
A Block-Diagonal Structured Model Reduction
Scheme for Power Grid Networks

Abstract—We propose a block-diagonal structured model or-
der reduction (BDSM) scheme for fast power grid analysis.
Compared with existing power grid model order reduction
(MOR) methods, BDSM has several advantages. First, unlike
many power grid reductions that are based on terminal reduction
and thus error-prone, BDSM utilizes an exact column-by-column
moment matching to provide higher numerical accuracy. Second,
with similar accuracy and macromodel size, BDSM generates
very sparse block-diagonal reduced-order models (ROMs) for
massive-port systems at a lower cost, whereas traditional al-
gorithms such as PRIMA produce full dense models inefficient
for the subsequent simulation. Third, different from those MOR
schemes based on extended Krylov subspace (EKS) technique,
BDSM is input-signal independent, so the resulting ROM is
reusable under different excitations. Finally, due to its block-
diagonal structure, the obtained ROM can be simulated very fast.
The accuracy and efficiency of BDSM are verified by industrial
power grid benchmarks.

I. I NTRODUCTION

Power grid analysis has been a major topic in modern VLSI
design. The challenges for power grid analysis mainly stem
from the large problem size and massive port number. A
typical power grid model usually has millions of nodes and up
to thousands of input sources, rendering it extremely difficult
to simulate. During the past decade, numerous efforts have
been made to speed up the analysis and/or simulation of power
grid networks, such as domain decomposition technique [1],
preconditioned Krylov-subspace iterative method [2], random
walk algorithm [3], and multi-grid reduction technique [4].
One issue of these methods is that the computation on the
large model needs to be repeated for different inputs or time
steps.

A viable solution is to approximate the original network
by model order reduction (MOR), and then use the much
smaller model in the subsequent simulation. Popular MOR
algorithms include Krylov-subspace projections [5], [6] and
balanced truncations [7], which have been highly successful
in interconnect macromodeling. Krylov-subspace projections
such as PRIMA [5] have superior efficiency over balanced
truncations. Therefore, they have been modified to reduce
power grid models [8]–[10]. However, the efficiency sig-
nificantly degrades as the port number increases. First, the
MOR cost increases linearly with the port number, making
the computation inefficient. Second, the reduced order model
(ROM) size increases linearly with the port number, resulting
in a quadratic increase on storage cost. Consequently, the
normally large and dense ROMs make the simulation very
inefficient.

To address the problems induced by the large port number,
extended Krylov subspace (EKS [10]) and extended truncated
balance realization (ETBR [11]) treat the product of input
vector and input matrix as a new frequency-dependent “single-
input matrix”, and then reduce a “single-input multi-output”
system. Based on a similar idea, triangularization based struc-
ture preserving MOR (TBS [9]) generates structured ROMs
to further speed up power grid simulation. However, these
methods are highly dependent on the input signals, and the
obtained ROMs can not be reused for different input patterns.
Since there exist some correlations between the input-output
pairs, singular value decomposition (SVD) can be used to
compress the terminals before MOR [12]. Similarly, Ref. [13]
uses frequency-dependent packing to improve the numerical
accuracy; Ref. [14] has proposed decentralized MOR (De-
MOR) for multi-port system reduction. However, the terminal
reduction process is error-prone, because thetrue transfer
matrix moments can not be matched.

In this paper, we present a novel method, called block-
diagonal structured MOR (BDSM), for power grid reduction
subject to the following criteria:

1) The ROMs should be cheap to simulate;
2) The ROMs should be reusable;
3) The MOR accuracy should be comparable to that of

PRIMA.
By BDSM, we get ROMs having the same sizes and similar

accuracy as those from PRIMA. Even more, the models from
BDSM are sparse and block-diagonal, thereby facilitating fast
simulation. Since BDSM does not involve terminal reduction,
it is more accurate over terminal-reduction based MOR. On the
other hand, BDSM is input-independent, so the ROMs can be
reused for different input patterns. Due to their block-diagonal
structure, the ROMs can be efficiently simulated, which allows
for parallel calculations.

