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ABSTRACT Given their potential to demonstrate near-term quantum advantage, variational quantum
algorithms (VQAs) have been extensively studied. Although numerous techniques have been developed
for VQA parameter optimization, it remains a significant challenge. A practical issue is that quantum noise
is highly unstable and thus it is likely to shift in real time. This presents a critical problem as an optimized
VQA ansatz may not perform effectively under a different noise environment. For the first time, we explore
how to optimize VQA parameters to be robust against unknown shifted noise. We model the noise level as
a random variable with an unknown probability density function (PDF), and we assume that the PDF may
shift within an uncertainty set. This assumption guides us to formulate a distributionally robust optimization
problem, with the goal of finding parameters that maintain effectiveness under shifted noise. We utilize a
distributionally robust Bayesian optimization solver for our proposed formulation. This provides numerical
evidence in both the Quantum Approximate Optimization Algorithm (QAOA) and the Variational Quantum
Eigensolver (VQE) with hardware-efficient ansatz, indicating that we can identify parameters that perform
more robustly under shifted noise. We regard this work as the first step towards improving the reliability of
VQAs influenced by shifted noise from the parameter optimization perspective.

INDEX TERMS Variational Quantum Algorithms, Distributionally Robust Optimization, Noise Shift,
Bayesian Optimization

I. INTRODUCTION

VARIATIONAL quantum algorithms (VQAs) [1] have
the potential to demonstrate quantum advantage and

have been applied in diverse fields, such as optimization [2],
[3], finance [4]–[6], machine learning [7]–[9], quantum sim-
ulation [10]–[12], and chemistry [13]–[15]. However, param-
eter optimization is a substantial challenge for VQAs [16].

Numerous efforts have been made to optimize VQA pa-
rameters [17]–[20]. One critical challenge for VQA param-
eter optimization is quantum noise [21]–[23], which limits
their capabilities and introduces additional complexities to
parameter optimization. Modeling and mitigating hardware
noise is a core part of Near-term Intermediate-scale Quantum
(NISQ) algorithms [24]–[26]. Quantifying and improving the
reliability and robustness of a VQA has been an important
task and has gained increasing attention recently. To name a

few, machine learning methods have been used to estimate
the reliability of a quantum circuit [27]; noise-aware ansatz
design methodologies [28] and robust circuit realization from
a lower-level abstraction [29], [30] have also been investi-
gated.

A more challenging yet practical problem is the instability
of quantum noise. Suppose we have an accurate model of
the quantum noise as a reference. However, the quantum
noise can change significantly under different environmental
conditions in real time, making the reference noise model
inaccurate. [31] has shown that the noise fluctuation is usu-
ally less disinclined. Some studies [32], [33] have considered
the reproducibility and stability under different noise models.
We refer to this phenomenon of noise change as “noise
shift”. The optimization of variational quantum circuits and
error mitigation under real-time noise has gained attention
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recently [34]–[38].
In this paper, we ask a fundamental question: Can we

optimize the VQA parameters such that they are robust to
potentially shifted (unknown) noise? We assume that we have
access to a fixed noise model, but the actual noise level is an
unknown random variable with an unknown PDF. This fixed
PDF represents our limited knowledge about the potential
noise shift.

To optimize VQA parameters under such unknown noise,
for the first time, we propose a new min-max optimization
formulation. Such an optimization formulation is called dis-
tributionally robust optimization (DRO) in the classical op-
eration research community [39]–[42]. DRO is an advanced
optimization framework that aims to find solutions resilient
against a range of possible probability distributions rather
than a single expected distribution. In our context, we aim
to optimize parameters against the worst-case distribution
of noise levels. This task, while distinct, complements error
mitigation efforts. Rather than attempting to reduce quantum
noise, our approach focuses on optimizing parameters in
the presence of potentially shifting noise. Furthermore, our
method allows for seamless integration with various error
mitigation techniques.

Paper contributions. In this work, we investigate the
problem formulation, numerical solver, and validation of
variational quantum algorithm training under unknown
shifted noise. The overview is illustrated in Fig. 1. Our
specific contributions include:

• To be robust against the shifted noise, we formulate
the problem of optimizing VQA algorithms as a dis-
tributionally robust optimization that aims to optimize
a targeted performance under the worst-case noise dis-
tribution. We characterize the quantum noise using a
fixed noise model with uncertain and varying levels of
strengths, where the noise level is a random variable
with an unknown probability density function (PDF).

• To solve the distributionally robust optimization, we
model the unknown PDF as a distributional uncer-
tainty set that is defined by Maximum Mean Discrep-
ancy (MMD). We then solve the min-max problem
utilizing a distributionally robust Bayesian optimization
(DRBO) method [43]–[45]. Recently, Bayesian opti-
mization (BO) has attracted attention in the field of
quantum algorithm optimization [46]–[56].

