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Abstract— In circuit simulation, when a large RLC network is
connected with delay elements, such as transmission lines, the re-
sulting system is a time-delay system (TDS). This paper presents
a new model order reduction (MOR) scheme for TDSs with state
time delays. It is the first time to reduce a TDS using balanced
truncation. The Lyapunov-type equations for TDSs are derived,
and an analysis of their computational complexity is presented.
To reduce the computational cost, we approximate the controlla-
bility and observability Gramians in the frequency domain. The
reduced-order models (ROMs) are then obtained by balancing
and truncating the approximate Gramians. Numerical examples
are presented to verify the accuracy and efficiency of the proposed
algorithm.

I. INTRODUCTION

Time-delay phenomena frequently appear in high-speed cir-
cuits [1]. In circuit simulation, a time-delay system (TDS)
may arise when a circuit network is connected with some de-
lay elements (e.g., RLC interconnects connected with trans-
mission lines [2]), which are usually from packages or PCBs.
The propagation delays of transmission lines from packages
and PCBs are the dominant effects, therefore, the attenuation
effects of transmission lines can be ignored and they can be
modeled as lossless transmission lines. Direct simulation of
a large TDS is infeasible due to the prohibitive computational
cost. Therefore, model order reduction (MOR) is desired to
compact the model size for fast simulation.

Existing MORs can be classified into two main groups. The
first group projects the original system onto a Krylov subspace
to match a certain number of moments [3–5]. The second fam-
ily, named truncated balanced realization (TBR) [6], is based
on the concepts of controllability and observability. TBR re-
duces the order of systems by only preserving the dominant
states of the original systems. Moment-matching methods are
very efficient and numerically robust, but in general cannot
provide an analytical error estimator, and therefore no opti-
mal reduced-order models (ROMs) can be obtained. On the
other hand, the Gramian-based methods often provide a higher
global accuracy, and the resulting ROMs are nearly optimal un-
der a given error bound. This motivates us to develop a TBR-
type method to reduce the size of TDSs.
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The major bottleneck of TBR lies in the calculation of the
controllability and observability Gramians. For large linear
time-invariant (LTI) systems, the computational cost of TBR
is extremely high because two Lyapunov equations need to be
solved at the cost of 𝑂(𝑛3). Recently, an effective alternative,
called the Poor Man’s TBR, was proposed to approximate the
Gramians in the frequency domain without solving the expen-
sive Lyapunov equations [7]. This approach is very efficient
because it uses frequency-weighted finite summation to ap-
proximate the infinite integration. The Poor Man’s TBR can
provide accurate ROMs, especially when the system has finite-
bandwidth inputs.

The problem becomes more complicated when TBR is ap-
plied to reduce TDSs. Besides the huge model size, the compli-
cated definitions involving the Lambert W function [8] prohibit
the direct calculation of Gramians, as well as the Lyapunov-
type equations for TDSs. The bottleneck lies in that, without
an analytical convergence criterion, one can not determine how
many branches of the Lambert W function are needed to ap-
proximate the TDS Gramians and the derived Lyapunov-type
equations. Moreover, the calculation of Gramians via the Lam-
bert W function involves unavoidable matrix inversion which
further limits its practicality [9].

In this paper, we use the Poor Man’s TBR for fast evaluation
of the approximate TDS Gramians, then a TBR procedure can
be applied to obtain the ROMs. The proposed algorithm takes
advantage of the facts that typical TDSs from circuit simulation
usually have a finite bandwidth and the delay effects occur only
in the high frequency range. We use lossless multiconductor
transmission lines (MTLs) to model the delay elements. When
the operation frequency increases, the MTLs can no longer be
regarded as a pure resistive network: the coupling capacitance
and inductance will delay the signal propagation. The typi-
cal time-delay value in lossless MTLs is in the magnitude of
nanoseconds, and the time-delay effects will occur only when
the input signal is of high frequency. Therefore, it is reason-
able to evaluate the TDS Gramians in the specific frequency
bandwidth by finite summation rather than by infinite integra-
tion. The accuracy and efficiency of the proposed algorithm are
demonstrated by numerical experiments.

