
Design Space Exploration for Sparse Matrix-Matrix
Multiplication on FPGAs

Colin Yu Lin, Zheng Zhang, Ngai Wong and Hayden Kwok-Hay So
Department of Electrical and Electronic Engineering

University of Hong Kong, Hong Kong

Email: {linyu,zzhang,nwong,hso}@eee.hku.hk

Abstract—The design and implementation of a sparse matrix-
matrix multiplication architecture on FPGAs is presented. Perfor-
mance of the design, in terms of computational latency, as well as
the associated power-delay and energy-delay tradeoff are studied.
Taking advantage of the sparsity of the input matrices, the pro-
posed design allows user-tunable power-delay and energy-delay
tradeoffs by employing different number of processing elements
(PEs) in the architecture design and different block size in the
blocking decomposition. Such ability allows designers to employ
different on-chip computational architecture for different system
power-delay and energy-delay requirements. It is in contrast
to conventional dense matrix-matrix multiplication architectures
that always favor the maximum number of PEs and largest block
size. In our implementation, the better energy consumption and
power-delay product favors less PEs and smaller block size for
the 90%-sparsity matrix-matrix multiplications. While in order
to achieve better energy-delay product, more PEs and larger
block size are preferred.

I. INTRODUCTION

Sparse matrix systems arise in many computationally de-

manding engineering disciplines. Many sparse matrix com-

putation kernels and algorithms have been accelerated us-

ing field-programmable gate arrays (FPGAs) for their higher

power and energy efficiencies. In this paper, we study the

design issues of sparse matrix-matrix multiplication (SpMxM)

on FPGAs. Targeted as a power- and energy-efficient acceler-

ator, we study not only the performance, but also the power

and energy tradeoffs of the proposed design. A systolic archi-

tecture with variable number of processing elements (PEs) is

proposed. By varying the number of PEs in the array, different

power-delay and energy-delay tradeoffs can be achieved. A

blocking decomposition method is introduced. The block size

used in the blocking process also provides different power-

delay and energy-delay tradeoffs. Implementation results are

used to study the design space exploration (DSE) with different

numbers of PEs and different block sizes for SpMxM on a

particular FPGA.

To our knowledge, this paper is the first to address sparse

matrix-matrix multiplication (SpMxM) on FPGAs. The design

for SpMxM proposed in this work is based on the design in

both [1] and [2]. Compared to these dense matrix-matrix mul-

tiplication implementations and designs, the PE architecture

design and I/O data streaming for SpMxM are not so regular

and require extra control logic to guarantee best performance.

In Section II, the design for SpMxM is briefly presented.

A more detailed explanation is in [3]. In Section III and

FPGA

A_IN A_OUT

A_MEM (size 2n)

B_MEM
(size 2n/p)

A_ind_IN A_ind_OUT

B_IN B_OUT
B_ind_IN B_ind_OUT

A_RD_EN

B_WR_EN
B_RD_EN

C
on

tro
l L

og
ic

MACC

C_MEM
(size n2/p)

C_WR_EN
C_RD_EN

C_IN
C_OUT

P
E
0

P
E
1

P
E
p

… …
Off-Chip MEM

Fig. 1. Architecture Design

Section IV, the number of PEs and the block size are presented

as factors of system power-delay and energy-delay tradeoffs.

Finally, we make the conclusion in Section V.

II. PROPOSED DESIGN

A. Architecture Design

As in Figure 1, numbers of processing elements (PEs) are

implemented using FPGA on-chip dedicated DSP blocks or

reconfigurable logic. These PEs are connected into a linear

systolic architecture. Only the first PE can access off-chip

memory and read/store data. Input data from off-chip memory

is passed from the first to the last PE through the linear

systolic. Output data is passed in an opposite direction, and is

stored to off-chip memory by the first PE.

B. Computation and Data Partitioning

For a n-by-n sparse matrix-matrix multiplication, the com-

putation is partitioned evenly to all PEs. As the number of

PEs p is often much smaller than the size of input matrices

n, each PE is assigned to do the computation for one or more

than one column data elements of matrix C.