• We validate the proposed min-max formulation on two
well-recognized VQAs, namely QAOA for the MaxCut
problem and VQE with hardware-efficient ansatz for the
one-dimensional Heisenberg model. Numerical results
show that the proposed parameter optimization algo-
rithm outperforms conventional methods under shifted
noise conditions.

II. PROBLEM FORMULATION
Variational quantum algorithms (VQAs) are a class of algo-
rithms in quantum computing that utilize a hybrid approach,
combining classical and quantum computing resources to

solve computational problems. They are especially pertinent
for use with Noisy Intermediate-Scale Quantum (NISQ) de-
vices, which are the currently available quantum hardware.

The core idea of VQAs is to define a parameterized quan-
tum circuit (ansatz) that manipulates the state of a quantum
system in a way that depends on a set of parameters θ.
These parameters are then optimized classically to minimize
an objective function ⟨ψ(θ)|O|ψ(θ)⟩, where ψ(θ) is the
resulting noiseless quantum state from the parameterized
anstaz, O is an observable of interest and the objective
function is evaluated by the quantum system. However, due
to the hardware noise, the actual ansatz and the resulting
noisy quantum state P differ from the ideal ones.

The quantum noise N for a quantum system with state P
is characterized as

N (P) =
∑
i

EiPE†
i , (1)

where Ei are Kraus operators satisfying
∑

i EiE
†
i = I. In

this paper, we use amplitude and phase damping channels as
the noise model because such a noise model has been shown
to shift the optimal parameter of a VQA [57]. The amplitude
damping noise describes the energy dissipation of quantum
systems, whose Kraus operator formulation on a single qubit
is

N (P) = E0PE†
0 +E1PE†

1, (2)

with E0 =

(
1 0
0
√
1− pad

)
, E1 =

(
0
√
pad

0 0

)
. The

phase damping noise describes the quantum information loss
without the energy loss, whose Kraus operator formulation
on a single qubit is

N (P) = E0PE†
0 +E1PE†

1, (3)

with E0 =

(
1 0
0

√
1− ppd

)
, E1 =

(
0 0
0
√
ppd

)
. To inte-

grate these two amplitude and phase damping noise channels,
the combined Kraus operator is as follows

N (P) =

2∑
i=0

EiPE†
i , (4)

with E0 =

(
1 0
0
√
1− pad

√
1− ppd

)
, E1 =

(
0
√
pad

0 0

)
,

E2 =

(
0 0
0
√
1− pad√ppd

)
. The parameters pad and ppd

are strongly related to the T1 and T2 time of quantum
hardware. In this paper, we assume an equal probability of
two damping channels pad = ppd = p for simplicity. We do
not expect such noise modeling to capture practical hardware
noise accurately but only use it for proof of concept.

A. DISTRIBUTIONALLY ROBUST OPTIMIZATION
FORMULATION OF VQAS
We assume that we have access to the fixed noise model, i.e.,
the fixed Kraus presentation (4), but do not know the precise
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FIGURE 1. Overview of the distributionally robust variational quantum algorithms. Given an ideal ansatz and noise model, we assume the noise level is a random
variable that can change in real time. We have samples of the noise level variable ξ from a reference distribution, ansatz parameter θ, and the corresponding VQA
performance f(θ, ξ). With the shifted noise, the VQA landscape and its optimum θ can potentially change. Specifically, the optimal θ under a certain noise level
may not perform well under another noise level. Likewise, an optimal θ under a reference noise level PDF may not perform well under another noise level PDF. To
address the landscape shift, we reformulate the parameter optimization problem as a min-max formulation to find a robust parameter θ. In other words, we aim to
optimize the performance under the worst-case noise level PDF. We use a distributionally robust Bayesian optimization solver to solve the new parameter
optimization formulation, which is still handled by classical computers.

noise level p. We model p as a random variable, which fol-
lows a certain PDF ξ ∼ ρ(ξ). Let f(θ, ξ) = Tr [P(θ, ξ)O] be
the quantity of interest evaluated by an ansatz parametrized
by θ under a noise level ξ, where P(θ, ξ) is the resulting
noisy quantum state. A standard parameter optimization of a
VQA becomes stochastic programming:

min
θ

Eρ(ξ)[f(θ, ξ)]. (5)

Note that we here consider the one-dimensional noise level
for simplicity. It can be seamlessly extended to a high-
dimensional case.

However, due to the real-time fluctuation of quantum
noise, the actual PDF of the noise level can shift and become
unknown. As a result, we assume that ρ(ξ) is not exactly
known and it can be any PDF inside a set P , which makes it
impossible to obtain a deterministic value of Eρ(ξ)[f(θ, ξ)].
As a result, we try to optimize the worst-case value of
Eρ(ξ)[f(θ, ξ)] by solving

min
θ

sup
ρ(ξ)∈P

Eρ(ξ)[f(θ, ξ)]. (6)

When the uncertainty set degenerates to P = {ρ(ξ)}, prob-
lem (6) degenerates to the standard stochastic optimization
problem in (5). On the other hand, the problem degenerates
to a robust optimization under the worst noise level when the
PDF of a noise level degenerates to a Dirac function.