This paper is organized as follows. Section II reviews TDSs
and the Poor Man’s TBR. In Section III we present the exist-
ing definitions of the Gramians for TDSs and propose a TBR
method for TDSs. The proposed method is then verified by nu-
merical examples in Section IV. Finally, Section V concludes
the paper.
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II. BACKGROUND

A. Time-delay Systems

In this paper, a TDS is modeled from a large interconnect
network connected with a set of lossless MTLs, resulting in a
TDS with constant delays in the states. A TDS is formulated
as

𝑥̇(𝑡) = 𝐴𝑥(𝑡) +𝐴𝑑𝑥(𝑡 − ℎ) +𝐵𝑢(𝑡), 𝑡 > 0

𝑦(𝑡) = 𝐶𝑥(𝑡)

𝑥(0) = 𝑥0

𝑥(𝑡) = 𝑔(𝑡), 𝑡 ∈ [−ℎ, 0)

, (1)

where 𝑥(𝑡) ∈ ℝ
𝑛 is the state vector, 𝐴,𝐴𝑑 ∈ ℝ

𝑛×𝑛 are the
state matrices, ℎ > 0 is a constant time delay in the states,
𝐵 ∈ ℝ

𝑛×𝑝 is the input matrix, 𝐶𝑇 ∈ ℝ
𝑛×𝑞 is the output ma-

trix, 𝑦(𝑡) ∈ ℝ
𝑞 is the output vector and 𝑢(𝑡) ∈ ℝ

𝑝 is the input
vector. For simplicity, we assume the system has a single con-
stant delay, and the generalization to systems with multiple de-
lays will be presented in Section III-D. For a TDS, initial con-
ditions including the state values in the delay interval [−ℎ, 0),
i.e., 𝑥0 and the preshape function 𝑔(𝑡), are needed to determine
the state solution after origin.

In [10], the time-domain state solution of (1) is formulated
as

𝑥(𝑡, 0, 𝑔, 𝑢) = 𝑥(𝑡, 0, 𝑔, 0) +

∫ 𝑡

0

𝐾(𝑡, 𝜏)𝐵𝑢(𝜏)𝑑𝜏 , (2)

where 𝑥(𝑡, 0, 𝑔, 𝑢) denotes a solution at time 𝑡 corresponding to
the initial time 0, initial delay-interval function 𝑔(𝑡) and input
signal 𝑢(𝑡). 𝑥(𝑡, 0, 𝑔, 0) denotes the homogeneous solution of
the system with 𝑢(𝑡) = 0. 𝐾(𝑡, 𝜏) denotes the fundamental
matrix function of (1) and it satisfies the following equations

∂𝐾(𝑡, 𝜏 )/∂𝜏 = −𝐾(𝑡, 𝜏 )𝐴−𝐾(𝑡, 𝜏 + ℎ)𝐴𝑑, 0 ≤ 𝜏 ≤ 𝑡− ℎ
𝐾(𝑡, 𝑡) = 𝐼
𝐾(𝑡, 𝜏 ) = 0, for 𝜏 > 𝑡.

.

(3)
To analyze the controllability and observability Gramians,

we need to derive an analytical solution of the fundamental
matrix function 𝐾(𝑡, 𝜏), which will be discussed in details in
Section III-A.

B. Review of the Poor Man’s TBR

For a minimally realized, stable LTI standard state-space
model, the controllability and observability Gramians 𝑃 and
𝑄 are defined respectively as

𝑃 =

∫ ∞

0

𝑒𝐴𝑡𝐵𝐵𝑇 𝑒𝐴
𝑇 𝑡𝑑𝑡, 𝑄 =

∫ ∞

0

𝑒𝐴
𝑇 𝑡𝐶𝑇𝐶𝑒𝐴𝑡𝑑𝑡, (4)

which are the unique positive definite solutions to the Lya-
punov equations

𝐴𝑃 + 𝑃𝐴𝑇 +𝐵𝐵𝑇 = 0, (5a)

𝐴𝑇𝑄+𝑄𝐴+ 𝐶𝑇𝐶 = 0. (5b)

After computing the Gramians from the Lyapunov equations,
a standard TBR is then performed to obtain the ROM. The
main advantage of TBR over moment-matching methods is

that the 𝐻∞ norm of the transfer function approximation has a
bounded error.