C. Data I/O

We use the example of a 4-by-4 multiplication with 2 PEs

to explain the data input and output. As seen in Figure 2, the

whole computation is divided into n = 4 phases. In the ith

phase, 1 ≤ i ≤ n, the ith column from matrix A and the

978-1-4244-8983-1/10/$26.00 ©2010 IEEE

TABLE I
DESIGN UTILIZATIONS

Parameter Each PE Overall Design
Problem size - n
Data bit-width - w
Number of PEs - p, n is divisible by p
Number of I/O ports - 5

Number of 1-bit registers 3w + 4 log2 n (3w + 4 log2 n) p
Memory size for matrix A 2n 2np
Memory size for matrix B 2n/p 2n
Memory size for matrix C n2/p n2

Total memory size 2n + n2+2n
p

2np + n2 + 2n

Number of MACCs 1 p

ith row from matrix B are read from off-chip memory. Each

PE stores all data elements from matrix A and required data

elements from matrix B. Then it starts to do the computation

using these data elements.

If the input matrices are dense, the first phase time is from

0 to n + n2/p. n is the data input time, and n2/p is the

computation time.

Before the 1st phase ends, data input for computation in 2nd

phase starts. As a result, the data input time n is overlapped

with the 1st phase computation time. But that requires larger

on-chip memory for data elements from both matrix A and B.

The memory size in our design for data elements from matrix

A and B are 2n and 2n/p respectively.

D. Design Summary

Table I summarizes the resource utilizations for the pro-

posed overall design and for each PE. The taget computation

is a n-by-n sparse square matrix-matrix multiplication. All

input and output data elements of matrix A, B and C have

the same bit-width, w. p PEs are implemented using FPGA

reconfigurable DSP blocks and/or logic resources.

Five FPGA I/O ports are used to communicate with off-

chip memory. Three ports with bit-width w are used to read

data elements from matrix A and B and store data elements

of matrix C. The other two ports are used to input index

information for data elements of matrix A and B. Each of

the two ports is 2log2n bits, half of which are row index

information and the other half are column index information.

The total number of the I/O bits is 3w + 4log2n.

For each PE in the proposed design, three w-bit registers are

used to pass data elements of matrix A, B and C respectively.

Another two registers are used to pass index information for

data elements of matrix A and B. The memory block sizes

are as mentioned and explained in Subsection II-C. Finally,

one MACC is implemented in each PE.

E. Design Comparison

For a n-by-n w-bit matrix-matrix multiplication, Table II

gives a comparison on design utilizations between proposed

design and the design in [1]. The design in [1] is for dense

matrix-matrix multiplication, and the proposed design is for

sparse matrix-matrix multiplication. For both designs, the

number of PEs is p. The number of I/O ports in [1] is 3, and 2

TABLE II
DESIGN UTILIZATION COMPARISON

Parameter Design in [1] Proposed Design
Problem size n n
Data bit-width w w
Number of PEs p p
Number of I/O ports 3 5

Number of 1-bit registers 3wp (3w + 4 log2 n) p
Memory size for matrix A 0 2np
Memory size for matrix B n 2n
Memory size for matrix C n2 n2

Total memory size n2 + n 2np + n2 + 2n
Number of MACCs p p

more I/O ports are required for input matrix index information

in the proposed design.

In both the proposed design and the design from [1],

there are two limiting factors from the available FPGA on-

chip resources. The first limiting factor is the number of

MACCs implemented, p. As the MACCs are implemented

using dedicated DSP blocks or reconfigurable logic, so p,
the number of MACCs, which is also the number of PEs,

is limited by the number of DSP blocks or on-chip available

logic resources.

The second limiting factor is the FPGA on-chip memory.

Since the problem size n is large, and it is larger than the data

bit-width and the number of PEs, which is n < w and n < p,
so the problem size in both designs is limited by FPGA on-chip

memory. We use M to represent the total size of FPGA on-

chip memory, then the problem size in both designs is limited

by n <
√

M .

As shown in Table II, the proposed design uses more

registers for index information, and requires larger memory

to store data elements of input matrices. But with the same

reason mentioned above, which is that n is large and n < p,
the extra register and memory requirement will not have a

large effect on n. The problem size in the proposed design is

also limited by n <
√

M .

III. NUMBER OF PES

In this section, implementation results are shown and dis-

cussed for the proposed design presented in Section II.

The sparsity of a matrix is used to represent the zero-

element percentage in the whole matrix. A zero-sparsity matrix

is a dense matrix. All data elements in input matrices are 16-

bit and fixed point, and they are randomly generated using

the Verilog random number generation function $random.
The non-zero elements of the input matrices are input to

FPGA with their row and column index information. This

input format can be easily translated from different sparse

matrix formats, such as Dictionary of Keys and Compressed

Sparse Row/Column.