The distributionally robust circuit optimization (6) may be
intractable in practice because (a) P may contain an infinite
number of PDFs describing process variations; (b) the min-
max problem is hard to solve by nature; (c) we do not have
an analytical form for f(θ, ξ) under the presence of noise.

III. THE PROPOSED SOLVER
In this section, we properly define the PDF uncertainty set
P and solve problem (6) leveraging distributionally robust
Bayesian optimization (DRBO) [43], [45], [58] developed
recently in the machine learning community.

A. DISTRIBUTION UNCERTAINTY SET
We model the PDF uncertainty set P as a ball whose center
is the nominal distribution ρ0(ξ) of the noise level and radius
ε is measured by a distribution divergence D:

P := B(ρ0) = {ρ : D(ρ0, ρ) ≤ ε}. (7)

There are many options for the divergence D, includ-
ing Maximum Mean Discrepancy, Wasserstein distance, φ-
divergence, etc [39]. Here, we choose the Maximum Mean
Discrepancy (MMD).

MMD aims to compare the means of samples drawn
from two distributions in a high-dimensional reproducing
kernel Hilbert space (RKHS) induced by a positive definite
kernel function [59]. For the tractability of the problem,

VOLUME x, xxxx 3



He et al.: Distributionally Robust Variational Quantum Algorithm

we discretize the noise level in a finite space Ξ with n
parts. Then, let HM be an RKHS with corresponding kernel
kM : Ξ × Ξ → R, we can embed the distributions ρ0
(similarly for ρ) intoHM via the mean embedding:

mρ0 := Eξ∼ρ0 [kM (ξ, ·)], such that
⟨mρ0 , kM (ξ′, ·)⟩ = Eξ∼ρ0 [kM (ξ′, ξ)],∀ξ ∈ Ξ.

Then the MMD between two distributions ρ0 and ρ over Ξ
is defined as

D(ρ0, ρ) := ∥mρ0
−mρ∥H, (8)

where ∥ · ∥H =
√
⟨·, ·⟩ is the Hilbert norm. Let wi =

ρ0(ξi) and w′
i = ρ(ξi) be the density probability of two

discrete distributions, if we replace the expectation with the
empirical expectation, i.e., mρ =

∑n
i=1 wikM (ξi, ·) and

mρ′ =
∑n

i=1 w
′
iw

′
ikM (ξi, ·), Eq. (8) can be written as:

D(ρ0, ρ) =
√

(w −w′)
T
M(w −w′), (9)

where Mij = kM (ξi, ξj) is the kernel matrix.

B. DRO MAIN WORKFLOW
By modeling the distribution uncertainty set defined via
MMD, the DRO problem (6) becomes tractable. The main
steps are summarized below.

• Step 1. Characterize the nominal noise distribution ρ0.
• Step 2. Given a current θ, solve the inner problem to

determine the worst-case PDF of ξ:

sup
ρ(ξ):D(ρ0,ρ)≤ε

Eρ(ξ)[f(θ, ξ)] =

max
w′:∥w′∥1=1,

0≤w′
j≤1,∀j∈[n],√

(w−w′)TM(w−w′)≤ε

⟨w′, fθ⟩, (10)

where fθ := f(θ, ·) ∈ Rn is the output with a given
parameter θ.

• Step 3. Solve the outer problem to update θ.

min
θ

⟨w′, fθ⟩ (11)

• Step 4. If not converge, go back to Step 2.

Specifically, Step 2 can be solved analytically via convex
programming as it is second-order cone programming with
respect to the worst-case distribution w′. Step 3 can be solved
via a numerical optimizer. However, one of the challenges in
steps 2 and 3 is that we need to simulate multiple f(θ, ξ),
which can be expensive in practice. To address the com-
putational issue, we apply a Bayesian optimization solver
to the workflow. The key idea is to sequentially learn a
surrogate model of f(θ, ξ) and optimize it by iteratively
adding informative samples.

Algorithm 1 Overall DRBO algorithm with GP

Input: Initial sample set S0 = {θi, ξi, f(θi, ξi)}Mi=1, refer-
ence PDF of noise level ρ0(ξ) with ρ0(ξi) = wi,∀i =
[n], uncertainty ball radius ε, maximum iteration T

Output: The optimal circuit design variables θ⋆

1: for t = 1, 2, ..., T do
2: Construct a GP model as the probabilistic surrogate

model f̂(θ, ξ) = GP(θ, ξ) based on St−1

3: Define LCB(θ, ξ) := µ(GP(θ, ξ))−β ·σ(GP(θ, ξ))
4: Define the PDF of the worst-case distribution

w′ := argmaxw⟨w′,LCB(θ, ξ)⟩ s.t. w′ : ∥w′∥1 = 1,
0 ≤ w′

j ≤ 1,∀j ∈ [n], and ∥w′ −w∥M ≤ ε
5: Solve the robust parameter θt =

argminθ⟨w′,LCB(θ, ξ)⟩
6: Sample K noise levels from the reference PDF ξk ∼
ρ0 and simulate f(θt, ξk), for k = 1, 2, . . . ,K