II. BACKGROUND

A. Problem Formulation

We consider the modified nodal analysis (MNA) equation
of a power grid network

C
dx(t)

dt
= Gx(t) +Bu(t), y(t) = Lx(t) (1)

where C,G ∈ R
n×n, B ∈ R

n×m, L ∈ R
p×n. The

input vector u(t) normally represents time-varying current
sources from transistor-level circuit blocks; the output vector
y(t) contains the voltage or current variables of interest; the
state vectorx(t) represents nodal voltages and the branch



currents across inductive components. The system matrixC

includes the capacitance and inductance terms;G denotes
the conductance matrix;B and L are the input and output
matrices, respectively.

Provided the matrix pencil(C,G) being regular (i.e.,∃s ∈
C such that(sC−G) is nonsingular), in Laplace domain, the
p×m transfer matrix can be written as

H(s) = L(sC −G)−1B. (2)

In MOR, we attempt to find the left and right projection
matricesW,V ∈ R

n×q with q ≪ n, to construct a small
size-q linear systemΣr : (Cr, Gr, Br, Lr)

Cr

dz(t)

dt
= Grz(t) +Bru(t), yr(t) = Lrz(t) (3)

with Cr = WTCV , Gr = WTGV , Br = WTB and
Lr = LV , such thatHr(s) = Lr(sCr − Gr)

−1Br ≈ H(s)
or yr(s) = Hr(s)u(s) ≈ y(s), subject to some accuracy
requirements.

If W = V , the projection is a congruence transform. For
simplicity, we use congruence transform in this paper. The
projection matrices can be constructed by (rational) Krylov
subspace moment matching [5], [6], [15] or balanced trunca-
tions (BT) [7]. Although BT approaches may providea priori
error estimation, they become inefficient for such large-scale
systems as power grid networks whose problem sizes may
be in the millions. Therefore, Krylov-subspace projections are
discussed in this paper.

B. Problems with Existing Krylov Subspace Projection

Given a matrixM and (block) vectorR with compatible
sizes, anl-th order (block) Krylov subspaceKl(M,R) is the
space spanning the range of a set of (block) vectors, i.e.,

Kl(M,R) = {R,MR,M2R, · · · ,M l−1R}.

By (block) Arnoldi algorithm [5], the projection matrices are
constructed as

W = V = Kl{(s0C −G)−1C, (s0C −G)−1B} (4)

with s0 being a specific expansion point. Then a size-q ROM
with q = ml can be constructed, such thatHr(s) matches the
first l moments ofH(s) around the expansion points0, i.e.,

H(s) = Hr(s) +O
(

(s− s0)
l
)

. (5)

If the input signals are distributed in a wide frequency band,
multi-point Krylov-subspace projection may be used to im-
prove the accuracy [15]. We proceed with single-point projec-
tion, and the multi-point scheme straightforwardly follows.

The standard projections have some problems when applied
to power grid networks. First, the obtained ROMs are not
efficient for computer-aided simulation. Since the ROM sizeq

increases linearly with the port numberm, it is clear that the
ROM size can be very large. Since the ROM’s matrices from
standard projections are normally dense, storing the ROMs
becomes challenging for a general PC, let alone simulating
the ROM. Second, the cost of projection matrix constructionis

high for large many-port systems. To construct the projection
matrix in (4), we need to performml(ml−1)

2 steps of long-
vector orthonormalization, whose cost quadratically increases
with m. Therefore, standard moment-matching based projec-
tion would be inefficient for power grid reduction.

Some modifications have been made for MOR of power
grid networks. These approaches are mainly based on terminal
reduction [12]–[14] or ideas similar to extended Krylov-
subspace projection [9]–[11]. The former captures the mo-
ments of a low-rank approximated transfer matrix [12]–
[14], rather than the original one. Therefore, essentiallythe
model compactness is obtained at the cost of model accuracy.
EKS, ETBR and TBS generate compact ROMs via moment
matching of the output response under a predefined input
excitation [9]–[11]. However, due to their strong dependency
on input signal waveforms, the ROMs need to be rebuilt every
time as the excitation vector changes. Since the cost in MOR
is much more expensive over simulating a ROM, this kind of
approaches may be inefficient for power grid analysis if we
need to simulate the response under different excitations.

