A Block-Diagonal Structured Model Reduction
Scheme for Power Grid Networks

Abstract—We propose a block-diagonal structured model or-  To address the problems induced by the large port number,
der reduction (BDSM) scheme for fast power grid analysis. extended Krylov subspace (EKS [10]) and extended truncated
Compared with existing power grid model order reduction pa1ance realization (ETBR [11]) treat the product of input

(MOR) methods, BDSM has several advantages. First, unlike t di t matri f d dent “sinal
many power grid reductions that are based on terminal reduction Vector and input matrix as a new frequency-cependent sing

and thus error-prone, BDSM utilizes an exact column-by-column input matrix”, and then reduce a “single-input multi-outpu
moment matching to provide higher numerical accuracy. Second, system. Based on a similar idea, triangularization based-st
with similar accuracy and macromodel size, BDSM generates tyre preserving MOR (TBS [9]) generates structured ROMs
very sparse block-diagonal reduced-order models (ROMS) for 14 frther speed up power grid simulation. However, these
massive-port systems at a lower cost, whereas traditional al- . . .
gorithms such as PRIMA produce full dense models inefficient methods are highly dependent on the !nput S|gnals, and the
for the subsequent simulation. Third, different from those MOR ~ Obtained ROMs can not be reused for different input patterns
schemes based on extended Krylov subspace (EKS) techniqueSince there exist some correlations between the inputdbutp
BDSM s input-signal independent, so the resulting ROM is pairs, singular value decomposition (SVD) can be used to
rgusable under different excitations. Finally, _due to its block- compress the terminals before MOR [12]. Similarly, Ref.][13
diagonal structure, the obtained ROM can be simulated very fast. . - .
The accuracy and efficiency of BDSM are verified by industrial uses frequency-dependent packing to |mpr0\_/e the numerical
power grid benchmarks. accuracy; Ref. [14] has proposed decentralized MOR (De-
MOR) for multi-port system reduction. However, the terntina
I. INTRODUCTION reduction process is error-prone, because ttle transfer
matrix moments can not be matched.

Power grid analysis has been a major topic in modern VLSl In this paper, we present a novel method, called block-
design. The challenges for power grid analysis mainly stegiagonal structured MOR (BDSM), for power grid reduction
from the large problem size and massive port number. fubject to the following criteria:
typical power grid model usually has millions of nodes and up 1) The ROMs should be cheap to simulate;
to thousands of input sources, rendering it extremely diffic  2) The ROMs should be reusable;

to simulate. During the past decade, numerous efforts haves) The MOR accuracy should be comparable to that of
been made to speed up the analysis and/or simulation of power pR|MA.

grid netyv_orks, such as domain c_Jecor_nposition technique [1],By BDSM, we get ROMs having the same sizes and similar

preconditioned Krylov-subspace iterative method [2].d@n o0 racy as those from PRIMA. Even more, the models from

walk _algonthm [3], and mult|-gr|d reduction technlque [4] BDSM are sparse and block-diagonal, thereby facilitatamg f

One issue of these methods is that the computation on §ig, jation. Since BDSM does not involve terminal reduction

large model needs to be repeated for different inputs or UY8s more accurate over terminal-reduction based MOR. @n th

steps. o . o other hand, BDSM is input-independent, so the ROMs can be
A viable solution is to approximate the original networkeysed for different input patterns. Due to their blockgdiaal

by model order reduction (MOR), and then use the muchctyure, the ROMs can be efficiently simulated, whichvedio
smaller model in the subsequent simulation. Popular MGG, parallel calculations.

