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Maximum-Entropy Density Estimation for MRI
Stochastic Surrogate Models

Zheng Zhang∗, Niloofar Farnoosh∗, Thomas Klemas, and Luca Daniel

Abstract—Stochastic spectral methods can generate accurate
compact stochastic models for electromagnetic problems with
material and geometric uncertainties. This letter presents an
improved implementation of the maximum-entropy algorithm
to compute the density function of an obtained generalized
polynomial chaos expansion in Magnetic Resonance Imaging
(MRI) applications. Instead of using statistical moments, we
show that the expectations of some orthonormal polynomials can
be better constraints for the optimization flow. The proposed
algorithm is coupled with a finite element-boundary element
method (FEM-BEM) domain decomposition field solver to obtain
a robust computational prototyping for MRI problems with low
and high dimensional uncertainties.

Index Terms—Uncertainty quantification, electromagnetics,
density function, magnetic resonance imaging (MRI).

I. I NTRODUCTION

T HERE is an increasing interest for analyzing the geo-
metric and material uncertainties in computational elec-

tromagnetics [1]–[4] using stochastic spectral methods [5]–[7].
Typical application examples include fast statistical analysis of
specific absorption rate (SAR) in magnetic resonance imaging
(MRI) [8], radar cross section in scattering applications [3],
S-parameters in microwave circuits [4], and spectral char-
acteristics in silicon photonic resonators [9]. Using much
fewer samples than Monte Carlo, such techniques generate
a truncated generalized polynomial-chaos expansion [5]–[7]:

y = g (x) =
∑

α∈P

aαΨα(x),with y ∈ R and x ∈ R
d (1)

where the basis functionΨα(x) is a multivariate orthonormal
polynomial of random parametersx = [x1, · · · , xd], and
aα ∈ R is the coefficient indexed byα ∈ N

d. The details
of constructingΨα can be found, for instance, in Section
II of [10]. With the surrogate model in (1), designers can
quickly obtain some important statistical metric (e.g., mean
and variance) ofy. However, it is nontrivial to extract certain
information such as a closed-form probability density function.

This paper investigates how to construct a closed-form
density function ofy given a surrogate model in (1) for an MRI
application. The results can be used for robust MRI coil design
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or for higher-level reliability analysis. Existing techniques in
the circuit community includes moment matching [11] and
the recently developed monotonic interpolation [12]. In this
letter, we focus on the maximum entropy technique [13],
since it provides the least biased estimation by avoiding
anything unknown. Such technique was recently applied to
extract the density function of analog circuits [14] using some
statistical moment constraints. We show that such constraints
may cause numerical instability, and thus we propose to use
some orthonormal polynomials in the constraint functions.
Such modifications bring in better numerical behaviors, which
is verified both theoretically and numerically in this work.

The proposed algorithm is coupled with a FEM-BEM
domain decomposition field solver to model stochastic MRI
problems with low and high dimensional uncertainties. In MRI
problems, the human body is illuminated by some radiation
antennas in free space. The permittivity and conductivity of
different tissues are subject to some uncertainties. In this
letter, the interaction of electromagnetic waves with human
tissues is characterized by computing the input impedance of
the radiation sources. Our numerical results demonstrate the
effectiveness of the proposed algorithm.

II. PRELIMINARIES

A. Stochastic Electromagnetic Field Solver for MRI Problems

A FEM-BEM domain decomposition field solver is im-
plemented to simulate deterministic MRI scattering problems
consisting of several loop antennas placed around a human
body [15]. In this approach, the whole computational domain
is divided into two sub-domains, which are the set of loop
antennas and the human body. The loop antenna sub-domain
containing PECs is handled by BEM, implementing the stan-
dard electric field integral equation (EFIE). On the other hand,
FEM is applied to human body sub-domain consist of different
tissues with high contrast in electrical properties by solving the
Helmholtz vector wave equation:

∇× µ−1
r ∇× ~E(x)− k20εr

~E(x) + jωµ0σ ~E(x) = 0 (2)

where k0 is the free space wave number,εr, µr are the
relative permittivity and permeability andσ is the conduc-
tivity of different tissues in human body. FEM region is
further decomposed into interior and exterior problems by
defining dual cement variables on its surfaces (~j± = n± × ~H,
~e± = n± × ~E × n±), where negative and positive sign corre-
sponds to interior and exterior variables respectively andn±

are unit vectors on the surface. Then, the Robin impedance
boundary condition is applied at the interface to enforce the
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continuity of electric and magnetic fields and to connect the
interior and exterior problems as follows:

~e− +~j− = ~e+ −~j+, ~e− −~j− = ~e+ +~j+. (3)

Finally, the overall solution of the problem is obtained by
taking into account the mutual coupling between the two sub-
domains. Since the coupling computation is dominant in the
whole solution of the system, a randomized SVD combined
with discrete empirical interpolation [16] is employed to
accelerate the computation [15].

In stochastic simulation, the developed MRI field solver is
used as a black box. When the dimensionality ofx is small,
some testing points ofx are selected according to [7]. Then for
each sample the deterministic MRI solver is called to generate
a sample solution fory. Finally, the generalized polynomial-
chaos expansion (1) is obtained by interpolation [7]. For
high-dimensional problems, we use the sparse stochastic test-
ing simulator [17] to generate a representation fory. This
simulator uses analysis of variance (ANOVA) to decompose
y into some low-dimensional functions of the uncertainties
x, then the importance of each random parameter and the
couplings among them are estimated on-the-fly, giving a sparse
generalized polynomial-chaos expansion fory.

B. Maximum-Entropy Density Estimation

In maximum entropy, a probability density functionp(y) is
obtained by solving the convex optimization problem:

maxmize
p(y)

H (p(y))

subject to E (φj(y)) = µj , j = 0, · · · ,m
(4)

whereE (φj(y)) =

∫

Ω

φj(y)p(y)dy, µ0 = 1, φ0(y) = 1, and

the entropy functionH (p(y)) is defined as

H (p(y)) := −
∫

Ω

p(y)ln [p(y)] dy. (5)

Let φ(y) := [φ0(y), · · · , φm(y)]T , and introduce the La-
grangian multipliersλ = [λ0, · · · , λm]T . It is well known
that the solution to the above convex optimization (4) is

p(y) = exp
(

−λTφ(y)
)

, (6)

which providesH (p(y)) =
∫

Ω

exp
(

−λTφ(y)
)

λTφ(y)dy.

Therefore, one only needs to computeλ which then uniquely
determinesp(y) according to (6).

In order to obtainλ, we solve the nonlinear equation

f (λ) = [f0 (λ) , · · · , fm (λ)]
T
= 0 (7)

wherefj (λ) = E (φj(y))−µj . Starting from an initial guess
λ0, (7) is solved by Newton iterations

solve J
(

λl
)

∆λ = −f
(

λl
)

, update λl+1 = λl +∆λ

k = 0, 1, 2, · · · until convergence. The(j, k) element of the
Jacobian matrixJ (λ) = ∂f/∂λ is

Jj,k (λ) = −
∫

Ω

φj−1(y)φk−1(y) exp
(

−λTφ(y)
)

dy. (8)

III. PROPOSEDMAXIMUM -ENTROPY IMPLEMENTATION

A. Selections of the Constraint Functions

1) Numerical Stability Issues:A popular choice in existing
literature isφj(y) = yj , sinceµj can be computed easily as an
empirical statistical moment from the measurement/simulation
data. However, this choice can make the algorithm numerically
unstable. In order to show this, let us assume thatλ is very
close to the exact solution, and thus

Jj,k (λ) ≈ −E (φj−1(y)φk−1(y)) = −E
(

yk+j−2
)

, (9)

which is very close to the(j+ k− 2)-th moment. Very often,
the elements at the left-upper part ofJ (λ) are very small,
and those at the right-lower part are extremely large (or vice
versa), leading to an ill-conditioned Jacobian.