The FPGA on-chip architecture is implemented using the

Xilinx FPGA XC5VLX110T. Different numbers of processing

elements (PEs) are implemented using the FPGA on-chip

dedicated DSP blocks. The PE individual storage memory

blocks for matrix A and B are implemented using Xilinx

n+n2/p

I/O

A_IN

B_IN

col1
a11 a21 a31 a41

row1
b11 b12 b13 b14

P
E
0

M
AC

C
P

=A
*B

+C

A

B

C

P

a11

row1
b11 b13

partial c in

c11 c13

c11 c13

a21 a31 a41

P
E
1

M
AC

C
P

=A
*B

+C

A

B

C

P

b12 b14

c12 c14

c12 c14

c22 c24

c22 c24

c32 c34 c42 c44

c32 c34 c42 c44

row1
b11 b13

row1
b11 b13

row1
b11 b13

partial c in partial c in partial c in

partial c out partial c out

c21 c23 c31 c33 c41 c43

partial c out partial c out

c21 c23 c31 c33 c41 c43

a11 a21 a31 a41

b12 b14 b12 b14 b12 b14

partial c in partial c in partial c in partial c in

partial c out partial c out partial c out partial c out

col4
a14 a24 a34 a44

row4
b41 b42 b43 b44

a14

b41 b43

a24 a34 a44

row4

c11 c13 c21 c23 c31 c33 c41 c43

partial c in partial c in partial c in partial c in

partial c out partial c out partial c out partial c out

b41 b43

row4
b41 b43

row4
b41 b43

row4

row1 row1 row1 row1

a14

b42 b44

a24 a34 a44

row4 row4 row4 row4
b42 b44 b42 b44 b42 b44

c12 c14 c22 c24 c32 c34 c42 c44

partial c in partial c in partial c in partial c in

partial c out partial c out partial c out partial c out

c12 c14 c22 c24 c32 c34 c42 c44

c11 c13 c21 c23 c31 c33 c41 c43

time
0 n+n3/p+pn+3n2/p

~~

col2
a12 a22 a32 a42

row2
b21 b22 b23 b24

~~

a34

b31 b33

row3

c41 c43

partial c in

partial c out

c41 c43

a34

row3
b32 b34

c42 c44

partial c in

partial c out

c42 c44

Fig. 2. Data Input

distributed memory IP cores. The sizes of these two memory

blocks are 2n and 2n/p. As discussed in Subsection II-C,

using larger memory to store more data elements from both

matrix A and B gives better delay performance. And the

memory for output data and partial output data of matrix C
is implemented using Xilinx Block RAM IP cores.

In this section, the effects of the number of PEs upon

power-delay product and energy-delay product of both dense

and sparse matrix-matrix multiplications are studied. The 256-

by-256 matrix-matrix multiplications are used as the target

computation. Four sparsity percentages of the input matrices,

0%, 70%, 80% and 90% are considered. The 0%-sparsity

is used to represent the dense matrix-matrix multiplication.

The other three are used to represent the sparse matrix-matrix

multiplication, since high sparsity matrices are more often seen

in real applications.

A. Power-Delay Product

In the proposed design, more PEs can be used to shorten the

computation delay. But more on-chip resources will be used,

as a result, the power consumption increases when more PEs

are used. The power-delay product can be used to indicate the

power-delay tradeoff. The delay per operation is used to give

a comparison between different sparsity percentages. And the

results of power-delay product for different number of PEs are

shown in Figure 3.

For dense matrix-matrix multiplications, using more PEs

can give a better power-delay product. The implementations

consume less energy when using more PEs. But for sparse

matrix-matrix multiplications, using more PEs is not always

reducing energy consumption. As seen in Figure 3, for a 256-

by-256 sparse matrix-matrix multiplication, if 70% of the data

0

10

20

30

40

50

60

70

80

90

4 8 16 32 64

Number of PEs

Po
w

er
-D

el
ay

/O
p.

 P
ro

du
ct

(m
W

*c
yc

le
s/

op
.)

Dense
70%-Sparsity
80%-Sparsity
90%-Sparsity

Fig. 3. Power-Delay Product vs. Number of PEs

elements in input matrices A and B are zero, the proposed

architecture design with 32 PEs gives the best power-delay

product and consumes least energy. If the sparsity of input

matrices is 80-90%, using only 8 PEs gives the best power-

delay product and consumes least energy.

B. Energy-Delay Product

The energy-delay product is another important parameter

for system design. It indicates the tradeoff between system

performance and energy consumption.