III. BDSM SCHEME

This section presents the proposed BDSM algorithm to
generate block-diagonal structured ROMs for power grid
networks. We first decompose the original MIMO (multi-
input multi-output) system intom MIMO subsystems (each
with a p × m transfer matrix), via input matrix splitting.
Then, we show that the Krylov-subspace projection matrix
of each MIMO subsystem is in fact identical to that of
a SIMO (single-input multi-output) subsystem. To matchl
moments, the proposed method generates anml × ml ROM
as by PRIMA. However, the resulting ROM’s system matrices
only containm blocks in the diagonal, with each one being
a small l × l matrix. This structure makes the subsequent
simulation highly efficient. For simplicity, we only discuss
the projection at a single point, and the multi-point projection
follows analogously.

A. Input Matrix Splitting

Denoting thei-th column ofB ∈ R
n×m by bi, the input

matrix can be splitted tom rank-1 matrices, i.e.,

B =
m
∑

i=1

Bi, with Bi ∈ R
n×m, Bi(:, j) =

{

bi, if i = j

0, if i 6= j

(6)
for i, j = 1, 2, · · · ,m. Here Bi(:, j) denotes thej-th
column vector ofBi. The linear time-invariant (LTI) system
(C,G,Bi, L) is called asplitted system, denoted byΣi. Σi’s
transfer matrix is written asHi(s) = L(sC −G)Bi. Clearly,
the original transfer matrixH(s) can be rewritten as

H(s) =

m
∑

i=1

Hi(s). (7)

Subsequently, the original network can be reformulated as the
parallel connectionof Σi

′s, and then realized by a size-mn



model (C, G, B, L):

C =







C

.. .
C






, G =







G

. . .
G







B =
[

BT
1 · · · BT

m

]T
, L =

[

L · · · L
]

.

(8)

This larger-size block-diagonal system is an equivalent model
of the original power grid network. Note thatHi(s) is ap×m

matrix with only one column vector (thei-th column) being
non-zero, which is identical to thei-th column ofH(s).

Generally, if we attempt to match the firstl moments of a
generalm-port size-mn model via standard Krylov subspace
projection such as PRIMA [5] at a single expansion point,
a size-ml ROM would be generated. During the projection,
the block-diagonal structure would be destroyed and a dense
ROM would be produced, which makes the ROM-based
simulation very inefficient. Additionally, reducing a size-mn

linear system is normally much more expensive over reducing
a size-n system, since more calculations are needed in the
LU decomposition, linear system solution and Gram-Schmidt
orthonormalization. In BDSM, we aim to keep the block-
diagonal structure of (8) such that the storage and calculations
could be much cheaper in the subsequent simulation steps.
We also expect the MOR cost to becheaper than traditional
projection frameworks on (1). More importantly, the resulting
ROM is expected to bereusable for repeated simulation under
varying input patterns.

To proceed, we consider thei-th splitted systemΣi. Ex-
cited by the input vectoru(s), the output vector isyi(s) =
Hi(s)u(s), and it can be rewritten as

yi(s) = L(sC −G)−1Biu(s) = L(sC −G)−1biui(s) (9)

since Bi has only one nonzero vector in thei-th column.
Here,ui(s) denotes thei-th input scalar. This reformulation
shows thatyi(s) is only dependent on the inputui, andBi

shields the effects induced by other input signals, although
the splitted systemΣi hasm input ports. Sincey(s) is the
sum of yi(s) for i = 1, · · · , m, the above input matrix
splitting is physically equivalent to decomposing the output
response intom independent components, with each excited
by a single input signal. This property in fact allows for a
block-diagonal structure-preserving reduction for model(8),
at a lower computational cost over PRIMA.

B. Block-Diagonal Structured Projection

Unlike traditional projection reduction methods that directly
match the moments ofH(s), BDSM uses anindirect moment
matching. Specifically, the ROM of each splitted modelΣi,
denoted byΣir, is built such that its transfer matrixHir(s)
matches the firstl moments ofHi(s), and then all reduced
models are parallely connected to approximate the original
linear network (1).