algorithms include Krylov-subspace projections [5], [6]da

balanced truncations [7], which have been highly succéssfu Il. BACKGROUND

in interconnect macromodeling. Krylov-subspace proggti A. Problem Formulation

such as PRIMA [5] have superior efficiency over balanced \ve consider the modified nodal analysis (MNA) equation
truncat|0n_s. Therefore, they have been m0d|f|_e(_1I to re(_jugpa power grid network

power grid models [8]-[10]. However, the efficiency sig-

nificantly d(_egrades as the port number increases. First,_ the CdL(t) = Gz(t) + Bu(t), y(t) = Lax(t) (1)
MOR cost increases linearly with the port number, making dt

the computation inefficient. Second, the reduced order inod¢éhere C,G € R™"*" B € R"*™ [ € RP*™ The
(ROM) size increases linearly with the port number, resglti input vector «(¢) normally represents time-varying current
in a quadratic increase on storage cost. Consequently, dueirces from transistor-level circuit blocks; the outpatter
normally large and dense ROMs make the simulation vegyt) contains the voltage or current variables of interest; the
inefficient. state vectorz(t) represents nodal voltages and the branch



currents across inductive components. The system matrixhigh for large many-port systems. To construct the prapecti
includes the capacitance and inductance terfisdenotes matrix in (4), we need to perforrﬁ% steps of long-
the conductance matrix3 and L are the input and output vector orthonormalization, whose cost quadratically éases
matrices, respectively. with m. Therefore, standard moment-matching based projec-
Provided the matrix pencilC, G) being regular (i.e.s € tion would be inefficient for power grid reduction.
C such that(sC' — G) is nonsingular), in Laplace domain, the Some modifications have been made for MOR of power
p x m transfer matrix can be written as grid networks. These approaches are mainly based on tdrmina
1 reduction [12]-[14] or ideas similar to extended Krylov-
H(s) = L(sC = G)7'B. 2) subspace projection [9]-[11]. The former captures the mo-
In MOR, we attempt to find the left and right projectionments of a low-rank approximated transfer matrix [12]-
matricesW,V € R" 49 with ¢ < n, to construct a small [14], rather than the original one. Therefore, essentitily

sizeq linear system¥,. : (C,, G, B,., L,.) model compactness is obtained at the cost of model accuracy.
dz(1) EKS, ETBR and TBS generate compact ROMs via moment
C, = G,z(t) + Byu(t), wy.(t)=L.2(t) (3) matching of the output response under a predefined input

dt excitation [9]-[11]. However, due to their strong depergen
with G, = WTCV, G, = W'GV, B, = WTB and on input signal waveforms, the ROMs need to be rebuilt every
L, = LV, such thatH,(s) = L,(sC, — G,)"'B, ~ H(s) time as the excitation vector changes. Since the cost in MOR
or y.(s) = H,(s)u(s) ~ y(s), subject to some accuracyjs much more expensive over simulating a ROM, this kind of
requirements. approaches may be inefficient for power grid analysis if we

If W =V, the projection is a congruence transform. Fafeed to simulate the response under different excitations.
simplicity, we use congruence transform in this paper. The

projection matrices can be constructed by (rational) Krylo 1. BDSM SCHEME

s_ubspch%Ee '?or:\??]t ma;cgjll_wg [5], [6]h [15] or balapé:ed_ m_mca'This section presents the proposed BDSM algorithm to
tions ( t')[ ].' t ﬁugb app'roagl es mfay provt: IEp”O” generate block-diagonal structured ROMs for power grid
error estimation, they become inefficient for such largaiesc networks. We first decompose the original MIMO (multi-

sys_tems as power grid networks whose p“’b'e”? SIZes n]ﬂ}ﬂut multi-output) system intan MIMO subsystems (each
be in the millions. Therefore, Krylov-subspace projecsi@ne with a p x m transfer matrix), via input matrix splitting.

discussed in this paper. Then, we show that the Krylov-subspace projection matrix

B. Problems with Existing Krylov Subspace Projection of each MIMO subsystem is in fact identical to that of
Given a matrix M and (block) vectorR with compatible a SIMO (single-input multi-output) subsystem. To match

sizes, an-th order (block) Krylov subspack;(M, R) is the moments, the proposed method generatesnan m! ROM

space spanning the range of a set of (block) vectors, i.e., as by PRIMA' HOWEVEF the regultmg ROM’S system matn_ces
only containm blocks in the diagonal, with each one being

Ki(M,R) = {R,MR, M*R,--- ,M'"'R}. a smalll x [ matrix. This structure makes the subsequent
simulation highly efficient. For simplicity, we only discais
the projection at a single point, and the multi-point préjat
follows analogously.

