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Maximum-Entropy Density Estimation for MRI
Stochastic Surrogate Models
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Abstract—Stochastic spectral methods can generate accurate or for higher-level reliability analysis. Existing teclopies in
compact stochastic models for electromagnetic problems with the circuit community includes moment matching [11] and
material and geometric uncertainties. This letter presents an the recently developed monotonic interpolation [12]. lis th

improved implementation of the maximum-entropy algorithm lett f th . t techni 13
to compute the density function of an obtained generalized ST, We focus on the maximum entropy technique [13],

polynomial chaos expansion in Magnetic Resonance Imaging Since it provides the least biased estimation by avoiding
(MRI) applications. Instead of using statistical moments, we anything unknown. Such technique was recently applied to

show that the expectations of some orthonormal polynomials can extract the density function of analog circuits [14] usimgne
be better constraints for the optimization flow. The proposed statistical moment constraints. We show that such comgrai

algorithm is coupled with a finite element-boundary element ical instabilit d th i
method (FEM-BEM) domain decomposition field solver to obtain may cause numerical instabiiity, an Us we propose 1o use

a robust computational prototyping for MRI problems with low ~ Some orthonormal polynomials in the constraint functions.
and high dimensional uncertainties. Such maodifications bring in better numerical behaviors,clvhi
Index Terms—Uncertainty quantification, electromagnetics, IS Verified both theoretically and numerically in this work.
density function, magnetic resonance imaging (MRI). The proposed algorithm is coupled with a FEM-BEM
domain decomposition field solver to model stochastic MRI
problems with low and high dimensional uncertainties. INIMR

problems, the human body is illuminated by some radiation

T HERE s an increasing interest for analyzing the ge@ntennas in free space. The permittivity and conductivity o
metric and material uncertainties in computational elegjferent tissues are subject to some uncertainties. Is thi
tromagnetics [1]-[4] using stochastic spectral methodi[T3.  |etter, the interaction of electromagnetic waves with homa
Typical application examples include fast statisticallgsia of  issues is characterized by computing the input impedafce o
specific absorption rate (SAR) in magnetic resonance inagithe radiation sources. Our numerical results demonsthege t

(MRI) [8], radar cross section in scattering applicatioB$ [ effectiveness of the proposed algorithm.
S-parameters in microwave circuits [4], and spectral char-

acteristics in silicon photonic resonators [9]. Using much
fewer samples than Monte Carlo, such techniques generate
a truncated generalized polynomial-chaos expansion TE]-[ A- Stochastic Electromagnetic Field Solver for MRI Prolkdem

A FEM-BEM domain decomposition field solver is im-
plemented to simulate deterministic MRI scattering protse
consisting of several loop antennas placed around a human
where the basis functio, (x) is a multivariate orthonormal pody [15]. In this approach, the whole computational domain
polynomial of random parameters = [z1,---,z4], and s divided into two sub-domains, which are the set of loop
ae € R is the coefficient indexed by € N?. The details antennas and the human body. The loop antenna sub-domain
of constructing¥,, can be found, for instance, in Sectiorcontaining PECs is handled by BEM, implementing the stan-
Il of [10]. With the surrogate model in (1), designers cagard electric field integral equation (EFIE). On the otharda
quickly obtain some important statistical metric (e.g.,ame FEM is applied to human body sub-domain consist of different
and variance) of). However, it is nontrivial to extract certaintissues with high contrast in electrical properties by sw\the
information such as a closed-form probability density il Helmholtz vector wave equation:

This paper investigates how to construct a closed-form . . .
density function of; given a surrogate model in (1) foran MRl V % 1, 'V x E(z) — ke, E(z) + jopoo E(x) =0 (2)
application. The results can be used for robust MRI coilgiesi

I. INTRODUCTION

Il. PRELIMINARIES

y=g(x)= Z aa¥o(x),withy € Rand x € R? (1)
acP

where kq is the free space wave numbert,, . are the
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continuity of electric and magnetic fields and to connect thelll. PROPOSEDMAXIMUM -ENTROPY IMPLEMENTATION
interior and exterior problems as follows: A. Selections of the Constraint Functions

e 4j =t gt @ —j =t + 5t (3) 1) Numerical Stability IssuesA popular choice in existing
Finally, the overall solution of the problem is obtained b>|jterature is¢;(y) = y’, sincey; can be computed easily as an

taking into account the mutual coupling between the two Sulg[npirical SIatiStiC‘."ll moment from the measurgment/sitinﬂg
domains. Since the coupling computation is dominant in t @ta' However, this choice can make the algorithm numdyical

whole solution of the system, a randomized SVD combin stable. In order to show this, let us assume fas very