However, direct solution of the Lyapunov equations (5)
needs 𝑂(𝑛3) cost, which limits the application of TBR. To re-
duce the complexity, Poor Man’s TBR [7] was proposed to ap-
proximate the Gramians in the frequency domain. Poor Man’s
TBR reformulates the system Gramians (4) in the Laplace do-
main as

𝑃 =

∫ ∞

−∞
(𝑠𝐼 − 𝐴)−1𝐵𝐵𝑇 (𝑠𝐼 −𝐴)−𝐻𝑑𝑠, (6a)

𝑄 =

∫ ∞

−∞
(𝑠𝐼 −𝐴𝑇 )−1𝐶𝑇𝐶(𝑠𝐼 − 𝐴𝑇 )−𝐻𝑑𝑠, (6b)

where the superscript 𝐻 denotes the Hermitian transpose. A
finite summation is then used to approximate the infinite inte-
gration for the sake of efficiency. Defining

𝑧𝑐𝑘 = (𝑗𝜔𝑘𝐼 −𝐴)−1𝐵, 𝑧𝑜𝑘 = (𝑗𝜔𝑘𝐼 −𝐴𝑇 )−1𝐶𝑇 , (7)

the approximate Gramians can be calculated as

∼
𝑃 =

∑
𝑘

𝑧𝑐𝑘𝑧
𝐻
𝑐𝑘,

∼
𝑄 =

∑
𝑘

𝑧𝑜𝑘𝑧
𝐻
𝑜𝑘 . (8)

With the approximate Gramians, standard TBR can then be ap-
plied to perform MOR.

III. GRAMIAN-BASED MOR OF TDSS

A. Controllability and Observability Gramians of TDSs

There are several definitions of controllability for a TDS
[10–12], such as 𝑀2 controllability, absolute controllability,
point-wise controllability, and some hybrid types. Here we use
the most popular definition, the point-wise controllability.

Definition 1 (Controllability of a TDS) [13]: The system
(1) is point-wise controllable if, for any given initial conditions
𝑔(𝑡) and 𝑥0, there exists 0 < 𝑡1 <∞, and an admissible input
𝑢(𝑡) for 𝑡 ∈ [0, 𝑡1] such that 𝑥(𝑡1, 0, 𝑔(𝑡), 𝑢(𝑡)) = 0.

The lack of a well-established analytical criterion of the con-
trollability imposes a significant limitation to its applicability.
An algebraic criterion was proposed by Weiss [10] to check the
point-wise controllability of linear time-varying systems. The
most recent result was presented in [13], where the Gramians
matrices are defined via the Lambert W function. The deriva-
tion of algebraic Gramians stems from the time-domain solu-
tion to (1) via the matrix Lambert W function [13]

𝑥(𝑡) =
∞∑

𝑘=−∞
𝑒𝑆𝑘𝑡𝐶𝐼

𝑘 +

∫ 𝑡

0

∞∑
𝑘=−∞

𝑒𝑆𝑘(𝑡−𝜏)𝐶𝑁
𝑘 𝐵𝑢(𝜏 )𝑑𝜏, (9)

with

𝑆𝑘 =
1

ℎ
𝑊𝑘(𝐴𝑑ℎ𝑄𝑘) +𝐴, (10)

where 𝑊𝑘(𝐻𝑘) is the matrix Lambert W function of 𝐻𝑘 de-
fined in [13]. For more details of the convergence conditions,
definitions and calculations of 𝐶𝐼