By (block) Arnoldi algorithm [5], the projection matricesea
constructed as

W=V =K{(s0C - G)'C,(s0C —G)"'B} (4) _ -
A. Input Matrix Splitting
with sy being a specific expansion point. Then a sjzZROM

with ¢ = ml can be constructed, such thdi.(s) matches the
first | moments ofH (s) around the expansion poiag, i.e.,

H(S) :HT(S)—FO((S—SO)I) (5) B:ZBia with Bi ERnxm, Bz(,j) _ {Zu;f Z:J
, , if i
If the input signals are distributed in a wide frequency hand i=1 i7 J(6)
multi-point Krylov-subspace projection may be used to irqror ij = 1, 2, ---,m. Here Bi(,j) denotes thej-th
prove the accuracy [15]. We proceed with single-point F’mjecolur’nn vectér oi‘Bi. The linear time-7invariant (LTI) system
tion, and the multi-point scheme straightforwardly follw (C,G, Bi, L) is called asplitted systemdenoted byS,. $.'s
The stand_ard projections_have some p_roblems when appl{?fnsf’er r7natrix is written adl;(s) = L,(sC — G)B;. Clearly,
to power grid networks. First, the obtained ROMs are n%e original transfer matrid/ (s) can be rewritten as
efficient for computer-aided simulation. Since the ROM sjze

increases linearly with the port number, it is clear that the e

ROM size can be very large. Since the ROM’s matrices from H(s) = Z Hi(s). @)
standard projections are normally dense, storing the ROMs =1

becomes challenging for a general PC, let alone simulatiSgibsequently, the original network can be reformulatedhas t
the ROM. Second, the cost of projection matrix construcison parallel connectionof ¥;’s, and then realized by a sizen

Denoting thei-th column of B € R™*™ by b;, the input
matrix can be splitted ten rank-l matrices, i.e.,



model (C, G, B, L): I-th order block Krylov subspace can be constructed:

C G VO = K{(s0C — G)7'C, (s0C — G) ' Bi}. (10)
C= , = Then the ROM ofy;, denoted byY;, : (Cyy, Gy, Bir, Liy),
C G ®) can be constructed by the congruence transform
B=[Bf - BY|", £=[L - LJ. Cir = (VONTOVO, G\ = (VOTGV ), a
This larger-size block-diagonal system is an equivalendeho By, = (V)"B; andLi, = LV©.

of the original power grid network. Note thé;(s) is apxm |t can be proved that the ROM's transfer matfi, matches

matrix with only one column vector (theth column) being the firstl moments ofH;(s), i.e.,

non-zero, which is identical to theth column of H (s). . .
Generally, if we attempt to match the filsmoments of a Hip(s) = Lir(siCir — Gir) " Bir = Hi(s) — O ((s — s0)')

generalm-port sizemn model via standard Krylov subspace e @ i ) (12)

projection such as PRIMA [5] at a single expansion poinpinC€B: € R™*™, it seems that’'*) is an x ml matrix and

a sizeml ROM would be generated. During the projectionthe size of the ROME;,. would beml. But it is not the case.