with discrete empirical interpolation [16] is employed t§'0s€ to the exact solution, and thus

accelerate thg cqmputqtion [15]. . i (A) ~ —E (¢j_1(y)dr-1(y)) = —E (yk+j—2) ()
In stochastic simulation, the developed MRI field solver is = . ,
used as a black box. When the dimensionalityxa small, Which is very close to th¢j + & — 2)-th moment. Very often,
some testing points of are selected according to [7]. Then foithe elements at the left-upper part #{)) are very small,
each sample the deterministic MRI solver is called to gererdNd those at the right-lower part are extremely large (oe vic
a sample solution fog. Finally, the generalized polynomial-Versd), leading to an ill-conditioned Jacobian.
chaos expansion (1) is obtained by interpolation [7]. For 2) Our Choice of¢;(y): In order to make the Newton's
high-dimensional problems, we use the sparse stochastic td€rations more robust, we propose to use a set of orthoriorma
ing simulator [17] to generate a representation forThis Polynomials {¢;(y)},. Specifically, ¢;(y) is a degreer
simulator uses analysis of variance (ANOVA) to decompo&@!ynomial subject to the constraint:
y into some low-dimensional functions of the uncertainties 1,if j =k,
x, then the importance of each random parameter and the E(6(y)¢r(y)) = djk = { 0, otherwise.
couplings among them are estimated on-the-fly, giving asgpa
generalized polynomial-chaos expansion gor

(10)

fAccordineg, we sefup =1 andp; =0 for j > 1in (4).
The orthonormal polynomials{¢;(y)}7., can be con-
structed via the following two steps [18]. Step 1: construct

B. Maxi -E D ity Esti i . .
aximum-Entropy Density Estimation a set of orthogonal polynomialgr;(y)}}., according to

In maximum entropy, a probability density functigfy) is

obtained by solving the convex optimization problem: mit1(y) = (y — ) mi(y) — w;mi—a(y), =0, 1,---m—1
maxmize H (p(y)) with initial conditions7_1(y) = 0, mo(y) = 1 and kg = 1.
g” E (1)) . (4) Forj > 0, the recurrence parameters are defined as
subject to () =g, =0, .m
7 ’ o E(ymiw) o E (y71(v)) 1)
whereE (¢;(y)) = /¢j(y)p(y)dy. po =1, ¢o(y) = 1, and TTER®W) 7T E@miw)
the entropy function (p(y)) is defined as Step 2: obtain{¢; (y)}j, by normalization:
75(y) ,
H (p(y)) = —/p(y)ln [p(y)] dy. (5) 5(y) = —— ,forj=0,1,--- m.  (12)
0"{/1 DR K‘/ .
N Using orth \/ﬁ'ls{qs()}’ in the opti
- . . _ Using orthonormal polynomialg¢;(y)}7-, in the opti-
Let o(y) '*l _[(Z5|(.)(y)7";,¢m(y)] : a”ﬁ' '”tfo"“cﬁ lt(he La- ization problem (4) can improve the ’numerical stability
grangian multipliersA = [o, -, An]". It is well known significantly, because now each element in (9) becomes
that the solution to the above convex optimization (4) is
JirA) = —=E(¢,;_ _ =—0; k. 13
p(y) = exp (—)\Tﬁb(y)) 7 (6) gk () (@j-1(¥)Pr-1(y)) J.k (13)

- ; _ T T As a result,—J (A) gets close to an identity matrix whex
which provides H (p(y)) = S{eXp( A e(y)) A ply)dy. approaches the exact solution. This nice property makes the
Therefore, one only needs to compwavhich then uniquely maximum-entropy flow much more robust.

determines(y) according to (6).

In order to obtain\, we solve the nonlinear equation B. Implementation Details

fF)=[foN).  fm V] =0 (7) 1) Integration When Computing;(y): In (11) we need to
where f; (A) = E (¢;(y)) — ;. Starting from an initial guess COmPpute some integrals in the for(q(y)), with a(y) =
A%, (7) is solved by Newton iterations m5(y) or q(y) = ymj(y). Wheny = g(x) is a truncated

. z L1 z generalized polynomial-chaos expansiafiy) is always a
solve J (A') AX = —f (A), update X+! = X' + AX polynomial ofx. Since the probability density function of
k =0,1,2,--- until convergence. Th¢j, k) element of the is unknown, we compute the integrals by multi-dimensional

Jacobian matrixJ (X) = 9f /O is Gauss quadrature in the parameter space:
P P d
Jin (A) = */ di—1(y)dk—1(y) exp (AT (y)) dy.  (8) E(q(y)) = Z Z q (g(xlf,-u ,a:if)) H wiE. (14)
Q i1=1 ig=1 k=1
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TABLE |
DIELECTRIC PROPERTIES OF TISSUES IN HUMAN TORSO