𝑘 , 𝐶𝑁
𝑘 and 𝑄𝑘, we refer the

readers to [9, 13, 14].
As discussed in Section II-A, the fundamental matrix func-

tion 𝐾(𝑡, 𝜏) now has an analytical form [13]

𝐾(𝑡, 𝜏) =

∞∑
𝑘=−∞

𝑒𝑆𝑘(𝑡−𝜏)𝐶𝑁
𝑘 . (11)
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Analogous to the LTI systems, the controllability Gramian can
be defined as [13]

𝑃 (0, 𝑡1) =
∫ 𝑡1
0

∞∑

𝑘=−∞
𝑒𝑆𝑘(𝑡1−𝜏)𝐶𝑁

𝑘 𝐵𝐵𝑇 {
∞∑

𝑘=−∞
𝑒𝑆𝑘(𝑡1−𝜏)𝐶𝑁

𝑘 }𝑇 𝑑𝜏.

(12)

The observability condition and its Gramian are defined sim-
ilarly in the following.

Definition 2 (Observability of a TDS) [13]: The system (1)
is point-wise observable in [0, 𝑡1] if the initial point 𝑥0 can
be uniquely determined from the knowledge of 𝑢(𝑡), 𝑔(𝑡) and
𝑦(𝑡).

The observability Gramian is defined using the fundamental
matrix function (11) as [13]

𝑄(0, 𝑡1) =
∫ 𝑡1
0 {

∞∑

𝑘=−∞
𝑒𝑆𝑘(𝜏−0)𝐶𝑁

𝑘 }𝑇𝐶𝑇𝐶
∞∑

𝑘=−∞
𝑒𝑆𝑘(𝜏−0)𝐶𝑁

𝑘 𝑑𝜏.

(13)

Note that if 𝐴𝑑 = 0, the TDS reduces to a LTI system, and the
controllability and observability Gramians are the same as in
the linear case without delays. Therefore the TBR procedure
for a TDS is consistent to the LTI case when 𝐴𝑑 → 0.

These analytical Gramians and their time-domain evalua-
tions were proposed in [13] for the first time, where the Grami-
ans are approximated in the time domain using the first several
branches of the Lambert W function. However, as discussed
in [9], such an evaluation is too expensive for practical imple-
mentation due to the unavoidable matrix inversion in comput-
ing the coefficients 𝑆𝑘 and 𝐶𝑁

𝑘 . Moreover, without a conver-
gence criterion of the infinite Lambert W function branches,
one cannot determine how many branches should be used to
approximate the Gramians. When the original TDSs are of
high order, which is common in VLSI circuit simulation, the
cost becomes extremely expensive, making this approach in-
feasible.

B. Complexity of Lyapunov-Type Equations of TDSs

Here we briefly analyze the complexity of Lyapunov-type
equations for a TDS, and show that it is reasonable to approxi-
mate the Gramians by the Poor Man’s TBR.

By defining

𝑤𝑖𝑗 = 𝑒𝑆𝑖𝑡𝐶𝑁
𝑖 𝐵𝐵

𝑇 (𝑒𝑆𝑗𝑡𝐶𝑁
𝑗 )𝑇 , (14)

𝑃𝑖𝑗 =

∫ ∞

0

𝑤𝑖𝑗𝑑𝑡, (15)

the controllability Gramians (12) can be rewritten as

𝑃 =
+∞∑

𝑖=−∞

+∞∑
𝑗=−∞

∫ ∞

0

𝑤𝑖𝑗𝑑𝑡 =
+∞∑

𝑖=−∞

+∞∑
𝑗=−∞

𝑃𝑖𝑗 . (16)

For a stable TDS we can obtain a set of Lyapunov-type equa-
tions for the controllability Gramian components 𝑃𝑖𝑗

𝑆𝑖𝑃𝑖𝑗 + 𝑃𝑖𝑗𝑆
𝑇
𝑗 + 𝐶𝑁

𝑖 𝐵𝐵
𝑇 (𝐶𝑁

𝑗 )𝑇 = 0. (17)

Then the controllability Gramian (16) can be approximated by
its first several branches of solutions to (17). The observability
Gramian can be approximated similarly.