the block-diagonal structure would be destroyed and a derf noting that3; has only one nonzero vectér as itsi-th
ROM would be produced, which makes the ROM-baséf!Umn, itis straightforward to prove
simulation very inefficient. Additionally, reducing a sizen v =, {(s0C — G)7'C, (soC — G)_lbi} e R (13)
linear system is normally much more expensive over reducing ) o
a sizen system, since more calculations are needed in tREOVided that no vectors are deflated in the orthonormatiaat
LU decomposition, linear system solution and Gram-Schmigieps Therefore,V'") is in fact an x I projection matrix, and
orthonormalization. In BDSM, we aim to keep the blockZir iS @ very small sizé-ROM, althoughX; is an MIMO
diagonal structure of (8) such that the storage and calonkt SYyStem. _ o _ _
could be much cheaper in the subsequent simulation stepg?fter computing the projection matrix for each splitted sys
We also expect the MOR cost to Ioheaper than traditional €M, & projection matrix can be constructed for model (8).
projection frameworks on (1). More importantly, the remgt Using the congruence transfor6y. = VTCV,.GT = VTQV_,
ROM is expected to beeusable for repeated simulation underBr = V'B and L, = LV, the system matrices of the final
varying input patterns. ROM of (8) [den_oted by2,., which is also the final ROM of
To proceed, we consider theth splitted systens;. Ex- (1], can be decided as

cited by the input vector(s), the output vector ig;(s) = ¢, = blkdiag(Ci,, - ,Cpy), G, = blkdiag(G1,,- -+, Gpr)

H;(s)u(s), and it can be rewritten as By

yi(s) = L(sC — G) "' Byu(s) = L(sC — G)'bui(s) (9) Br=| 1 |= bIkdiag((V(l))Tbl, Sh (v<m>)Tbm)
since B; has only one nonzero vector in theth column. Buny
Here, u;(s) denotes the-th input scalar. This reformulation and,, = £V, where V = blkdiag (V(l), e ,V(m)) .
shows thaty;(s) is only dependent on the input;, and B; (14)

shields the effects induced by other input signals, althougiere “blkdiag” denotes the Matlab function that construats
the splitted systent; hasm input ports. Sincey(s) is the block-diagonal matrix from the input arguments. It is clgar

sum of y;(s) for i = 1, ---, m, the above input matrix shown that the final sizexl ROM is block-diagonal structured.
splitting is physically equivalent to decomposing the atitp All diagonal blocks ofC, and G, (i.e., C;, and G;,. for i =
response inton independent components, with each excited ... ) are small x [ matrices. The-th block of B, (i.e.,
by a single input signal. This property in fact allows for &3;,) contains only one nonzero vector asit column.
block-diagonal structure-preserving reduction for mo(®)| From (14) and (12), the transfer matrix Bf. can be written
at a lower computational cost over PRIMA. as
m
B. Block-Diagonal Structured Projection H,(s) = Z H;.(s) = H(s)— O ((5 _ so)l) . (15)
=1

Unlike traditional projection reduction methods that dthg
match the moments dff (s), BDSM uses arndirect moment Therefore, H,.(s) matches the first moments ofH (s), and
matching. Specifically, the ROM of each splitted modg}, BDSM has similar accuracy to PRIMA [5]. In PRIMA, the first
denoted byX;,, is built such that its transfer matrikl;,.(s) [ moments ofH (s) are matched in a matrix format. However,
matches the first moments ofH;(s), and then all reduced in BDSM, eachp x m transfer matrixH;,.(s) captures the first
models are parallely connected to approximate the origiframoments ofH (s)'s i-th column. Consequently, their sum,
linear network (1). H,(s), capturesH (s)’s first | moment matrices in aolumn-

Let us consider the splitted mod&); : (L,C,G, B;). At  by-column style, as illustrated in the BDSM flow of Fig 1.
a single expansion poiny, a projection matrix spanning the
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Fig. 1. The BDSM model reduction scheme for a linear network witinput
ports, which is based on column-by-column moment matching. Afteut
matrix splitting, the original model is decomposed intoMIMO subsystems.
Then using the projection procesH,;,(s) captures the first moments of
H(s)'s i-th column. Finally, the parallel connection of all ROMs gartees
the preservation off (s)’s first [ moments.