7: Augment data set St ←
St−1 ∪ {(θt, ξt, f(θt, ξk))}Kk=1

8: end for
9: Return optimal θ⋆

C. BO SOLVER FOR DRO PROBLEM

Next, we explain how to solve DRO via Bayesian optimiza-
tion with a few quantum circuit simulations. Bayesian opti-
mization sequentially builds a probabilistic surrogate model
of f(θ, ξ) and explores the design space by minimizing an
acquisition function. The overall DRBO algorithm is sum-
marized in Algorithm 1.

We first construct a probabilistic surrogate model f̂(θ, ξ),
which can estimate both the output and its uncertainty given
an input (θ, ξ). Here, we use the Gaussian process regression
model GP(θ, ξ) as the surrogate f̂(θ, ξ). Then we use its
lower confidence bound (LCB) to replace the original objec-
tive function f(θ, ξ) in Eqs. (10) and (11) in steps 2-4

f(θ, ξ)→ LCB(θ, ξ) = µ(GP(θ, ξ))− β · σ(GP(θ, ξ)),
(12)

where µ(·) and σ(·) denote the estimated mean and standard
deviation, and β is a parameter to balance the model exploita-
tion and exploration.

Gaussian process surrogate. To build the Gaussian pro-
cess regression (GPR) model, we need to predefine the mean
function m(·) and the kernel function kGP(·, ·). Given a
dataset X = {xi}Mi=1 = {θi, ξi}Mi=1 and their simulation
outputs y = {f(xi) + ϵ}Mi=1, the GP model assumes that the
simulation outputs follows a Gaussian distribution [60]:

Prob(y) = N (y|µ,K), (13)

where µ ∈ RM is the mean vector with µi = m(x), K ∈
RM×M is the covariance matrix with Ki,j = kGP(xi,xj).
The measurement noise is characterized as a white noise ϵ in
the simulation output.
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Then, the GP model can offer a probabilistic prediction of
a new data x′, GP(x′) ∼ N(µ(x′), σ2(x′)), as follows:

µ(x′) = kGP (x
′,X)

T
(K+ ϵ2I)

−1
y

σ2(x′) = kGP(x
′,x′)− kGP(x

′,X)
T
(K+ ϵ2I)

−1
kGP(X,θ

′)

In our cases, we choose the prior mean as m(x) = 0 and use

the RBF kernel kGP(xi,xj) = e−
∥xi−x)j∥2

2l2 . Note that the
kernel kGP used in GPR differs from the kernel function kM
employed in MMD. Apart from the Gaussian process, there
are various other surrogate models that can be utilized.

Optimal selection. Regarding the selection of an optimal
solution, it turns out to be non-trivial. Since we want to esti-
mate the expectation over the noise distribution, it will be too
expensive to estimate with real quantum devices. Instead, we
choose the solution with maximized model posterior, i.e., we
choose the θ = argmaxθ Eρ(ξ)[µ(f̂(θ, ξ))] = ⟨w, µ(f̂θ)⟩,
where f̂θ is the mean prediction from f̂ with a given param-
eter θ. It is a common strategy for similar conditions [61],
[62].

In addition, an accurate estimation over f̂(θ, ·) will benefit
our model output. For this motivation, at the end of each
iteration in Algorithm 1, we can add a batch of samples of
ξ from Ξ in step 3. It can help build a better probabilistic
model and fasten the BO solver convergence.

Remarks. One possible further improvement is to treat
the BO solver as a warm-start procedure. After returning
a few high-quality solutions from BO, we can conduct the
local numerical optimization by taking them as the initial.
The local search step may introduce additional computational
cost and need more calling of f(θ, ξ) instead of the surrogate
model, but it can lead to a potentially better solution. The
hybrid of different solvers is also a common strategy in VQA
parameter optimization [49], [63].

The proposed distributionally robust optimization can eas-
ily degenerate into stochastic optimization or robust opti-
mization. Stochastic optimization, namely Eq. (5), does not
consider the real-time change of the noise. Robust opti-
mization degenerates the PDF of the noise level ρ(ξ) to a
single scalar. This case can easily lead to over-conservative
parameter optimization.

The current distribution uncertainty set modeling of Max-
imum Mean Discrepancy has the great power of capturing
the worst-case distribution. However, we need to discretize
the noise level PDF in order to estimate the MMD effi-
ciently. There exist some other approaches to modeling the
uncertainty set that do not discretize the noise level, such
as f -divergence modeling [45]. Meanwhile, some alterna-
tive uncertainty set modeling could potentially reduce the
computational overhead of estimating worst-case distribu-
tion (10) [45], [64], [65] iteratively. However, they may not
perform well in our experiments due to the unfitted modeling
of shifted noise level distribution.