Let us consider the splitted modelΣi : (L,C,G,Bi). At
a single expansion points0, a projection matrix spanning the

l-th order block Krylov subspace can be constructed:

V (i) = Kl{(s0C −G)−1C, (s0C −G)−1Bi}. (10)

Then the ROM ofΣi, denoted byΣir : (Cir, Gir, Bir, Lir),
can be constructed by the congruence transform

Cir = (V (i))TCV (i), Gir = (V (i))TGV (i),

Bir = (V (i))TBi andLir = LV (i).
(11)

It can be proved that the ROM’s transfer matrixHir matches
the first l moments ofHi(s), i.e.,

Hir(s) = Lir(siCir −Gir)
−1Bir = Hi(s)−O

(

(s− s0)
l
)

(12)
SinceBi ∈ R

n×m, it seems thatV (i) is an×ml matrix and
the size of the ROMΣir would beml. But it is not the case.
By noting thatBi has only one nonzero vectorbi as its i-th
column, it is straightforward to prove

V (i) = Kl

{

(s0C −G)−1C, (s0C −G)−1bi
}

∈ R
n×l (13)

provided that no vectors are deflated in the orthonormalization
steps.Therefore,V (i) is in fact an× l projection matrix, and
Σir is a very small size-l ROM, althoughΣi is an MIMO
system.

After computing the projection matrix for each splitted sys-
temΣi, a projection matrix can be constructed for model (8).
Using the congruence transformCr = VT CV, Gr = VTGV,
Br = VTB and Lr = LV , the system matrices of the final
ROM of (8) [denoted byΣr, which is also the final ROM of
(1)], can be decided as

Cr = blkdiag(C1r, · · · , Cmr) , Gr = blkdiag(G1r, · · · , Gmr)

Br =







B1r

...
Bmr






= blkdiag

(

(V (1))T b1, · · · , (V
(m))T bm

)

andLr = LV, where V = blkdiag
(

V (1), · · · , V (m)
)

.

(14)
Here “blkdiag” denotes the Matlab function that constructsa
block-diagonal matrix from the input arguments. It is clearly
shown that the final size-ml ROM is block-diagonal structured.
All diagonal blocks ofCr andGr (i.e., Cir andGir for i =
1, · · · , m) are smalll× l matrices. Thei-th block ofBr (i.e.,
Bir) contains only one nonzero vector as itsi-th column.

From (14) and (12), the transfer matrix ofΣr can be written
as

Hr(s) =

m
∑

i=1

Hir(s) = H(s)−O
(

(s− s0)
l
)

. (15)

Therefore,Hr(s) matches the firstl moments ofH(s), and
BDSM has similar accuracy to PRIMA [5]. In PRIMA, the first
l moments ofH(s) are matched in a matrix format. However,
in BDSM, eachp×m transfer matrixHir(s) captures the first
l moments ofH(s)’s i-th column. Consequently, their sum,
Hr(s), capturesH(s)’s first l moment matrices in acolumn-
by-column style, as illustrated in the BDSM flow of Fig 1.



H(s)


H
1
(s)


H
i
(s)


H
m
(s)


H
1r
(s)


H
ir
(s)


H
mr
(s)


+ =

H
r
(s)


non-zero vector

in 
H
i
(s) 
or
 H(s)


zero vector in

H
i
(s)
 or 
H
ir
(s)


non-zero vector

in 
H
ir
(s) 
or
 H
r
(s)


MOR


MOR


MOR


.
.
.



.
.
.



...
 ...


...
 ...


...
 ...


...
 ...


...
 ...


...
 ...


...
 ...


...
 ...


Input matrix splitting


Parallel

connection


Fig. 1. The BDSM model reduction scheme for a linear network withm input
ports, which is based on column-by-column moment matching. Afterinput
matrix splitting, the original model is decomposed intom MIMO subsystems.
Then using the projection process,Hir(s) captures the firstl moments of
H(s)’s i-th column. Finally, the parallel connection of all ROMs guarantees
the preservation ofH(s)’s first l moments.

