low computational cost.It
is worth noting thatH(s) itself is also a Moebius-transformed
transfer function ofG(s).

An important property of Moebius transformation is that
H(s) is positive real if and only if its Moebius-transformed
functionG(s) is bounded real [4]. If we seeG(s) as a scat-
tering system, thenH(s) is passive if and only ifG(s) is pas-
sive. Therefore, the passivity ofH(s) can be tested via the
S-parameter GHM test onG(s).

C. Implementation Issues

A bottleneck of Hamiltonian method is the requirement of
DDT − I being nonsingular. This problem limits the applica-
tions of Hamiltonian method. Fortunately, GHM remains ap-
plicable after a small modification process called the equiva-
lent model conversion [1]. The basic idea of equivalent model

conversion is to construct a new DSS′(jω) = C ′(jωE′ −
A′)−1B′ +D′ such thatS′(jω) = S(jω) with D′D′T − I be-
ing invertible.S′(jω) can be constructed in different ways. In
this paper, we constructS′(jω) as follows:

E′ =

[

E
0

]

, A′ =

[

A
I

]

, B′ =

[

B
I

]

,

C ′ =
[

C −D
]

, D′ = 0.
(18)

After equivalent model conversion, one can test the passivity
of S(jω) by performing GHM onS′(jω). We remark that
the equivalent model conversion on standard state-space mod-
els yields DS models, which can not be tested by Hamiltonian
method but can be tackled by GHM.

The whole passivity test flow can be summarized as follows.
Step 1:Perform Moebius transform to get a “scattering” DS

if the original DS is a hybrid one, and then proceed to Step 2.
If the original DS is a scattering DS, proceed to Step 2 directly.

Step 2: Check ifE andI − DTD are both nonsingular. If
yes, convert the DS to a standard state-space model and check
system passivity by (3), and then go to Step 5; otherwise ( either
E or I −DTD is singular), proceed to Step 3.

Step 3: Form the matrix pencil in (15), with equivalent
model conversion in advance in caseI −DTD is singular. Go
to Step 4.

Step 4: Compute the generalized eigenvalues of(M0, N0)
in (15). Go to Step 5.

Step 5: Identify the possible nonpassive regions as follows.
Step 5.1: If no crossover points are found, we check

S(jω0) at an arbitrarily selected frequency pointω0. If
||S(jω0)|| < 1, the DS is passive at any frequency point. Oth-
erwise, the DS is consistently nonpassive .

Step 5.2: If p increasingly ordered crossover points
ω̂1, ω̂2, ..., ω̂p are obtained, we selectp+1 sampling pointsωk

(k = 1, 2, ..., p + 1) such thatωk ∈ ℓk whereℓ1 =(0, ω̂1),
ℓi =(ω̂i−1, ω̂i) for i = 2, ..., p and ℓp+1 =(ω̂p,∞). If
||S(jωk)|| < 1, then the DS is passive in the intervalℓk, other-
wise nonpassive inℓk.

Analogous to the hybrid GHM test, the main computation of
the proposedS-parameter GHM test is theO(n3) generalized
eigenvalue computation.

V. EXAMPLES

We demonstrate the validity and effectiveness of GHM test
with some practical examples. The Matlab function “eig” is
used as the generalized/standard eigenvalue solver.

A. An S-parameter Three-Terminal Filter

We use the standard state-space model to illustrate the va-
lidity of GHM and its connection with traditional Hamilto-
nian method. The frequency-dependent scattering parameters
are measured at 1601 sampling points ranging from50MHz to
6GHz. We first build an order-120 standard state-space model
(A,B,C,D), which is approximated by vector fitting with
40 common poles. The traditional Hamiltonian method [10]
shows that this system contains9 crossover points. Based on
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Fig. 1. GHM test results for the 3-terminal filter.

TABLE I
EXPERIMENTAL RESULTS OF DIFFERENT PASSIVITY TESTS FOR THE

3-TERMINAL FILTER MODEL .

Hamiltonian method: GHM: imaginary
imaginary results ofλ(ΠS) results ofλ(M0, N0)

6.9e-10 ±j112253 2.17e-7 ±j112253
2.6e-10 ±j42988.4 2.58e-8 ±j42988.4
1.3e-10 ±j38173.7 1.06e-8 ±j38173.7
2.2e-11 ±j34551.3 2.93e-8 ±j34551.3
4.0e-12 ±j3109.22 2.80e-6 ±j3109.22
2.1e-12 ±j1631.07 6.02e-7 ±j1631.07
3.0e-10 ±j15871.8 1.85e-8 ±j15871.8
8.7e-11 ±j9879.71 5.17e-7 ±j9879.71
8.5e-11 ±j9895.29 5.20e-7 ±j9895.29

the obtained standard state-space model, we also build a DS
modelHd(jω) described by(Ed, Ad, Bd, Cd, Dd), with

Ed =

[

I120
0

]

, Ad =

[

A
I3

]

Bd =

[

B
I3

]

, Cd =
[

C −D
]

, Dd = 0

(19)

Note that the DS model can also be built directly by DS-format
vector fitting. GHM test onHd(jω) also reports 9 crossover
points. The experimental results of both methods pinpoint the
same boundary frequency points, which coincide with the sin-
gular value curves of the transfer matrix demonstrated in Fig. 1.
We also list the numerical results in Table I. There are some
numerical noise in the real parts of GHM and Hamiltonian test
results, which can be eliminated by setting a small numerical
tolerance [1].
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Fig. 2. GHM test results on the Moebius-transformed transfer function of the
order-53 admittance reduced model.

TABLE II
GHM TEST RESULTS FOR THE ADMITTANCE REDUCED MODEL(ON THE

MOEBIUS-TRANSFORMED SYSTEM).

GHM: imaginary Crossover
results ofλ(M0, N0) points
1.309e-11 ±j0.505080 0.505080
1.307e-11 ±j0.505082 0.505082
1.127e-13 ±j1.234402 1.234402
3.650e-13 ±j2.465012 2.465012
3.169e-13 ±j2.560446 2.560446
7.587e-13 ±j4.074095 4.074095

B. An Admittance PEEC Reduced Model

The original admittance SISO model is an order-480 DS. We
get an order-53 reduced model via PRIMA [3], which is non-
passive in the low-frequency band. We construct the system
matrices of the corresponding Moebius transformed function
G(s), and then test the bounded realness ofG(s) by GHM af-
ter equivalent model conversion. Computed crossover points
are listed in Table II. Fig. 2 shows the magnitude of the
Moebius-transformed transfer function equals unity at thecom-
puted crossover points. We also plot the real part of the original
admittance transfer functionS(jω) in Fig. 3, which shows the
proposed GHM method can accurately locate the nonpassive
regions of hybrid DSs.

VI. CONCLUSIONS

We have extended the generalized Hamiltonian method toS-
parameter DSs. By virtue of the proposed method, the passiv-
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Fig. 3. The real part of the transfer function of the original order-53
admittance DS model.

ity of S-parameter and hybrid DSs can be tested with accurate
identification of the passive and nonpassive frequency regions.
The proposedS-parameter GHM method is efficient in testing
the validity of reduced circuit models. It is also expected to
speed up the passivity compensations of nonpassive DS mod-
els generated by macromodeling or MOR techniques.
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