2) Our Choice ofφj(y): In order to make the Newton’s
iterations more robust, we propose to use a set of orthonormal
polynomials {φj(y)}mj=0. Specifically, φj(y) is a degree-j
polynomial subject to the constraint:

E (φj(y)φk(y)) = δj,k =

{

1, if j = k,
0, otherwise.

(10)

Accordingly, we setµ0 = 1 andµj = 0 for j ≥ 1 in (4).
The orthonormal polynomials{φj(y)}mj=0 can be con-

structed via the following two steps [18]. Step 1: construct
a set of orthogonal polynomials{πj(y)}mj=0 according to

πj+1(y) = (y − γj)πj(y)− κjπj−1(y), j = 0, 1, · · ·m− 1

with initial conditionsπ−1(y) = 0, π0(y) = 1 and κ0 = 1.
For j ≥ 0, the recurrence parameters are defined as

γj =
E
(

yπ2
j (y)

)

E
(

π2
j (y)

) , κj+1 =
E
(

yπ2
j+1(y)

)

E
(

yπ2
j (y)

) . (11)

Step 2: obtain{φj(y)}mj=0 by normalization:

φj(y) =
πj(y)√

κ0κ1 · · ·κj

, for j = 0, 1, · · · ,m. (12)

Using orthonormal polynomials{φj(y)}mj=0 in the opti-
mization problem (4) can improve the numerical stability
significantly, because now each element in (9) becomes

Jj,k (λ) ≈ −E (φj−1(y)φk−1(y)) = −δj,k. (13)

As a result,−J (λ) gets close to an identity matrix whenλ
approaches the exact solution. This nice property makes the
maximum-entropy flow much more robust.

B. Implementation Details

1) Integration When Computingφj(y): In (11) we need to
compute some integrals in the formE (q(y)), with q(y) =
π2
j (y) or q(y) = yπ2

j (y). When y = g(x) is a truncated
generalized polynomial-chaos expansion,q(y) is always a
polynomial ofx. Since the probability density function ofy
is unknown, we compute the integrals by multi-dimensional
Gauss quadrature in the parameter space:

E (q(y)) =

p
∑

i1=1

· · ·
p

∑

id=1

q
(

g(xi1
1 , · · · , xid

d )
)

d
∏

k=1

wik
k . (14)
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TABLE I
DIELECTRIC PROPERTIES OF TISSUES IN HUMAN TORSO

Tissue name Relative permittivity Conductivity [S/m]

Body Fluid 69 1.52
Heart 70 0.9

Lung Inflated 24.7 0.36
Liver 53.5 0.61
Fat 5.63 0.04

Aorta 48.3 0.54
Bone Cortical 13.4 0.08

Duodenum 68.7 0.97
Ovary 61.4 1.15

Cerebro Spinal Fluid 72.7 2.22
Muscle 58.9 0.97
Skin 51.9 0.63

Trachea 45.3 0.61
Blood 64.8 0.99

Spinal Cord 36.9 0.41
Thymus 62.4 0.85
Nerve 43.8 0.41

Herexik
k andwik

k are theik-th Gauss quadrature abscissa and
weight of parameterxk, respectively [19]. When the parameter
dimensionalityd is small, the above quadrature is easy to
implement. Whend is large, we utilize the recently developed
tensor-train decomposition [20] to compute the integral atthe
cost of onlyO(d). The details can be found in [21].

2) Integration Inside Newton’s Iterations:In Newton’s it-
erations, we need to compute some integrals in the form

I (q̂(y)) =

∫

R

q̂(y) exp
(

−λTφ(y)
)

dy (15)

whereq̂(y) is φj(y) or φj−1(y)φk−1 when we evaluatefj(λ)
or Jj,k (λ), respectively. Leth(y;µ, σ2) be a Gaussian density
function with mean valueµ and varianceσ2, then

I (q̂(y)) =

∫

R

q̃(y)h
(

y;µ, δ2
)

dy (16)

with q̃(y) =
q̂(y) exp(−λTφ(y))

h(y;µ,δ2) . Therefore,I (q̂(y)) can be
evaluated by the existing Gauss-Hermite quadrature rule. In
our implementation, we setµ andσ to the mean and variance
of y respectively, which can be easily obtained from (1).