The detailed implementation is presented in Algorithm 1.
Assume that no vectors are deflated in the Krylov subspace
projection. To matchl moments for a system withm inputs,
BDSM and PRIMA both need one sparse LU factorization,
l − 1 multiplications of sparse matrices and block vectors,
and l steps of backward plus forward substitutions. The cost
difference comes from the orthonormalization process (cf.Step
4 of Algorithm 1). In PRIMA, all nl column vectors need
to be orthonormalized, which costsml(ml−1)

2 long vector-
vector production. While in BDSM algorithm, the vectors are
clustered intom groups, and then each group of vectors are or-
thonormalized separately. Consequently, BDSM only requires
ml(l−1)

2 vector-vector production in the orthonormalization
step. For many-terminal large-scale systems, the computational
savings of BDSM can be very remarkable. An explanation of
the cluster-and-orthonormalization flow is given in Fig 2.

Algorithm 1 Block-diagonal structured MOR (BDSM)

1: Input: C,G ∈ R
n×n, B ∈ R

n×m,L ∈ R
p×n, and l

2: Perform LU factorization:LU = (s0C − G), calculate
X = U−1(L−1B), and normalize each column ofX

3: SetV (i) = X(:, i) for i = 1, · · · , m
4: for j = 1, · · · , l − 1 do

4.1 calculateXtemp= CX andX = U−1(L−1Xtemp)
4.2 for j = 1, · · · , l − 1 do

orthonormalizeX(:, i) to all columns ofV (i) to get x̄i,
updateV (i): V (i) =

[

V (i), x̄i

]

5: Construct the reduced model forΣi as in (11) fori = 1,
· · · , m, and then form the reduced model of (1) by (14)

6: Output: ROM matricesCr, Gr, Lr andBr.

Next, we contrast the resulting ROMs. PRIMA generate
dense ROMs withO(m2l2) nonzeros, while onlyml2 nonzero
entries need to be stored in a BDSM ROM. Whenm becomes
large, the ROMs by BDSM would be very sparse (with1

m

sparsity). The resulting sparse and block-diagonal structured
ROMs would significantly facilitate numerical simulation.To
simulate the ROM from PRIMA,O(m3l3) cost is required,
whereas onlyO(ml3) flops are needed for the BDSM ROM.
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Fig. 2. Projection matrix construction in BDSM . In this figure, Mj =
(

(s0C −G)−1C
)j−1

(s0C −G)−1B, j = 1, · · · , l. The i-th columns of
Mj ’s are grouped to form̄Vi (i = 1, · · · ,m). And thenVi is computed such
thatVi = V̄i, for i = 1, · · · , m. Note that, in PRIMA the projection matrix
for (1) is constructed without clustering, such thatV = span{M1, · · · ,Ml}
with more computational cost.

TABLE I
COMPARISON OF VARIOUS MULTI-PORTMOR SCHEMES. IN SVDMOR,α

REPRESENTS THE PORT COMPRESSION RATIO.

MOR ROM ROM Matched ROM ROM
method size pattern moments reusable? scalable?
BDSM ml block-diagonal l yes yes
PRIMA ml full dense l yes no