IV. NUMERICAL EXPERIMENTS
We validate the distributionally robust formulation of op-
timizing VQA parameters (6) in two widely used VQA
applications: one is using QAOA for MaxCut and the other
one is using VQE for a one-dimensional Heisenberg model.

Here, we conduct the numerical experiments on a simula-
tor in order to adjust the noise level easily and correspond-
ingly to validate the method. To apply the distributional ro-
bustness formulation in hardware experiments, the estimation
of the noise model and noise level is another challenge, which
is out of the scope of this work.

Baselines. We compared the proposed DRBO solver to
two standard Bayesian optimization methods for solving
stochastic optimization, one is with a lower confidence bound
acquisition function (BO-LCB) and the other one is with an
expectation improvement acquisition function (BO-EI) [66],
and robust Bayesian optimization (BO-Stable) [67].

In BO-LCB, we target problem 5 with a fixed reference
distribution of noise level ρ0(ξ) using a Bayesian optimiza-
tion approach. We use the same GP surrogate model and its
LCB as Eq. (12), but without solving the outer problem (11).
Specifically, the lines 4 and 5 of Algorithm 1 are combined
as solving minθ⟨w,LCB(θ, ξ)⟩.

In BO-EI, we replace the above LCB function with the
EI acquisition function. Let θ− be the best sample with the
smallest value f(θ−, ξ) so far. The EI acquisition function is
defined as:

EI(θ, ξ) = Φ(z)
(
f(θ−, ξ)− µ(GP(θ, ξ))

)
+ ϕ(z)σ(GP(θ, ξ)),

(14)

where z =

{
f(θ−,ξ)−µ(GP(θ,ξ))

σ(GP(θ,ξ)) σ(GP(θ, ξ)) > 0

0 σ(GP(θ, ξ)) = 0
, Φ(·)

and ϕ(·) are the cumulative distribution function and the
probability density function of the standard normal distri-
bution. In the literature of applying BO for learning VQAs,
there exists the usage of variant kernel functions and acquisi-
tion functions under different noisy environments. However,
they can all be categorized as standard BO as they consider a
fixed noise model only.

In BO-Stable, we target a shift-aware problem but only fo-
cus on the worst noise level instead of the worst distributional
noise level. We use the same GP surrogate model and its LCB
as Eq. (12). Differing from using DRBO for problem (6),
the lines 4 and 5 of Algorithm 1 are replaced with solving
minθ LCB(θ, ξ⋆) where given a θ, the worst ξ⋆ is defined as
ξ⋆ := argmaxξ LCB(θ, ξ).

To compare these different VQA parameter optimization
methods, we first obtain their different optimized parameters
and evaluate them under different levels of noise ρ(ξ). In
the simulation, we used the qiskit_aer noisy simulator with
the statevector backend, whose simulation algorithm is the
Monte Carlo trajectory approach. In one circuit trajectory,
a Kraus operator is randomly applied on an ideal gate with
probability that is defined by the noise channel. The multi-
qubit noise channel is defined as the tensor product of single-
qubit noise ones (4).
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FIGURE 2. The results for solving N = 14 3-regular graph MaxCut problems via QAOA. The x axis denotes the significance of noise shift, where the noise level
PDF is the reference one at x = 0. The y axis is the expectation of the approximation ratio of the QAOA solution evaluated at different noise PDFs. We report the
average result over 10 non-isomorphic graphs. As we can see, the standard BO-LCB and BO-EI solutions have the best performance under the reference noise.
However, under an increasingly shifted noise, the DRBO solution begins to outperform the standard BO solutions. Meanwhile, the BO-Stable solution is
over-conservative with respect to the noise. It significantly scarifies the performance under the reference PDF and the slightly shifted PDFs to gain an improvement
under significant shifts. These observations are consistent in the experiments with different QAOA depths.

A. NUMERICAL EXPERIMENTS ON QAOA
QAOA is a leading variational quantum algorithm for com-
binatorial optimization problems. It alternatively applies
two operators, a phase-separation operator and a mixer op-
erator, to drive a quantum system to the target solution
state. A noiseless QAOA solution is denoted as ψ(θ) =
e−iβpHM e−iγpHP · · · e−iβ1HM e−iγ1HP |ψ0⟩.

We will take the MaxCut problem as a case study of
QAOA. Given a graphG = (V,E) with vertices V and edges
E, the MaxCut problem aims to find a cut that partitions the
graph vertices into two sets with the largest number of edges.
Its cost function is written as

C =
∑

(i,j)∈E

1− sisj , (15)

where si and sj are binary variables associated to the vertices
in V , which assume value 1 or −1 depending on which of
the two partitions defined by the cut are assigned. Its cost
Hamiltonian is defined as HC =

∑
(u,v)∈E

1
2 (I − ZiZj),

where Zi denotes a Pauli-Z operator.
In applying QAOA for solving the MaxCut problem,

given a noise model with noise level ξ, we aim to optimize
the QAOA parameters θ = (γ,β) such that the result-
ing quantum state P(θ, ξ) has minimal energy f(θ, ξ) =
Tr [P(θ, ξ)HC ] Considering the uncertainty and fluctuation
of noise level, we aim to find parameters θ that make QAOA
performance more robust towards the shifted noise by solving
the DRO problem (6).