However, calculating the Gramians from time-domain
Lyapunov-type equations are as difficult as calculating the

Gramians from their time-domain definitions. In our experi-
ments, the delay elements are modeled from MTLs which have
strong coupling effects in the high frequency range, and this
motivates us to calculate the Gramians in the frequency domain
for computational efficiency.

C. Proposed TBR of TDSs via Approximate Gramians

By Laplace transform, the fundamental matrix function of a
TDS becomes [13]

ℒ{
∞∑

𝑘=−∞
𝑒𝑆𝑘(𝑡−0)𝐶𝑁

𝑘 𝐵} = (𝑠𝐼 −𝐴−𝐴𝑑𝑒
−𝑠ℎ)−1𝐵, (18a)

ℒ{{
∞∑

𝑘=−∞
𝑒𝑆𝑘(𝜏−0)𝐶𝑁

𝑘 }𝑇𝐶𝑇 } = (𝑠𝐼 −𝐴𝑇 −𝐴𝑇
𝑑 𝑒

−𝑠ℎ)−1𝐶𝑇 ,

(18b)
where ℒ denotes the Laplace transform operation. Then the
controllability and observability Gramians can be calculated in
the frequency domain as

𝑃 =

∫ ∞

−∞
(𝑠𝐼 −𝐴− 𝐴𝑑𝑒

−𝑠ℎ)−1𝐵𝐵𝑇 (𝑠𝐼 −𝐴−𝐴𝑑𝑒
−𝑠ℎ)−𝐻𝑑𝑠,

(19a)

𝑄 =

∫ ∞

−∞
(𝑠𝐼 − 𝐴−𝐴𝑑𝑒

−𝑠ℎ)−𝐻𝐶𝑇𝐶(𝑠𝐼 − 𝐴− 𝐴𝑑𝑒
−𝑠ℎ)−1𝑑𝑠.

(19b)
Evaluating the Gramians over the whole frequency band is im-
practical. In practical VLSI circuits, the input signals usually
have a finite bandwidth, therefore the infinite integration can
be approximated by a finite summation at a set of frequency
sampling points. In this paper, we focus on the TDSs consist-
ing of a linear RLC interconnect network connected with a set
of lossless MTLs. The time-delay values in such models are in
the magnitude of nanoseconds, therefore the delay effects oc-
cur only when the input signal is of high frequency. This fact
makes the proposed approximation viable. The scheme of fre-
quency selection is elaborated in [7], and in this paper we select
the frequency-sampling points uniformly within the frequency
band of interest. By defining

𝑧𝑐𝑘 = (𝑗𝜔𝑘𝐼 −𝐴−𝐴𝑑𝑒
−𝑗𝜔𝑘ℎ)−1𝐵, (20a)

𝑧𝑜𝑘 = (𝑗𝜔𝑘𝐼 −𝐴−𝐴𝑑𝑒
−𝑗𝜔𝑘ℎ)−𝐻𝐶𝑇 , (20b)

the approximate Gramians can be calculated as
∼
𝑃 =

∑
𝑘

𝑧𝑐𝑘𝑧
𝐻
𝑐𝑘,

∼
𝑄 =

∑
𝑘

𝑧𝑜𝑘𝑧
𝐻
𝑜𝑘 . (21)

Denoting
𝑍𝑐 = [𝑧𝑐1, 𝑧𝑐2, . . . , 𝑧𝑐𝑁 ], (22a)

𝑍𝑜 = [𝑧𝑜1, 𝑧𝑜2, . . . , 𝑧𝑜𝑁 ], (22b)

the approximate Gramians are expressed as
∼
𝑃 = 𝑍𝑐𝑍

𝐻
𝑐 ,

∼
𝑄 = 𝑍𝑜𝑍

𝐻
𝑜
. (23)