SVDMOR αml full dense N/A yes no
EKS l full dense N/A no no

C. Comparison with Existing Power Grid MORs

Table I compares BDSM with some typical massive-port
MOR schemes: EKS [10], PRIMA [5], and SVDMOR [12]
(a typical MOR based on terminal reduction). In SVDMOR,
we assume that the port compression ratio isα (i.e., the ratio
of port number after terminal reduction w.r.t. the originalport
number), and thenl moments of the “thin” transfer matrix is
matched; in EKS, it is assumed that the firstl moments of the
response under apredefinedexcitation are captured. In SVD-
MOR and EKS, the “true” moments ofH(s) are not captured,
so they arenot exact moment matching schemes. Among
these approaches, PRIMA and SVDMOR generate full dense
matrices, which are expensive for subsequent frequency/time-
domain simulation. Although SVDMOR can compress the
port size to some extent (at the cost of accuracy sacrifice),
the obtained dense-matrix ROMs are still memory- and time-
consuming for many-terminal systems. And when the input-
output correlation is not strong, large errors may be induced by
the terminal reduction process. EKS is capable of generating
very small (size-l) macromodels, but the resulting ROMs
are not reusable. These problems lead to remarkable effi-
ciency degradation in ROM-based simulation. Compared with
these existing MORs, BDSM does not have these limitations,
thereby allowing for more efficient simulation of massive-port
networks. We remark that EKS ROM is very inaccurate under
varying input patterns, due to its strong dependency on the
predefined input waveforms. To increase its accuracy, more
moments of the response should be captured. However, as will
be shown in Section IV, EKS is not comparable with PRIMA
and BDSM in terms of accuracy, even if the ROM size is
increased toml, at a cost similar to that of PRIMA.
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Fig. 3. The RLC model of a power grid network, with consideration of
package inductance.

D. Application Issues

BDSM can be directly used for fast power grid analysis,
or interconnected system-level simulation whenH(s) is not
the admittance/impedance matrix. Theoretically, the resulting
ROM may be non-passive, but fortunately the possible passiv-
ity violation is normally very weak due to the high accuracy of
BDSM. If H(s) represents the impedance/admittance parame-
ters and the resulting ROM is non-passive, some modifications
are needed before system-level simulation (e.g., when the
ROM is connected to other networks (e.g. package) for IR-
drop or package resonance analysis).

One solution is to incorporate other passive networks (e.g.,
a package model) with the power grid network (as shown in
Figure 3), and then reduce the whole RLC model by BDSM.

Another solution is to perform passivity enforcement [16]
after detecting the possible non-passive regions [17] in the
frequency band(s) of interest. Due to the block-diagonal struc-
ture, passivity verification and enforcement can be finishedat
a low cost. We assume thatΣr is obtained by single-point
projection thus the size ofΣir is l, thenΣir can be transformed
to a standard state-space modelΣs

ir: (I, Gs
ir, Bs

ir, Lir) at the
cost of O(l3). An eigenvalue decomposition can be further
performed onGs

ir at a cost ofO(l3)

Gs
ir = XiΛiX

−1
i (16)

whereΛi is a diagonal matrix. ThenΣir can be realized by
(I, Λi, X

−1
i Bs

ir, LirXi), which is a diagonal-structured LTI
system. Finally, the passivity test and enforcement can be sim-
plified via Laguerre’s method at the cost of onlyO(q2) [18],
which is negligible compared to the cost of BDSM.

IV. N UMERICAL RESULTS

We use several industrial power grid benchmarks to verify
the proposed scheme. As shown in Fig. 3, the power grid and
package are connected and modeled as a whole large-scale
linear circuit including resistance, capacitance and inductance.
Time-varying current sources are used to describe the behavior
of active circuit blocks. The MNA LTI models are extracted
from some industrial SPICE netlists. All experiments are
performed on a 2.6GHz 4-GB RAM Linux workstation.

We begin by timing different MOR schemes using single-
point moment matching on5 RLC power grid benchmarks
(ckt1-ckt5 in Table II). The port numbers range from several
tens to over1k; and the node numbers are from6k to 1.7M.

Fig. 4. The matrix structures of ckt1’s ROMs, obtained from BDSM and
PRIMA, respectively.

For simplicity, all ports are assumed to be excited by unit-
impulse signals in EKS [9]; in SVDMOR,α is set around0.6
for all examples. Specifically,H(s) is first approximated by
UT
l H(s)Ur with H(s) ∈ C

p̂×m̂, p̂ = [αp] andm̂ = [αm] [12],
and then the “thiner” LTIH(s) is reduced by PRIMA. Since
sparse LU may still introduce large amounts of nonzero
elements for some cases, this factorization is skipped in ckts3-
5 to save memory, at the cost of more simulation time.