Here, we discretize the noise level into 20 bins in [0, 0.08]
evenly. We assume the reference noise follows a truncated
Gaussian distribution, with the noise fluctuation shifting its
mean to a larger value. We first generate a truncated Gaussian

distribution with mean −0.01 and standard deviation 0.01.
We estimate the probability density at each discretized level
and do the normalization to obtain the reference PDF of
the noise level. We follow a similar procedure to generate
the PDF of shifted noise by shifting the mean of the initial
truncated Gaussian distribution.

To begin with, for a depth-p QAOA ansatz, we initialize
the sampling set S0 = {θi, ξi, f(θi, ξi)}Mi=1 by taking M =
20p, where θi is drawn from the design space based on a
Latin hypercube approach [68], and the noise level samples
ξi are drawn from the reference distribution ρ0(ξ). We set the
maximum BO iterations as T = 20p.

As shown in Fig. 2, we evaluate different BO-based pa-
rameter optimization results on 10 graphs with degree-3 and
graph size N = 14. We report the average approximation
ratio results under different shifted noise levels. The x-axis
denotes the index of the levels of noise shift, with a higher
one denoting a more significant shift, and index-0 denotes the
reference noise. Since we solve the optimal θ under shifted
noise, the DRBO-solved QAOA is expected to perform worse
than the one solved from a standard BO solver under the
reference noise. However, as the noise shift becomes more
and more significant, the DRBO solution begins to show its
advantages. Notably, BO-Stable performs better than BO-
LCB and BO-EI under a significantly shifted noise as well.
However, it is also over-conservative under the reference
noise since it only considers a single worst noise level. The
results and observations are consistent over different QAOA
depths.

We plot the solution during the BO iterations in Fig. 3.
During the iteration, the performance is evaluated under the
optimal solution selected from the maximum posterior rather
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FIGURE 3. One example of evolving of solution in different BO algorithms. The x axis is the iterations in a BO algorithm, and the y axis is the expectation of cost
function evaluated over noise level at a θ. The evaluated θ at one iteration is obtained by maximizing the model posterior, which is unnecessary to be the explored
θ at that iteration. Under the reference noise PDF, the BO-LCB algorithm converges to a better solution, while the DRBO converges to a better solution under the
shifted noise. The rightmost figure shows the example PDFs of the reference noise level, shifted noise level, and the estimated worst-case noise level from the
DRBO algorithm.
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FIGURE 4. An example of explored θ in p = 1 noisy QAOA cost landscape in
a N = 8 MaxCut problem. The optimum θ differs from the noiseless optimum.
Compared to the BO-LCB and BO-Stable, the DRBO explores the parameter
space that performs well under the shifted noise.

than from the solution of an acquisition function. We show
the performance evaluated under the reference noise and
the shifted noise. During the iterations, DRBO consistently
converges to a shifted-noise preferred solution while the LCB
converges to a reference-noise preferred one. We also show
the PDFs of the reference noise, shifted noise, and the worst-
case that is estimated by the DRBO algorithm. We can see
that the MMD approach successfully captures the shifted
noise under the worse-case distribution, enabling the DRBO
to explore the parameters space that performs better under
shifted noise.

More results on MaxCut with graph size N = 8, 10, 12
and QAOA depth p = 1, 2, 3 are shown in Fig. 5. The results
are consistent with the ones in Fig. 2. The DRBO solution

performs better than the baselines under significantly shifted
noise, which demonstrates that our method could optimize
the VQA parameters that are more robust to the shifted noise.
One example of the newly sampled θ with p = 1 is plotted in
Fig. 4. The DRBO algorithm explores the parameter space
toward the optimal one under a shifted noise, while the
other algorithms exploit the space surrounding the optimal
parameter under the reference noise. Therefore, the DRBO
could find a parameter that performs better under shifted
noise.

B. NUMERICAL EXPERIMENTS ON VQE
Variational quantum eigensolver (VQE) is another popular
VQA, specifically designed to simulate quantum systems and
find the ground state energy of quantum systems. We use the
VQE algorithm with a hardware-efficient ansatz [69] for sim-
ulating the ground energy of a one-dimensional Heisenberg
model defined as:

H = J
∑
i

XiXi+1+YiYi+1+ZiZi+1+B
∑
i

Zi, (16)

where J is the strength of the spin–spin interaction and B
is the magnetic field along the Z direction. Here, we use a
hardware-efficient ansatz to implement the VQE algorithm
(see more details in the supplementary). Given an ansatz pa-
rameterized by θ and under a noise model with noise level ξ,
we denote the state as P(θ, ξ). The noisy VQE algorithm cost
function is defined as f(θ, ξ) = Tr [P(θ, ξ)H] Here, we aim
to find the ansatz parameters that lead to robust performance
under shifted noise by solving the DRO problem (6).