After calculating the Gramians, a standard TBR is then per-
formed to obtain the ROM. The proposed algorithm is summa-
rized in Algorithm 1. Note that MOR via the projection tech-
nique can preserve TDS structure, and the delay effect remains
the same as in the original systems. Similar to classical TBR,
the proposed Gramian-based algorithm for TDSs may not pre-
serve system passivity. However, some passivity test and en-
forcement approaches [15, 16] can be incorporated to obtain
passive ROMs.
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Algorithm 1 : TBR of TDSs via Approximate Gramians
1: Input: 𝐴,𝐴𝑑, 𝐵, 𝐶, ℎ
2: Select frequency-sampling points: 𝜔𝑘 (𝑘 = 1 . . .𝑁)
3: Compute 𝑍𝑐 = [𝑧𝑐1, 𝑧𝑐2, . . . , 𝑧𝑐𝑁 ]

where 𝑧𝑐𝑘 = (𝑗𝜔𝑘𝐼 −𝐴−𝐴𝑑𝑒
−𝑗𝜔𝑘ℎ)−1𝐵

4: Compute 𝑍𝑜 = [𝑧𝑜1, 𝑧𝑜2, . . . , 𝑧𝑜𝑁 ]
where 𝑧𝑜𝑘 = (𝑗𝜔𝑘𝐼 −𝐴−𝐴𝑑𝑒

−𝑗𝜔𝑘ℎ)−𝐻𝐶𝑇

5: Compute the Gramians 𝑃 = 𝑍𝑐𝑍
𝐻
𝑐 and 𝑄 = 𝑍𝑜𝑍

𝐻
𝑜

6: Compute Cholesky factors 𝑃 = 𝑋𝑋𝐻 and 𝑃 = 𝑌 𝑌 𝐻

7: Compute SVD of cross factors and partition for truncation

𝑋𝐻𝑌 = 𝑈Σ𝑉 𝑇 = 𝑈

[
Σ1

Σ2

]
𝑉 𝑇

8: Compute the balanced transformation matrices
𝑇𝐿 = Σ−1/2𝑉 𝐻𝑌 𝐻 and 𝑇𝑅 = 𝑋𝑈Σ−1/2

9: Partition the balanced realization according to Step 7

𝐴𝑏 = 𝑇𝐿𝐴𝑇𝑅 =

[
𝐴11 𝐴12

𝐴21 𝐴22

]
, 𝐴𝑑𝑏 = 𝑇𝐿𝐴𝑑𝑇𝑅 =[

𝐴𝑑11 𝐴𝑑12

𝐴𝑑21 𝐴𝑑22

]
, 𝐵𝑏 = 𝑇𝐿𝐵 =

[
𝐵1

𝐵2

]
, 𝐶𝑏 = 𝐶𝑇𝑅 =[

𝐶1 𝐶2

]
10: Truncate the balanced realization to obtain the ROM

𝐴𝑟 = 𝐴11, 𝐴𝑑𝑟 = 𝐴𝑑11 , 𝐵𝑟 = 𝐵1, 𝐶𝑟 = 𝐶1

11: Output: 𝐴𝑟, 𝐴𝑑𝑟, 𝐵𝑟, 𝐶𝑟, ℎ

D. Practical Implementation

In practical implementations, TDSs constructed from an in-
terconnect network connected with MTLs usually have the
state-evolution equations in the form of descriptor systems
(DSs), and the TDSs can have multiple delay terms resulting
from different signal propagation paths. Therefore, the state-
evolution equation (1) becomes

𝐸𝑥̇(𝑡) = 𝐴𝑥(𝑡) +
𝑚∑
𝑖=1

𝐴𝑑𝑖𝑥(𝑡− ℎ𝑖) +𝐵𝑢(𝑡), (24)

where 𝑚 is the number of delay terms. In this situation, the
formulation (20) now changes to

𝑧𝑐𝑘 = (𝑗𝜔𝑘𝐸 −𝐴−
𝑚∑
𝑖=1

𝐴𝑑𝑖𝑒
−𝑗𝜔𝑘ℎ𝑖)−1𝐵, (25a)

𝑧𝑜𝑘 = (𝑗𝜔𝑘𝐸 −𝐴−
𝑚∑
𝑖=1

𝐴𝑑𝑖𝑒
−𝑗𝜔𝑘ℎ𝑖)−𝐻𝐶𝑇 . (25b)

By replacing Step 3 and 4 in Algorithm 1 with (25), we can
perform TBR of TDSs with multiple delays. The accuracy and
efficiency of our proposed algorithm are presented in the ex-
perimental section.