The energy-delay products of implementations with differ-

ent number of PEs are shown in Figure 4. For the dense 256-

by-256 matrix-matrix multiplications, the architecture design

with 64 PEs has the best energy-delay product. The same

architecture design with 64 PEs also gives the best energy-

delay product for sparse matrix-matrix multiplications with

a sparsity no more than 70%. When the sparsity of input

matrices is 80%, using 32 PEs can provide better energy-delay

0

2

4

6

8

10

12

14

16

18

20

4 8 16 32 64

Number of PEs

En
er

gy
-D

el
ay

 P
ro

du
ct

Dense
70%-Sparsity
80%-Sparsity
90%-Sparsity

Fig. 4. Energy-Delay Product vs. Number of PEs

product than 64 PEs. And only 16 PEs are necessary to get

the best energy-delay product with the sparsity of 90%.

IV. BLOCKING DECOMPOSITION

In Section II and Section III, the proposed design and imple-

mentation results are presented without considering blocking

decomposition. In these sections, we assume that the FPGA

on-chip resources are able to support computing the matrix-

matrix multiplication without blocking. As discussed in Sub-

section II-E, the problem size for both the proposed design

and the design in [1] is limited by FPGA on-chip memory.

n <
√

M , where n is the problem size and M is the total

size of FPGA on-chip memory. The largest n which can

be computed by both designs without blocking is given by

n <
√

M .

Since the problem size of dense and sparse matrix-matrix

multiplication is often very large, a n-by-n multiplication is

blocked into
(

n
b

)3
b-by-b multiplications, where b is the block

size and b <
√

M . In this section, we discuss the effects

of the block size b upon performance, power and energy

consumptions of the designs for both sparse and dense matrix-

matrix multiplications.

A. Power-Delay Product

In the proposed design, larger block size can shorten the

computation delay. But more on-chip resources will be used, as

a result, the power consumption increases when the block size

increases. The power-delay product can be used to indicate the

power-delay tradeoff. The delay per operation is used to give

a comparison between different sparsity percentages. And the

results of power-delay product for different block sizes are

shown in Figure 5.

As seen in Figure 5, for dense, 70%- and 80%-sparse

matrix-matrix multiplications, block size 128 gives the best

power-delay product and consumes least energy. If the sparsity

of input matrices is 90%, using block size 192 gives the best

power-delay product and consumes least energy.

B. Energy-Delay Product

The energy-delay products of implementations with dif-

ferent block sizes are shown in Figure 6. For the dense

matrix-matrix multiplications, the architecture design with

block size 128 has the best energy-delay product. The same

0

10

20

30

40

50

60

70

96 128 192 256 384

Block Size

Po
w

er
-D

el
ay

/O
p.

 P
ro

du
ct

(m
W

*c
yc

le
s/

op
.)

Dense
70%-Sparsity
80%-Sparsity
90%-Sparsity

Fig. 5. Power-Delay Product vs. Block Size

0

5

10

15

20

25

30

96 128 192 256 384

Block Size
En

er
gy

-D
el

ay
 P

ro
du

ct

Dense
70%-Sparsity
80%-Sparsity
90%-Sparsity

Fig. 6. Energy-Delay Product vs. Block Size

architecture design with block size 128 also gives the best

energy-delay product for sparse matrix-matrix multiplications

with a sparsity no more than 70%. When the sparsity of input

matrices is 80%, using block size 192 can provide slightly

better energy-delay product than block size 128. And larger

block size 256 is preferred to get the best energy-delay product

with the sparsity of 90%.

V. CONCLUSIONS

A design methodology for sparse matrix-matrix multipli-

cation on FPGAs is presented. In the proposed design, the

number of PEs and the block size are two important parameters

in architecture design and blocking decomposition process

respectively. Using different design parameters gives different

tradeoffs of power-delay and energy-delay. In our implemen-

tation for the 90%-sparsity matrix-matrix multiplications, the

better energy consumption and power-delay product favors

less PEs and smaller block size. While in order to achieve

better energy-delay product, more PEs and larger block size

are preferred.

REFERENCES

[1] J. Jang, S. Choi, and V. Prasanna, “Energy- and time-efficient matrix
multiplication on FPGAs,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 13, no. 11, pp. 1305–1319, 2005.

[2] L. Zhuo and V. Prasanna, “Scalable and modular algorithms for floating-
point matrix multiplication on reconfigurable computing systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 18, no. 4, pp.
433–448, 2007.

[3] C. Y. Lin, Z. Zhang, N. Wong, and H. K.-H. So, “Power-Delay and
Energy-Delay Tradeoffs for Sparse Matrix-Matrix Multiplication on FP-
GAs,” in International Workshop on Highly-Efficient Accelerators and
Reconfigurable Technologies (HEART 2010) in conjunction with 24th
International Conference on Supercomputing (ICS’10), 2010.