Tissue name Relative permittivity ~ Conductivity [S/m]
Body Fluid 69 1.52
Heart 70 0.9
Lung Inflated 24.7 0.36
Liver 53.5 0.61
Fat 5.63 0.04
Aorta 48.3 0.54
Bgﬂidcé?mﬁ‘al ]égl; 88? ) Current Magnitude
Ovary 61.4 1.15 ot 02 .04 06 08
Cerebro Spinal Fluid 72.7 2.22 ’ m— e
Muscle 58.9 0.97 0.037 0.99
Skin 51.9 0.63 , — o -, I
Trachea 45.3 0.61 Fig. 1. A simplified MRI configuration consisting of loop anters illumi-
Blood 64.8 0.99 nating an inhomogeneous cylinder representing human torso
Spinal Cord 36.9 0.41
Thymus 62.4 0.85 x1d®
Nerve 43.8 0.41 N —~—MC, N=1F
—e—MC, N=1d"
ar —e—MC, N=1F
—— proposed, m=}
Herex* andwj* are thei,-th Gauss quadrature abscissa and | |
weight of parametety,, respectively [19]. When the parameter 2
dimensionalityd is small, the above quadrature is easy to |
implement. When is large, we utilize the recently developed
tensor-train decomposition [20] to compute the integrahat 95 e I R—T o e Ta
cost of onlyO(d). The details can be found in [21]. Magnitude of impedance x1¢

2) Integration Inside Newton’s Iterationdn Newton’s it-

erations. we need to compute some integrals in the form Fig- 2. Probability density function of magnitude of the impade parameter
! for the MRI example. HeréV is the number of Monte Carlo samples.

16W) = [ iwew (-NTo)dy  (5)
R are involved, ¥, (x) simplifies to a normalized multivariate

whereg(y) is ¢;(y) or ¢;_1(y)¢r—1 when we evaluatg;(A) Hermite polynomial. _ _
or J; 1. (), respectively. Leb(y; i1, %) be a Gaussian density 1) Case 1 (with 10 random parametersjirst we consider

function with mean valug, and variancer?, then 10 uncertainties in the electrical permittivity and condwiti
of the tissues underlined in Table |. These parameters are
I(4(y)) = /q(y)h (%%52) dy (16) assumed Gaussian, with their standard deviations bEifig
5 of their nominal values. We combine the black-box domain-

decomposition MRI solver [15] with stochastic testing [@] t
with G(y) = 2 e;?(—zz)¢(y)). Therefore,I (§(y)) can be oObtain a3rd-order generalized polynomial-chaos expansion for
evaluated by the existing Gauss-Hermite quadrature rale.the magnitude of impedance. Six orthonormal polynomials
our implementation, we set ando to the mean and variance@re used (with = 5) to generate a closed-form probability

a similar level of accuracy with that from Monte Carlo using

105 samples. Our algorithm requirés seconds of CPU time,
and it is36x faster than Monte Carlo.

Fig. 1 shows a simplified MRI prototyping model, which 2) Case 2 (with 34 random parametershs a higher-
suffices for algorithm verification. In this MRI configuratio dimensional example34 random parameters including the
human torso is represented by a cylindrical scatterer wigtectrical permittivity and conductivity of all tissues fuman
radius of 10 cm and height of 25 cm illuminated by four looporso in Table | are considered for the same MRI configuration
antennas (radius of 7.5 cm) at the frequency of 300 MH@ig. 1). All parameters are assumed Gaussian with their
placed 20cm away from the center of the cylinder mny standard deviations beirity% of the norminal values. In this
and z axis. The cylinder contains dielectric inhomogeneitiesxample, the ANOVA-based stochastic testing solver [17] is
representing different tissues in human torso. The nomir@mbined with the deterministic MRI solver [15] to obtain a
values of the electrical parameters of different tissudsiiman sparse generalized polynomial-chaos expansion for thp loo
torso are summarized in Table I. The interaction betweeamtenna impedance, and the tensor-train-based threerterm
electromagnetic waves and biological tissues is evalubyed currence relation is employed to construct some orthonbrma
computing the input impedance of the loop antenna. The bap@lynomials [21]. The numerical results are plotted in Fg.
functions are computed according to the procedures detailith 5 orthonormal polynomials in the constraints, our algo-
in Section Il of [10]. When only Gaussian-type uncertaintiesthm has generated a very accurate density function. Note

IV. NUMERICAL RESULTS
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