IV. EXPERIMENTAL RESULTS

A. Modeling of TDSs

In this paper we focus on time-delay effects resulting from
MTLs when excited in the high frequency range. The whole
system consists of a linear interconnect network connected
with a set of lossless MTLs. Figure 1 shows the model struc-
ture of TDSs. When the input signal is of high frequency, the

A RLC interconnect network

2 sets of MTLs

+
-

i1

ip

i2

+
-

+
-

v1

vp

v2

Part 1
of the

network

Part 2
of the

network

Part 3
of the

network

Fig. 1. A TDS consisting of a RLC interconnect network connected with two
sets of lossless MTLs

MTLs will have strong coupling effects, i.e., coupled capaci-
tance and inductance between each pair of lossless transmis-
sion lines. These coupled parameters along the MTLs defer the
signal propagation, resulting in the time-delay effects. The de-
tailed procedures to construct the TDSs from a linear intercon-
nect network and a set of lossless MTLs are elaborated in [2],
and the per-unit-length (PUL) parameter matrices of the MTLs
are extracted utilizing the approaches in [17].

The time-delay values in our examples are in the magnitude
of nanoseconds, so the delay effects only occur when the input
signal is beyond GHz. In order to capture such high-frequency
delay effects, we select the sampling points uniformly within
the high-frequency range of interest. The experimental re-
sults are compared with the existing TDS moment-matching
approach [2].

B. Proposed TBR Compared with Moment-Matching Ap-
proach

In the first example, we use a 3-port linear interconnect
network connected with 70 lossless three-conductor transmis-
sion lines to construct an order-1098 TDS. A ROM of order
220 is constructed utilizing the proposed TBR approach. The
TDS Gramians are approximated by using 50 sampling points
distributed uniformly in logarithm scale within the frequency
range of interest, i.e., from 1𝑒6 to 1𝑒12 Hz in our experiments.
We also utilize the moment-matching approach to construct an
order-231 ROM matching the first 77 moments of the original
model, and this ROM uses 2nd-order Taylor expansion to ap-
proximate the delay terms. Figure 2 compares the frequency
response of various ROMs with the original TDS. It is shown
that the time-delay effects occur in the high frequency range,
and the proposed TBR approach provides a much higher accu-
racy than the moment-matching method. Because the sizes of
ROMs from these two approaches are similar, the simulation
speedup is also comparable (about 10x). The time-domain re-
sponse with respect to the input signal 𝑢(𝑡) = sin(2𝜋 × 109𝑡)
(𝑚𝑉 ) is further compared in Figure 3 which also shows that
the TBR approach provides a much higher accuracy than the
moment-matching method.
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Fig. 2. Frequency response of Example 1 and comparison between the
proposed TBR and the moment-matching approach. (a) The magnitude of
transfer function 𝐻(1, 1). (b) Relative error comparison.
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Fig. 3. Time-domain response of output 𝑦(1) in Example 1 and comparison
between the proposed TBR and the moment-matching approach.
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Fig. 4. Frequency response of Example 2 and comparison with various
ROMs. (a) The magnitude of transfer function 𝐻(1, 1). (b) Relative error
comparison.
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Fig. 5. Time-domain response of output 𝑦(1) in Example 2 and comparison
with various ROMs.