Fig. 2. Projection matrix construction in BDSM . In this figurg/;
((s0C — G)~2C) "' (soC — G)"'B, j = 1,--- ,l. Thei-th columns of
Mj’s are grouped to forn¥; (¢ = 1,--- ,m). And thenV; is computed such
thatV; = V;, fori =1, --- , m. Note that, in PRIMA the projection matrix
for (1) is constructed without clustering, such that= spaf M1, --- , M;}
with more computational cost.

TABLE |

The detailed implementation is presented in Algorithm 1C.°MPAR'SONSEFP\F’(AEF;';:IJES“"T%LE;Z%F;Tc“g?AERSECSHSEIgEi /L?SVDMOR&
Assume that no vectors are deflated in the Krylov subspace '

projection. To matci moments for a system with inputs, MOR ROM ROM Matched | ROM ROM
P ¢ i 2 ?
BDSM and PRIMA both need one sparse LU factorization,—method || size pattern | moments | reusable?] scalable?
- N K BDSM ml block-diagonal l yes yes
I — 1 multiplications of sparse matrices and block vectors,—priMA mi full dense 1 yes no
and! steps of backward plus forward substitutions. The cost SYDMOR || aml | full dense N/A yes no
EKS l full dense N/A no no

difference comes from the orthonormalization processStfp
4 of Algorithm 1). In PRIMA, all nl column vectors need
to be orthonormalized, which cost@% long vector- c
vector production. While in BDSM algorithm, the vectors are™
clustered inton groups, and then each group of vectors are or- Table | compares BDSM with some typical massive-port
thonormalized separately. Consequently, BDSM only reguirMOR schemes: EKS [10], PRIMA [5], and SVDMOR [12]
% vector-vector production in the orthonormalizatior{a typical MOR based on terminal reduction). In SVDMOR,
step. For many-terminal large-scale systems, the conipo&t we assume that the port compression ratie i§.e., the ratio
savings of BDSM can be very remarkable. An explanation of port number after terminal reduction w.r.t. the origipalrt
the cluster-and-orthonormalization flow is given in Fig 2. number), and thehh moments of the “thin” transfer matrix is
matched; in EKS, it is assumed that the firshoments of the
response under predefinedexcitation are captured. In SVD-
MOR and EKS, the “true” moments df (s) are not captured,
so they arenot exact moment matching schemes. Among
these approaches, PRIMA and SVDMOR generate full dense
matrices, which are expensive for subsequent frequensti
domain simulation. Although SVDMOR can compress the
port size to some extent (at the cost of accuracy sacrifice),
the obtained dense-matrix ROMs are still memory- and time-
consuming for many-terminal systems. And when the input-
updatey (): 1(0) — [V(i), fi] output cqrrelation is_ not strong, large errors may be indumne _
5: Construct the reduced model a1, as in (11) fori — 1, the terminal rgductlon process. EKS is capable Qf gengratin
.-, m, and then form the reduced model of (1) by (14)very small (sizeh) macromodels, but the resulting ROMs.
. Output: ROM matricesC,., G,., L, and ,. are not reusablg. These problems'lead Fo remarkable effl—
ciency degradation in ROM-based simulation. Compared with
these existing MORs, BDSM does not have these limitations,
Next, we contrast the resulting ROMs. PRIMA generatihereby allowing for more efficient simulation of massiver{p
dense ROMs withD (m?1%) nonzeros, while onlyn/? nonzero networks. We remark that EKS ROM is very inaccurate under
entries need to be stored in a BDSM ROM. Wherbecomes varying input patterns, due to its strong dependency on the
large, the ROMs by BDSM would be very sparse (with predefined input waveforms. To increase its accuracy, more
sparsity). The resulting sparse and block-diagonal stradt moments of the response should be captured. However, as will
ROMs would significantly facilitate numerical simulatioho be shown in Section 1V, EKS is not comparable with PRIMA
simulate the ROM from PRIMAO(m?1?) cost is required, and BDSM in terms of accuracy, even if the ROM size is
whereas onlyO(mi?) flops are needed for the BDSM ROM.increased tonl, at a cost similar to that of PRIMA.