IV. N UMERICAL RESULTS

Fig. 1 shows a simplified MRI prototyping model, which
suffices for algorithm verification. In this MRI configuration,
human torso is represented by a cylindrical scatterer with
radius of 10 cm and height of 25 cm illuminated by four loop
antennas (radius of 7.5 cm) at the frequency of 300 MHz,
placed 20cm away from the center of the cylinder onx, y
and z axis. The cylinder contains dielectric inhomogeneities
representing different tissues in human torso. The nominal
values of the electrical parameters of different tissues inhuman
torso are summarized in Table I. The interaction between
electromagnetic waves and biological tissues is evaluatedby
computing the input impedance of the loop antenna. The basis
functions are computed according to the procedures detailed
in Section II of [10]. When only Gaussian-type uncertainties

Fig. 1. A simplified MRI configuration consisting of loop antennas illumi-
nating an inhomogeneous cylinder representing human torso
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Fig. 2. Probability density function of magnitude of the impedance parameter
for the MRI example. HereN is the number of Monte Carlo samples.

are involved,Ψα(x) simplifies to a normalized multivariate
Hermite polynomial.

1) Case 1 (with 10 random parameters):First we consider
10 uncertainties in the electrical permittivity and conductivity
of the tissues underlined in Table I. These parameters are
assumed Gaussian, with their standard deviations being15%
of their nominal values. We combine the black-box domain-
decomposition MRI solver [15] with stochastic testing [7] to
obtain a3rd-order generalized polynomial-chaos expansion for
the magnitude of impedance. Six orthonormal polynomials
are used (withm = 5) to generate a closed-form probability
density function ofy. Clearly shown in Fig. 2, our result has
a similar level of accuracy with that from Monte Carlo using
106 samples. Our algorithm requires18 seconds of CPU time,
and it is36× faster than Monte Carlo.

2) Case 2 (with 34 random parameters):As a higher-
dimensional example,34 random parameters including the
electrical permittivity and conductivity of all tissues inhuman
torso in Table I are considered for the same MRI configuration
(Fig. 1). All parameters are assumed Gaussian with their
standard deviations being25% of the norminal values. In this
example, the ANOVA-based stochastic testing solver [17] is
combined with the deterministic MRI solver [15] to obtain a
sparse generalized polynomial-chaos expansion for the loop
antenna impedance, and the tensor-train-based three-termre-
currence relation is employed to construct some orthonormal
polynomials [21]. The numerical results are plotted in Fig.3.
With 5 orthonormal polynomials in the constraints, our algo-
rithm has generated a very accurate density function. Note
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Fig. 3. Probability density function of real part of the impedance parameter
for the MRI example. HereN is the number of Monte Carlo samples.
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Fig. 4. The condition number ofJ (λ) during Newton’s iterations.

that generating the density function with Monte Carlo (using
106 samples) needs about2 hours, while our technique only
requires about30 seconds.

3). Numerical Stability:Fig. 4 shows the condition numbers
of the Jacobian matrixJ (λ) during the Newton’s iterations.
For both examples, due to the use of orthonormal polynomials
in the constraints, the condition number quickly decreasesto
a small value close to1. Neither of these examples could
be solved if we directly use a set of statistical moments in
the constraints, since the condition number ofJ (λ) becomes
extremely large and Newton iterations fail to work.

V. CONCLUSIONS ANDFUTURE WORK

In this paper we have proposed an implementation that
improves the robustness of maximum entropy for estimating
the density functions of MRI stochastic surrogate models. We
have reduced the condition number of the Jacobian matrix by
using the expectations of some orthonormal polynomials as the
equality constraints. Our proposed algorithm has been verified
on a simplified MRI prototyping model with both low- and
high-dimensional random parameters, generating very accurate
density functions with dozens to hundreds of times of speedup
over Monte Carlo. The improvement of numerical stability has
been demonstrated by our numerical results.

It is worth extending the proposed algorithm to the case that
y is a non-smooth function ofx. In such a case, our current
implementation may be unable to construct accurately a set of
orthonormal polynomials fory.
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