Here, for a two-layer hardware-efficient ansatz, we dis-
cretize the noise level into 20 bins in [0, 0.08] evenly. We
assume the reference noise follows a truncated Gaussian
distribution, and the changing noise shifts its mean to a larger
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FIGURE 6. The schematic of the hardware-efficient ansatz for variational
quantum eigensolver. The layer of two-qubit entanglement and one-qubit
rotation gates are repeated for L − 1 times.

value. The hardware-efficiency ansatz is set up as shown in
Fig. 6. The number of parameters grows quickly and becomes
challenging for a BO solver. For simplicity, we only optimize
the lastN parameters and fix the others, similar to the idea of
layer-wise optimization in Ref. [70]. For the demonstration
purpose, the fixed parameters are obtained through a multi-
start classical optimization routine. We follow the same pro-
cedure as QAOA to set up the noise level distribution of both
the reference and the shifted ones.

In Fig. 7, we show the ground energy solved for a 6-spin
system with J = 1, B = 0.2, whose ground state is highly
entangled. Aiming to optimize the last layer parameters,
we initialize the sampling set with M = 40 and set the
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FIGURE 7. The results for solving the ground energy of a 6-spin,
J = 1, B = 0.2 one-dimensional Heisenberg model via VQE with two-layer
hardware efficient ansatz. The x axis denotes the significance of noise shift,
where the noise level PDF is the reference one at x = 0. We first obtained the
optimal parameter θ0 in a noiseless simulation, which solves the problem
perfectly with f(θ0) = −4.8. Then we report the relative improvement of the

energy
Eρ(ξ)[f(θ,ξ)]−Eρ(ξ)[f(θ0,ξ)])

Eρ(ξ)[f(θ0,ξ)]
. Under all the shifted distributions,

BO-LCB performs close to θ0. DRBO scarifies limited performance under mild
noise and performs much better than the BO-LCB, BO-EI, and noiseless
optimal θ0 in significantly shifted noise. BO-LCB and BO-EI are almost
overlapping since they both have solutions close to θ0. While the BO-Stable
can also find the robust parameter under the shifted noise, it does not perform
as well as DRBO, especially when the noise shift is mild.

maximum BO iteration T = 40 as well. We reported the
results from a two-layer hardware-efficiency ansatz with a
more detailed setup and results in Supplementary. Similar to
the QAOA results, DRBO performs better than BO-LCB and
BO-EI under a significantly shifted noise. Furthermore, the
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DRBO solution minimally compromises the reference noise
performance, whereas Bo-Stable tends to produce overly
conservative results.

V. DISCUSSION
A. RELATED WORKS OF BAYESIAN OPTIMIZATION
Bayesian optimization has been a prominent technique in
addressing VQA learning tasks. For instance, [48] imple-
mented a parallel optimization scheme, enhancing the effi-
ciency of optimizing VQA parameters across multiple similar
problems by leveraging information sharing within Bayesian
optimization. [47] used Bayesian inference to reduce the
redundancy of the parameterized circuit, ending with a shal-
lower and more robust VQA ansatz. [46] used the standard
Bayesian optimization techniques to optimize parameters for
noisy VQE. [49] proposed a hybrid approach, utilizing
Bayesian optimization solutions as warm starts and transi-
tioning to multi-start local search from optimized Bayesian
samples. [50] specifically applied Bayesian optimization
to optimize QAOA parameters. [51] demonstrated the effi-
ciency of Bayesian optimization in optimizing parameterized
quantum annealing schedules. [52] introduced stochastic
gradient line Bayesian optimization, leveraging Bayesian op-
timization to adjust step sizes in stochastic gradient descent,
thereby reducing measurement-shot costs in optimizing VQA
parameters. [53] extended standard QAOA with two mixers
and optimized circuit parameters through Bayesian opti-
mization. [54] utilized a VQE-kernel to construct a Gaus-
sian process model, leveraging specific circuit properties as
physics-informed priors and introducing a novel acquisition
function to exploit the inductive bias of the kernel. [55]
aimed to initialize good ansatz by fully exploring the Clifford
parameter space through Bayesian optimization, where all
simulations can be performed classically. [56] introduced
a novel Bayesian optimization approach, optimizing QAOA
parameters by constructing a surrogate model with con-
straints derived from two adaptive regions.

Among all the above literature, it is hard to justify the best
Bayesian optimization techniques since they use different
surrogate modeling techniques, acquisition functions under

different noise models, and target different applications.
However, they can be all viewed as standard BO setups
as they all aim to optimize either the parameter or ansatz
architecture of VQA under a fixed noise environment. None
of them shared the same shift-aware problem setup as us.