C. Proposed TBR Compared with Padé-Approximation Ap-
proach

The proposed TBR approach is a direct TBR of the origi-
nal model. However, one can still perform indirect TBR based
on an equivalent DS constructed via Padé approximation of the
exponential delay terms from the original TDS [18]. The draw-
back of the indirect TBR approach lies in that the resulting DS
is of much higher order than the original TDS (the size of DS
will increase in proportion to the product of the original order,
the number of delay terms, and the Padé-approximation order),
and the nature of Padé approximation further limits its accuracy
performance. The comparison between our proposed direct
TBR and the indirect TBR is shown in the second example. In
this example, we use a 6-port interconnect network connected
with 25 lossless two-conductor transmission lines to construct
a TDS of order 193. An order-22 ROM is constructed utiliz-
ing the proposed TBR approach. The TDS Gramians are ap-
proximated by using 65 sampling points distributed uniformly
in logarithm scale within the frequency range of interest, i.e.,
from 1𝑒6 to 1𝑒12 Hz in our experiments. An order-579 DS is
constructed using 2nd-order Padé approximation of the delay
term, and then an order-188 ROM is obtained via TBR based
on the DS. We also utilize the moment-matching approach to
construct an order-30 ROM matching the first 5 moments of the
original model, and this ROM uses 4th-order Taylor expansion
to approximate the delay term. Figure 4 (a) compares the fre-
quency response of various ROMs with the original TDS. From
the relative-error results plotted in Figure 4 (b), it is seen that
the proposed TBR method provides the best accuracy perfor-
mance among the various MOR approaches. The time-domain
response with respect to the input signal 𝑢(𝑡) = sin(2𝜋×109𝑡)
(𝑚𝑉 ) is also compared in Figure 5 showing that the proposed
TBR provides a higher accuracy than the moment-matching
method and the indirect TBR based on Padé approximation.

D. Comparison of MOR Times

Table I compares the MOR times of the proposed TBR
scheme versus the moment-matching approach and the indi-
rect TBR based on Padé approximation. The tests are per-
formed on a platform of Intel Core 2 Q8400 with 2.66GHz
CPU and 3.25GB RAM. The CPU times show that the effi-
ciency of various MOR schemes is case-dependent. For Ex-
ample 1, though moment-matching approach takes less time
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to construct the ROM, the proposed TBR can provide a much
higher accuracy than the moment-matching method, as shown
in Figure 2 and Figure 3, and the ability to capture the delay ef-
fects is of high importance in TDS modeling. However, the
proposed TBR approach is faster for Example 2, where the
moment-matching approach requires 4th-order Taylor expan-
sion of the delay terms to capture the delay effects well. The
equivalent model before moment matching for Example 2 is 4
times larger than the original TDS [2], making it less efficient
than the proposed TBR approach. The MOR times of Padé-
based TBR are also shown in Table I. The test for Example 1
uses 2nd-order Padé approximation of the delay terms, result-
ing in an order-5490 equivalent DS which is of much higher or-
der than the original TDS. From the results we can see that the
Padé-based method is inaccurate and inefficient, making it in-
feasible for TDS MOR. Therefore, the proposed TBR provides
the best accuracy performance among the various MORs, and it
can even be more efficient than the moment-matching approach
when higher accuracy is required.

TABLE I
COMPARISON OF THE MOR TIMES OF THE PROPOSED TBR ,

PADÉ-BASED TBR, AND THE MOMENT-MATCHING APPROACH (SECONDS)

Proposed TBR Moment Matching Padé TBR
Example 1 71.07 43.51 out of memory

(Order 1098) (Order 220) (Order 231)
Example 2 0.85 1.46 7.59
(Order 193) (Order 22) (Order 30) (Order 188)

V. CONCLUSIONS

In VLSI circuit simulation, it is important to facilitate the
simulation of TDSs when large RLC networks are connected
with delay elements from packages or PCBs. In this paper, we
have presented a TBR-type MOR for TDSs, based on approxi-
mate system Gramians. To the best of our knowledge, it is the
first time to perform model reduction on TDSs via a Gramian-
based approach. The experimental results have shown that the
proposed TBR-type algorithm provides higher accuracy and
comparable efficiency than the conventional moment-matching
methods, making the proposed algorithm suitable for fast sim-
ulation of TDSs.
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