The CPU times and resulting ROM sizes are listed in Ta-
ble II. With the same number of moments matched, BDSM and
PRIMA generate ROMs with the same size. Since much fewer
long-vector orthonormalizations are needed, BDSM is faster
than PRIMA, and this speedup becomes more remarkable as
the problem size and port number increase. In SVDMOR,
although the terminals can be reduced to some extent, it
still needs more orthonormalization steps and thus is slower
than BDSM in many-terminal cases (cf. ckts3-4). Even more,
PRIMA and SVDMOR may fail in very-large-size many-port
cases (cf. ckts4-5). This is because: 1) the resulting full-dense
ROMs of PRIMA and SVDMOR can be memory-consuming
in many-port cases; 2) the “fat” projection matrixV (∈ R

n×ml

or R
n×[αm]l) is also dense and even more CPU-consuming.

While in BDSM the projection matrixV (i) for each splitted
system is very thin, and the final sparse block-diagonal ROM
is cheap to store. To illustrate this, Fig. 4 has compared the
ROM matrix structures of ckt1, from BDSM and PRIMA,
respectively. Due to the special structure ofGr, Cr andBr,
the subsequent simulation can be very fast. For example, if
m = 1000, the BDSM ROM is expected to enjoy a106×
speedup over PRIMA ROM in the subsequent simulation. EKS
is the fastest one among these schemes. However, the EKS
ROM need to be rebuilt each time when the input pattern
changes, making the simulation very inefficient in practice.
Furthermore, it is also difficult toexactly predict the input
signals of a power grid network, whereas inexactly modeled
inputs may make the EKS ROM unreliable. Therefore, a
reusable ROM is preferred for repeated circuit simulation.
As shown by Table II, BDSM provides the best numerical
efficiency among those reusable power grid MOR schemes.

Fig. 5 has plotted the transfer function of port(1,2) for ckt1.
In EKS, all inputs are set as unit impulse signals. For fairness,
6 moments are matched in all MOR schemes. EKS’s size-
6 ROM has very low accuracy. Then we construct a larger



TABLE II
CPU TIMES (IN SECOND) OF VARIOUS MOR SCHEMES.

ckt node port number
PRIMA [5] SVDMOR [12] (α = 0.6) EKS [10]1 BDSM No. of

MOR time ROM size MOR time ROM size MOR time ROM size MOR time ROM size
matched
moments

ckt1 6k 51 29.37 306 35.60 180 0.30 6 8.18 306 6

ckt2 20k 108 5.0 × 103 1080 1.4 × 103 640 15.4 10 3.7 × 103 1080 10

ckt3 80k 204 1.2 × 104 2040 1.0 × 104 1220 17.7 10 7.1 × 103 2040 10

ckt4 123k 315 break down N/A break down N/A 39.8 8 2.6 × 104 2520 8

ckt5 1.7M 1429 break down N/A break down N/A 610 10 5.9 × 104 14290 10

1 The EKS ROMs arenot reusable.
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Fig. 5. Accuracy comparison of various MORs for ckt1.

EKS ROM by matching306 moments of the response, which
costs 36sec for ckt1. However, the size-306 EKS ROM is
still very inaccurate. This is not surprising, because the EKS
ROM constructed under a specific excitation is not reusable
for new input patterns. Fig. 5 has also plotted the relative
errors of these MOR schemes. PRIMA and BDSM have very
high accuracy (relative error< 10−6 for ω < 1010 rad/s),
due to theirexact moment matching properties. The error of
SVDMOR is several orders larger than BDSM and PRIMA,
due to the error-prone terminal reduction.

V. CONCLUSION

This paper has proposed a novel MOR scheme, BDSM,
highly applicable to multi-port systems such as power grid
networks. BDSM has similar accuracy to PRIMA due to
the same number of matched moments; yet it is faster and
more memory-efficient over PRIMA (and SVDMOR in many-
terminal cases) in model generation, since lots of long-vector
orthonormalizations are skipped. Unlike EKS and TBS, be-
cause BDSM is input-independent, the obtained ROMs are
reusable for time/frequency-domain analysis under varying
input patterns. More importantly, BDSM ROMs have block-
diagonal structures, thereby allowing for very fast subsequent
simulation. The efficiency and accuracy of BDSM have been
verified by industrial benchmarks.
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