B. LANDSCAPE SHIFT
Ref. [57] has shown that the optimal variational parameters
are unaffected by a broad class of noise models, such as
measurement noise, gate noise, and Pauli channel noise. This
phenomenon is called optimal parameter resilience. Mean-
while, some noise can shift the location of minima. A rich of
work has studied how quantum noise can influence the VQA
landscape [71]–[73]. We highlight that the shift location of
optimal parameters motivates our work, i.e., given that the
optimal parameter will change under different (shifted) noise,
we aim to find optimal parameters with robust performance
under the shifted noise environment.

In our simulation, we use the phase and amplitude damp-
ing noise model, which has been shown to change the values
of optimal parameters. The landscape with a changed or
unchanged optimum is illustrated in Fig. 8.

C. VARIANT PROBLEM FORMULATION
Radius varying formulation. Beyond optimization under
varying noise, another case where the distributionally robust
optimization can be applied is to calibrate the noise estima-
tion. Assume we do not have a precise enough estimation of
the real noise level distribution as the reference distribution.
The key idea is that as we collect more data on the noise
level, we can have a more accurate estimation of its PDF.
Therefore, as the iteration continues, we can gradually refine
the center ρ0(ξ) of the uncertainty ball and reduce its radius
ε.

Gate error modeling. Beyond modeling hardware noise,
another possible modeling is on the gate error f(θ + ξ)
of a parameterized quantum circuit, which assumes that the
gate parameters are not exactly implemented but suffer from
some coherent errors. In such a formulation, under different
error levels of ξ, the optimal θ will clearly have different
values. The DRO formulation can optimize the VQA to
find parameters that are robust to the shifted gate errors. A
robustness analysis of such a formulation is discussed in [74].
It is also of great interest to connect the gate error with a
more detailed control error and apply the proposed shift-
aware optimization at the physical level, but it is out of the
scope of this manuscript.

VI. CONCLUSION AND OPPORTUNITIES
Quantum noise has been a major obstacle to the practical
applications of near-term quantum computers, particularly
in variational quantum algorithms (VQAs). Despite various
error mitigation techniques have been intensively studied,
the dynamic nature of quantum noise presents a formidable
challenge. Optimized VQA parameters may perform subop-
timally when exposed to different noise environments.
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In this paper, we have presented a distributionally robust
optimization formulation designed to enhance the robust-
ness of VQA parameters against varying quantum noise
conditions. Our approach leverages a distributionally robust
Bayesian optimization (DRBO) solver, efficiently tackling
the proposed formulation. We validate the proposed method
in two widely recognized VQA benchmarks: QAOA for
MaxCut and VQE with hardware-efficient ansatz for an one-
dimensional Heisenberg model. The proposed distribution-
ally robust optimization formulation does not aim to mitigate
inherent quantum noise directly. Instead, it addresses the
noise at the algorithmic level. It can be potentially integrated
with various error mitigation techniques to further improve
the VQA robustness.

Our formulation can be more impactful in scenarios in-
volving large-size problems. As we scale up to larger prob-
lems or deeper VQA ansatz, even minor fluctuations in noise
levels can significantly affect performance. For instance,
implementing QAOA for larger problems necessitates deeper
circuit depths, amplifying the influence of even slight shifts
in noise levels on VQA performance. Therefore, optimization
VQA parameters under such shifts becomes increasingly
critical.

To integrate the proposed distributionally robust formula-
tion into more practical use cases, a better knowledge of noise
models is highly desired. More specifically, in this paper,
we characterize quantum noise by a fixed noise model, such
as Eq. (4), and model the noise level as a random variable
with an unknown PDF. Such mathematical modeling may
not capture the actual hardware noise well since the noise
characterization is in principle challenging. Another point is
that we also need to model the uncertainty ball carefully. To
make sure the optimized parameters perform well under the
actual shifted noise, we need to tune the radius of uncertainty
ball ε such that the shifted noise is lying with the ball and
is close to the worst case within the ball. Otherwise, the
proposed DRBO may become over-conservative as shown in
Figs. 2 5 7.

To improve the solver of distributionally robust optimiza-
tion, some better techniques that do not need to discretize the
noise level or efficiently handle high-dimensional parameter
optimization of θ can be developed.

We also have applied a similar distributionally robust op-
timization formulation for classical circuit optimization [75],
where we identified the shifts of process variations. In this
paper, we focus on handling the parameter optimization of
noisy variation quantum algorithms. Differing from [75],
the noise source and modeling in this paper are distinct,
characterized by a fixed noise model with different levels of
strength. We used MMD to define the uncertainty ball such
that the shift-aware problem is solved in a two-step process.
Additionally, we study its quantum applications from the
energy landscape perspective, which is much less studied in
classical circuit applications. There is a great thread studying
the energy landscape of VQAs like Refs [76]–[78]. We
believe our shift-aware optimization is interesting and could

be inspiring to the community.
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