Comparison with Existing Power Grid MORs

Algorithm 1 Block-diagonal structured MOR (BDSM)

1 Input: C,G € R™*", B € R"™™ [, ¢ RP*", andl

2: Perform LU factorization:LU = (soC — G), calculate
X =U~YL~'B), and normalize each column of

3 SetV®W = X(;,i)fori=1, ---, m

4. for j=1,---,1—1do
4.1 calculateXemp= CX and X = U~ (L™ Xiemp)
42for j=1,---,1—1do

orthonormalizeX (:, i) to all columns ofV(*) to getz;,

[<2]
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Fig. 3. The RLC model of a power grid network, with considematiof nz = 1836 nz =306 nz = 93636 nz = 15606
package inductance.

Fig. 4. The matrix structures of cktl’'s ROMs, obtained from 3W and
PRIMA, respectively.
D. Application Issues

BDSM can be directly used for fast power grid analysis, o ) .
or interconnected system-level simulation whéis) is not FOr simplicity, all ports are assumed to be excited by unit-
the admittance/impedance matrix. Theoretically, the ltiegu IMPulse signals in EKS [9]; in SVDMORy is set around).
ROM may be non-passive, but fortunately the possible passf% all examples. Specifically (s) is first approximated by

1 Xm 5 —  —
ity violation is normally very weak due to the high accuragy oVi #(5)Ur with 7_"'(5)”6 CP, p = [ap] andim = [am] [12],
BDSM. If H(s) represents the impedance/admittance paranfé?d then the “thiner” LTI (s) is reduced by PRIMA. Since
ters and the resulting ROM is non-passive, some modificatiorPa’se LU may still introduce large amounts of nonzero
are needed before system-level simulation (e.g., when R€ments for some cases, this factorization is skippedtsck
ROM is connected to other networks (e.g. package) for IR-{0 Save memory, at the cost of more simulation time.
drop or package resonance analysis). The CPU times and resulting ROM sizes are listed in Ta-

One solution is to incorporate other passive networks ,(e.g!e II. With the same number of moments matched, BDSM and
a package model) with the power grid network (as shown ?RIMA generate ROMs ywth the same size. Since mu_ch fewer
Figure 3), and then reduce the whole RLC model by BDSNPNg-vector orthonormalizations are needed, BDSM is faste

Another solution is to perform passivity enforcement [16§'20 PRIMA, and this speedup becomes more remarkable as
after detecting the possible non-passive regions [17] & tH'€ Problem size and port number increase. In SVDMOR,
frequency band(s) of interest. Due to the block-diagomaicst although the terminals can be reduced to some extent, it

ture, passivity verification and enforcement can be finisited Still Needs more orthonormalization steps and thus is slowe
a low cost. We assume that, is obtained by single-point than BDSM in many-terminal cases (cf. cki$). Even more,

projection thus the size at;, is [, thens;, can be transformed PRIMA and SVDMOR may fail in very-large-size many-port

to a standard state-space modls|: (I, G¢., B, L:,) at the cases (cf. ckis5). This is because: 1) the resulting full-dense
o &ROMs of PRIMA and SVDMOR can be memory-consuming

cost of O(I%). An eigenvalue decomposition can be furthe e ; o
performed onG:, at a cost ofO(i?) in many-port cases; 2) the “fat” projection mathix(¢ R .
e or R**lemll) js also dense and even more CPU-consuming.
Gs = XA Xt (16) While in BDSM the projection matri¥/(*) for each splitted
) ) ) ) system is very thin, and the final sparse block-diagonal ROM
where A; s a diagonal matrix. Thei; can be realized by s cheap to store. To illustrate this, Fig. 4 has compared the
(I, Ai, X; " Bj,, Lir X;), which is a diagonal-structured LTI RoM matrix structures of cki from BDSM and PRIMA,
system. Finally, the passivity test and enforcement carirbe Srespectively. Due to the special structure®f, C, and B,
plified via Laguerre’s method at the cost of ory(¢*) [18], the subsequent simulation can be very fast. For example, if
which is negligible compared to the cost of BDSM. m = 1000, the BDSM ROM is expected to enjoy E®x
speedup over PRIMA ROM in the subsequent simulation. EKS
is the fastest one among these schemes. However, the EKS
We use several industrial power grid benchmarks to verifOM need to be rebuilt each time when the input pattern
the proposed scheme. As shown in Fig. 3, the power grid adldanges, making the simulation very inefficient in practice
package are connected and modeled as a whole large-s€alghermore, it is also difficult t@xactly predict the input
linear circuit including resistance, capacitance and étaluce. signals of a power grid network, whereas inexactly modeled
Time-varying current sources are used to describe the hawnputs may make the EKS ROM unreliable. Therefore, a
of active circuit blocks. The MNA LTI models are extractedeusable ROM is preferred for repeated circuit simulation.
from some industrial SPICE netlists. All experiments ar@As shown by Table 1l, BDSM provides the best numerical
performed on a 2.6GHz 4-GB RAM Linux workstation. efficiency among those reusable power grid MOR schemes.
We begin by timing different MOR schemes using single- Fig. 5 has plotted the transfer function of par®) for cktl.
point moment matching o3 RLC power grid benchmarks In EKS, all inputs are set as unit impulse signals. For fasne
(cktl-ckts in Table Il). The port numbers range from severad moments are matched in all MOR schemes. EKS’s size-
tens to overlk; and the node numbers are fraggk to 1.7M. 6 ROM has very low accuracy. Then we construct a larger

IV. NUMERICAL RESULTS



TABLE I

CPUTIMES (IN SECOND) OF VARIOUS MOR SCHEMES

PRIMA [5] SVDMOR [12] (a = 0.6) EKS [10} BDSM No. of
ckt || node | port number | o time | ROM size | MOR time | ROM size | MOR time | ROM size | MOR time | ROM size r;"g;fgﬁg
cktl 6k 51 29.37 306 35.60 180 0.30 6 8.18 306 6
ckt2 20k 108 5.0 x 10° 1080 1.4 x 10° 640 15.4 10 3.7 x 10° 1080 10
ckt3 80k 204 1.2 x 107 2040 1.0 x 10% 1220 17.7 10 7.1 x 10° 2040 10
ckt4 123k 315 break down N/A break down N/A 39.8 8 2.6 x 10F 2520 8
ckts 1.7M 1429 break down N/A break down N/A 610 10 5.9 x 10% 14290 10

1 The EKS ROMs araot reusable.

(a) Frequency response, port (1,2) (b) Relative error
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Fig. 5. Accuracy comparison of various MORs for Tkt
(8]

EKS ROM by matching306 moments of the response, which
costs 36sec for cktl. However, the size-306 EKS ROM is (0]
still very inaccurate. This is not surprising, because thK&SE
ROM constructed under a specific excitation is not reusable
for new input patterns. Fig. 5 has also plotted the relative’!
errors of these MOR schemes. PRIMA and BDSM have very
high accuracy (relative error 10~ for w < 109 rad/s), [11]
due to theirexact moment matching properties. The error of
SVDMOR is several orders larger than BDSM and PRIMA; 7
due to the error-prone terminal reduction.

[13]
V. CONCLUSION

This paper has proposed a novel MOR scheme, BDSM4]
highly applicable to multi-port systems such as power grid
networks. BDSM has similar accuracy to PRIMA due tgs)
the same number of matched moments; yet it is faster and
more memory-efficient over PRIMA (and SVYDMOR in many-[16]
terminal cases) in model generation, since lots of longerec
orthonormalizations are skipped. Unlike EKS and TBS, be-
cause BDSM is input-independent, the obtained ROMs ]
reusable for time/frequency-domain analysis under varyin
input patterns. More importantly, BDSM ROMs have blockF8]
diagonal structures, thereby allowing for very fast subsed
simulation. The efficiency and accuracy of BDSM have been
verified by industrial benchmarks.
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